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Abstract 

When software systems are larger, complex and mature, the quality assurance process gets difficult. Test 

case generation in a conventional manner, often manually, is a time and resource-intensive process that 

fails to cope with the fast cycles that modern dynamic development environments push. In this paper a 

novel technique to automatically generate test cases based on the new state-of-the-art Large Language 

Models (LLMs) is being proposed. LLMs, an application of Natural Language Processing (NLP) 

techniques, provide immense benefits such as the ability to analyze unstructured data for e.g., system 

documentation, user stories, and historical test data to automatically generate test cases. Integrating LLMs 

into the test automation pipeline can result in increased test coverage, decreased manual overhead, and 

enhanced system stability to the organization. Conventional approaches are contrasted with LLM-centric 

methodologies, to provide a detailed sequential approach to integrating LLMs, and highlight challenges 

and limitations with respect to the practical adoption of LLMs for testing. This paper provides directions 

for future research in this fast-growing area. 

 

1. Introduction 

With contemporary software systems being produced at an ever-increasing velocity and complexity, QA 

is becoming more sophisticated and manual. Historically, the process of generating test cases, by which 

test scenarios are created to verify whether the software system is behaving as designed, has required 

manual methods. QA engineers would write test cases and document them based on the system 

specification and user stories. This manual approach towards generating test case is impractical as software 

systems become more complex and the pressure on releasing new features is growing. 

Large Language Models (LLMs) are a major step forward in enabling automated test case generation. The 

latest developments in natural language processing through models like GPT-4 can be used to 

automatically create test cases from natural language inputs such as user stories and system 

documentation. It accelerates the testing process while also ensuring a wider scope of tests because LLMs 

can generate tests for both regular and edge-cases that would otherwise be missed out. 

Through this paper, an investigation is conducted on how LLMs can be leveraged in existing testing 

pipelines, discuss benefits and limitations of LLMs in the context of automated test case generation, and 

elaborate on the application of LLMs through rich case studies based on real-world systems. 
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2. Background and Related Work 

2.1 Traditional Approaches to Test Case Generation 

Software testing, in essence, was manual testing in which they created the test cases based on system specs 

and requirements, by a QA professional. Although this method provides accuracy in test design, it is a 

lengthy process with the risk of human error involved. In addition, as systems get more extensive and 

complicated, the number of possible test cases increases exponentially, making manual test generation 

infeasible. 

Over the years, many automated testing methods have been developed to tackle such challenges. Some of 

them are of notoriety like Search-Based Software Testing (SBST), and Model-Based Testing (MBT). 

SBST employs optimization algorithms to produce a set of test cases aiming at maximizing the code 

coverage and minimizing the associated input/output conditions. SBST is powerful, but because it requires 

a clear definition of the interface of its subject, it does not tackle the huge, unstructured dynamism of 

software that surround its environment. In contrast, MBT leverages formal models of system behavior to 

automate the generation of test cases. Although MBT is useful, building its detailed models of the system 

under test can be expensive and difficult to produce. However, neither approach meets the requirement for 

a fully scalable solution capable of automatic test case generation from unstructured inputs (which are 

common in real-world systems), like system documentation and user stories, despite important advances 

in SBST and MBT. 

2.2 Large Language Models in Software Engineering 

Machine learning (ML) and natural language processing (NLP) technologies have proven to be effective 

in automating multiple domains, such as not only software engineering, but also many other areas in the 

recent years. It includes Large Language Models (LLMs) — models like GPT-4 and BERT that are 

extremely good at producing natural language text that simulates human understanding. Such models can 

pass through large volumes of unstructured, technical, and natural language client user requirements data 

and produce relevant outputs. 

Research on applying LLMs to software testing, test case generation in particular, is still at an early stage. 

But so far, the results suggest that LLMs can improve the CodeTest system coverage through generation 

of examples mimicking regular and edge case system behavior. More comprehensive testing is possible 

as traditional testing only focuses on a set of static test cases. 

 

Table 1: Comparison of Traditional Methods vs. LLM-Based Test Case Generation 

Method Advantages Disadvantages 

Manual Test 

Case Generation 

High accuracy for specific cases, 

human judgment 

Time-consuming, prone to human error, lacks 

scalability 

Search-Based 

Testing (SBST) 

Optimized for input/output 

conditions 

Limited to structured systems, high 

computational cost 

Model-Based 

Testing (MBT) 

Automated generation based on 

system models 
Requires detailed system models, complex setup 

LLM-Based 

Testing 

Scalable, automatic test case 

generation from natural language 

Requires large datasets, lacks explainability, 

model biases 
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3. Methodology 

There are multiple stages involved in integrating LLMs into the workflow of Test case generation. We  

elaborate our LLM-based test case generation approach in this section, including the choice of the LLM  

framework, training data preparation, test case generation, and validation. 

