

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR190622623 Volume 1, Issue 3, November-December 2019 1

Migrating Hadoop Data to Google Cloud

Sainath Muvva

Abstract:

As companies are generating data at an unprecedented rate, the growing demand for increased computing

power, storage capacity, and data governance is compelling them to transition from on-premises

infrastructure to cloud-based solutions. This migration to the cloud has gained significant momentum in

recent years, and the trend is likely to continue. The three major cloud service providers are AWS,

Microsoft Azure, and Google Cloud Platform (GCP).

This paper serves as a guide for migrating data stored on the Hadoop File System to Google Cloud Storage

buckets and Google BigQuery. It also discusses Google's Dataproc, which is the equivalent of Hadoop in

the GCP ecosystem. The paper addresses the challenges, cost-efficiency considerations, and data

governance aspects involved in this migration process to the Google Cloud Platform.

Keywords: Hadoop, GCP, Dataproc, BigQuery, Parquet

Introduction

Businesses are treating data as a highly valuable asset and are investing heavily in storage and computing

solutions to handle the tremendous growth in data generation. This rapid increase in data volume has

created unique challenges in scaling on-premises infrastructure, such as expanding data centers,

maintaining cluster upgrades, and replacing faulty nodes. Cloud services, in the form of Software-as-a-

Service (SaaS), have emerged as a solution. This has enabled companies to move away from managing

physical server systems housed in less-than-ideal facilities, and instead leverage public cloud providers

[1]. The question arises - why do organizations continue to spend time, effort, and money maintaining

their own systems and servers when cloud providers can offer these services, allowing the organizations

to focus on their core business and drive profitability? The key challenge in migrating to the cloud is

moving data off on-premises systems and into the cloud. Cloud providers do offer services to help migrate

databases from on-premises to the cloud. However, when it comes to data stored in the Hadoop File

System, there is no easy way to accomplish this migration, and there is limited documentation explaining

the process.

This paper discusses an efficient and high-speed approach for migrating historical data stored in the

Hadoop Distributed File System (HDFS) to Google Cloud Storage (GCS) buckets. Although the paper

focuses specifically on GCS, the concepts presented can be applied to migrating data to other cloud

providers as well. This is because the tool referenced in the paper for performing the migration is a default

component included with Hadoop distributions. The paper explains how Dataproc jobs are utilized to

create Hive tables and update the Hive metadata for the copied data files. Additionally, the paper covers

how the data migrated to GCS is then uploaded to Google BigQuery, making the migrated data queryable

and accessible in BigQuery.

Hadoop File System Fundamentals

HDFS, or the Hadoop Distributed File System, stores data in a distributed way across multiple nodes in a

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR190622623 Volume 1, Issue 3, November-December 2019 2

cluster (a set of multiple machines connected over a LAN or MAN connection). There are two main

components in Hadoop: the NameNode and the DataNode. The NameNode stores the metadata like the

name, path, and other information about the files. The DataNodes store the actual data. When a human

interacts with the Hadoop cluster, the NameNode initiates a block-level operation to generate a query to

find the location of the file on the HDFS. Since all data is stored in blocks, the NameNode retrieves the

block information and shares it.

For write operations, the process is similar, but instead of querying, the NameNode writes the data to the

HDFS. This is done only once. By default, the Hadoop replication factor is 3, which means the same data

file is replicated to 3 different DataNodes located on different racks. This is to enable data recovery in

case one node goes down [2].

Example: hdfs://{NameNode}/{file_path}

Figure 1: Hadoop File System Architecture

Google Cloud Storage

Google Cloud Storage is a managed service by Google for storing structured, semi-structured and

unstructured data. It can store any amount of data and is retrievable whenever needed.