3.1 LLM Framework Selection 

Selecting an appropriate LLM is one of the most important factors for the success of the automated test 

case generation process. There are multiple LLM frameworks, and each has its own strengths and 

weaknesses depending on the complexity of the system under test. 

• GPT-4 (OpenAI): With its superior text generation capacity from unstructured data, its great model 

for analyzing system documentation and generating detailed test cases. Because of its extensive pre-

training, it can potentially cover many testing scenarios, even those that are not commonly 

encountered. 

• BERT by Google: This one is great for any task that requires a deeper sense of what word context 

looks like within a sentence. This property makes it appropriate for specification-based test case 

generation that require precise interpretation of the behaviors of the system under test. 

• T5 (Text-To-Text Transfer Transformer): T5 is a very versatile test case generator as it treats any 

natural language processing task as a text generation problem It can be modified to generate extensive 

and context-specific test cases from system documentation or user stories. 

3.2 Training Data Considerations 

The LLM performance heavily relies on the training data it got (quality and diversity). If we refer to the 

training data contextually, it should consist of the following for test case generation: 

• System Documentation: This is a thorough breakdown of what the system is intended to do, which the 

LLM can then utilize to write applicable test cases. 

• Test cases of the history: A previously run test cases gives an idea for the model on input-output states 

for respective test patterns; in this way it may be able to generate new test cases in the same manner. 

• User Stories: User Stories describe how the system should behave with respect to the end user. The 

first three narratives offer the LLM context for generating test cases that simulate production usage of 

the contract code. 

Within this step, you would find the procedure of cleaning, tokenizing, and formatting the input data to 

prepare it for the LLM training process. Tokenization is particularly crucial in this stage since it splits the 

texts into pieces that the model will be able to read. 

3.3 Successes of the LLM and Minimizing False Positives 

Metrics such as test coverage, accuracy, and reducing false positives can be used to evaluate the 

performance of LLM when fine-tuned. 

• Test Coverage: This cross-section of scenarios to which the LLM can generate corresponding test cases 

e.g., normal system behavior but also edge cases, is an important measure for how effective the LLM 

is. 

• Correctness: You can check the correctness of the generated test cases by executing the tests against 

the system and by constructing the pass/fail criteria based on the output expected. 

3.4 Handling False Positives 

False positives refer to the cases created by a generation that suggest that a given system is failing when 

it is, in fact, working normally. There are a few approaches that we can use to make sure that false positives 

do not happen often: 
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• Boxed Hybrid: A few human reviewers pass through a significant portion of the test cases generated 

to verify for relevance and accuracy. 

• Automatic confidence scoring: LLMs such as GPT-4 can give a confidence score to each test case they 

come up with, where low-confidence cases would need to be flagged for further review. 

• Refines itself Iteratively: Through active learning, the model can be trained again through insights 

gained from previously run test cases, thus increasing its accuracy over time. 

3.5 Improving Test Coverage 

Improving test coverage is one of the significant advantages of the test case generation for LLMs. This 

can be achieved through: 

• Diversity of prompts: Giving the LLM a broad base of prompts to work with will ensure that it 

produces test cases across different aspects of the system. 

• Edge Case Generation: By training on bug reports and issue tracking data, the LLM can be fine-tuned 

to specifically focus on edge cases. 

• Scenario Extension: After LLM generates a set of basic test cases base, LLM can extend this set by 

varying the inputs, system state, and environment-related factors. 

3.6 Performance of the LLM and Addressing False Positives 

After fine-tuning the LLM, its performance can be evaluated using metrics such as test coverage, accuracy, 

and the ability to reduce false positives. 

• Test Coverage: The LLM's ability to generate test cases for a wide range of scenarios—including 

typical system behavior and edge cases—is a key measure of its effectiveness. 

• Accuracy: The accuracy of the generated test cases can be assessed by running the tests against the 

system and determining whether the tests pass or fail based on the expected outputs. 