Example: gs://{bucket_name}/{file_path}

Tool and Framework

DistCp, or Distributed Copy, is a tool used for copying data files between or within a Hadoop cluster. It

uses the MapReduce framework for copying the files, and it has error handling, recovery, and reporting

capabilities. DistCp reads the list of files and folders as input to the mapper tasks, and each mapper copies

those folders or files to the destination folder [3]. The Hadoop distcp command can be executed through

Command line interface

Example: hadoop distcp hdfs://{source_name_node}/foo/bar \

hdfs://{target_name_node}/bar/foo

Hadoop DistCp can be used to copy data from HDFS to Cloud Storage. There are two migration models:

push and pull. In the push model, which is simpler, the source cluster runs the distcp jobs on its data nodes

and pushes files directly to Cloud Storage. In the pull model, which is more complex but offers several

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR190622623 Volume 1, Issue 3, November-December 2019 3

advantages, an ephemeral Dataproc cluster runs the distcp jobs on its data nodes, pulls files from the source

cluster, and copies them to Cloud Storage. The pull model minimizes impact on the source cluster's

resources, reduces network traffic, and doesn't require installing the Cloud Storage connector on the source

cluster. The only requirement is to establish a private link between your on-premises network and Google's

network using Cloud Interconnect or Cloud VPN before using DistCp.

Figure 2: Push Model

Figure 3: Pull Model

Push Model:

Pros:

• Simplest model to implement

• No need to create extra compute resources, so is less expensive compared to pull model

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR190622623 Volume 1, Issue 3, November-December 2019 4

• Direct push from source cluster to Cloud Storage

Cons:

• Can impact source cluster's resources (CPU, RAM, network bandwidth)

• May interfere with regular data processing jobs on source cluster

• Higher network traffic (up to twice the file's total size)

Pull Model:

Pros:

• Minimizes impact on source cluster's CPU and RAM resources

• Reduced traffic on source cluster's network

• Higher outbound bandwidths and faster transfers

• No need to install Cloud Storage connector on source cluster

• Network traffic is limited to the file's total size

• Can fine-tune pull cluster's resources on Google Cloud

• Can tear down pull cluster after migration

Cons:

• More complex to implement than push model

• Requires creation of additional compute resources (ephemeral Dataproc cluster)

• Needs monitoring of distcp map tasks and bandwidth to avoid overwhelming source cluster

Example: hadoop distcp -m 400 hdfs://{on-prem Name_node}/{file_path}

gs://{bucket_name}/{file_path}

The above command can be incorporated into a framework that recursively copies files in a multithreaded

fashion, optimizing performance based on available network bandwidth and cluster resources where

DistCp is executed.

Once the files are copied, a Dataproc [4] cluster is initiated. An external table is then created within the

Hive metastore [5], and the partitions are updated using the Hive command 'MSCK REPAIR TABLE

{table_name};'. This process updates the Hive table metadata, ensuring it remains synchronized with the

on-premises data. These tables can be sourced for running hive or spark jobs to derive business insights

from the data.

Sample dataproc job to create an external table

gcloud dataproc jobs submit hive --cluster={dataproc_cluster_name} -e="CREATE EXTERNAL

TABLE {migratied_table}(bar int) LOCATION 'gs://{

gcs_bucket_with_copied_files}/{data_folder_path}'" -e="'MSCK REPAIR TABLE {

migratied_table }"[9]

BigQuery

BigQuery [7] is a popular data analytics platform provided and managed by Google. It supports multiple

file formats like Parquet, ORC, CSV, and others. It is known for its fast data retrieval speeds. While

Dataproc is used for batch data processing, BigQuery is used for analytics thanks to its ease of use and

minimal query response times.

BigQuery has API’s [8] that supports multiple languages for various use cases. Below code snippet is for

uploading the parquet files to Google BigQuery from Google cloud storage

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR190622623 Volume 1, Issue 3, November-December 2019 5

job_config = bigquery.LoadJobConfig(

 write_disposition=bigquery.WriteDisposition.WRITE_TRUNCATE,

 source_format=bigquery.SourceFormat.PARQUET,

)

uri = "gs://{gcs_bucket_with_copied_files}/{parquet file path}"

load_job = client.load_table_from_uri(

 uri, table_id, job_config=job_config

) # Make an API request.

load_job.result() [8]

As parquet files have embedded schemas, BigQuery can intelligently read the schema and create the table

accordingly, including appropriate partitions. However, BigQuery will use default data distribution unless

specified otherwise.

Challenges

Some common mistakes in migrating data from on-premises systems to Google Cloud Storage (GCS)

involve checksum validations supported by DistCp. These validations often fail when copying files from

on-premises to GCS due to differences in block sizes between on-premises HDFS data nodes and GCS.

Another challenge is executing too many DistCp jobs concurrently, which can exhaust resources and delay

the migration process.

As this migration involves multiple hops (HDFS → GCS → Dataproc/Hive → BigQuery), tracking the

status of all datasets throughout the migration can be difficult. It is recommended to maintain an audit

table to track the stages of migration at the dataset level.

Here's a revised and improved version of the sentence:

When making concurrent calls to the BigQuery API or submitting multiple Dataproc jobs simultaneously,

intermittent failures may occur due to exceeding the API's concurrent request threshold. To mitigate this

issue, it is recommended to implement a retry mechanism in the framework.

Conclusion

This paper covers the migration of data from HDFS to Google Cloud Platform (GCP), focusing on the

services of Google Cloud Storage (GCS), Dataproc, and BigQuery. While this approach is specific to GCP,

DistCp can be used for migrating data to other platforms as well. A similar approach can also be

implemented for incremental, day-to-day data copying if needed. In the future, Google may develop a

managed service that copies data into different services, potentially eliminating the need for this approach.

However, for now, this method provides the best-suited, scalable, and fault-tolerant solution capable of

copying terabytes to petabytes of data within a few days.

References:

1. Jacek Materna. https://www.forbes.com/sites/forbestechcouncil/2018/08/13/on-premise-is-dead-long-

live-on-premise/ (accessed Oct. 11, 2019).

2. Neeta Sharma,

https://www.researchgate.net/publication/329586205_Enhancing_the_Traditional_File_System_to_

HDFS_A_Big_Data_Solution (accessed Oct. 11, 2019).

https://www.ijfmr.com/
https://www.forbes.com/sites/forbestechcouncil/2018/08/13/on-premise-is-dead-long-live-on-premise/
https://www.forbes.com/sites/forbestechcouncil/2018/08/13/on-premise-is-dead-long-live-on-premise/
https://www.researchgate.net/publication/329586205_Enhancing_the_Traditional_File_System_to_HDFS_A_Big_Data_Solution
https://www.researchgate.net/publication/329586205_Enhancing_the_Traditional_File_System_to_HDFS_A_Big_Data_Solution

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR190622623 Volume 1, Issue 3, November-December 2019 6

3. https://hadoop.apache.org/docs/r2.8.5/hadoop-distcp/DistCp.html(accessed Oct. 13, 2019).

4. https://cloud.google.com/architecture/hadoop/hadoop-gcp-migration-data(accessed Oct. 15, 2019).

5. https://cloud.google.com/dataproc?hl=en(accessed Oct. 15, 2019).

6. https://cloud.google.com/dataproc-metastore/docs/hive-metastore(accessed Oct. 16, 2019).

7. https://cloud.google.com/bigquery?hl=en(accessed Oct. 19, 2019).

8. https://cloud.google.com/bigquery/docs/loading-data-cloud-storage-parquet(accessed Oct. 19, 2019).

9. https://cloud.google.com/sdk/gcloud/reference/dataproc/jobs/submit/hive(accessed Oct. 21, 2019).

https://www.ijfmr.com/
https://hadoop.apache.org/docs/r2.8.5/hadoop-distcp/DistCp.html
https://cloud.google.com/architecture/hadoop/hadoop-gcp-migration-data
https://cloud.google.com/dataproc?hl=en
https://cloud.google.com/dataproc-metastore/docs/hive-metastore
https://cloud.google.com/bigquery?hl=en
https://cloud.google.com/bigquery/docs/loading-data-cloud-storage-parquet