3.7 Addressing False Positives 

False positives occur when a generated test case incorrectly indicates that a system is failing when it is 

functioning correctly. Several strategies can be employed to reduce the occurrence of false positives: 

• Human-in-the-loop validation: A hybrid approach where human reviewers validate a subset of the 

generated test cases to ensure relevance and accuracy. 

• Confidence scoring: LLMs like GPT-4 can assign confidence levels to each test case they generate, 

flagging low-confidence cases for further review. 

• Iterative Refinement: Using active learning, the model can be retrained based on feedback from 

previously executed test cases, improving accuracy over time. 

3.8 Improving Test Coverage 

One of the primary benefits of using LLMs for test case generation is the ability to improve test coverage. 

This can be achieved through: 

• Diverse Prompts: Providing the LLM with a wide range of prompts ensures that it generates test cases 

for various system functionalities. 

• Edge Case Generation: The LLM can be fine-tuned to focus specifically on edge cases by training it 

on bug reports and issue tracking data. 

• Scenario Expansion: Once the LLM generates a base set of test cases, it can expand these cases by 

introducing variations in inputs, system states, and environmental factors. 
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4. Challenges and Limitations 

Despite the great potential LLMs have to automatically generate test cases, they face a number of 

challenges: 

• Data Quality: The quality of output of LLM will be only as good as the quality of data which is trained 

upon. Insufficient/inappropriate training data can result in false/irrelevant test cases. 

• Explanation: LLMs are black boxes: a test case generated by an LLM is not easily explainable on how 

it is generated. Due to the inherent absence of explainability, QA teams may be less likely to trust the 

generated tests without manual validation. 

• Computational Costs: The training and fine-tuning of LLMs can demand extensive computational 

power, which might be considered too large for smaller entities. 

 

5. Case Study: Automated Test Case Generation for an E-commerce Platform 

Now to concretely demonstrate the application of LLMs in practice, we focus on test case generation for 

an e-commerce platform in a controlled test environment— a common system type that is highly complex 

and precisely where strong testing is essential. In these systems, user authentication, shopping cart 

functionality, and payment processing are all dependent upon each other: break one part and the other 

components fail the user experience. To make sure all of these work as expected, one needs to cover lots 

of test cases, which, when done manually, takes a considerable amount of time and human resources. 

Here, test cases are automatically created for the basic functionalities of the platform through LLMs 

integrated into the test case generation process. In this paper, an outline for the process of using LLMs to 

create test cases for critical functionalities like Login, Add to Cart, and Payments is being provided. 

5.1 Overview of the E-commerce Platform 

The features involved in this e-commerce platform in a controlled test environment for this case study are 

the following. 

• User Authentication: The login system provides several different options for logging in — such as 

username and password or third-party accounts like Google or Facebook. 

• Shopping Cart: This feature allows users to add, update or delete product. At checkout, you can enter 

promotions and discounts. 

• Payment Processing: Supports different payment option which includes credit cards, PayPal, and even 

cryptocurrency. Handling multiple failure paths also falls on the platform — failed payments, copious 

expiring cards, etc. 

• Inventory Management: The system should have a module that tracks the availability of the product 

and should not allow a user to order an out-of-stock item. 

Because of the complexity of the platform, the real difficulty lies in creating test cases not only for the 

typical scenarios but also for boundary cases like failed payments or expired discounts. 

5.2 Applying LLMs to Test Case Generation 

This is a deeper abstraction of how we generate test cases using LLMs for various parts of the e-commerce. 

Step 1: Data Collection 

Data — The initial aspect is taking the data that the LLM will utilize in creating test cases. This includes: 

• System Documentation: In-depth description of each of the features (e.g. User auth and payment 

processing API Documentation). 

• User Stories: Top-level narratives on how users will interact with the platform (Example, As a user, I 

want to apply a discount code at checkout). 
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• Historical Test Cases: Test cases that have been executed previously which the LLM can refer to get 

an idea of common test scenarios and patterns. 

Step 2: Data Preprocessing 

After collecting the right data, it needs to be preprocessed for the LLM. This involves: 

• Data Cleaning: That is the elimination of non-relevant or non-exhaustive data. 

• Tokenization → Splitting the text into tokens that the LLM can understand 

• Structuring the Data: Making sure the data is structured in such a way that the LLM understands what 

the inputs are, what the output should be, and what errors there might be. 

5.3 Fine-Tuning the LLM 

The LLM needs to be appropriately tuned for the e-commerce platform it is specific to/leverages domain 

specific data. The model can thus be fine-tuned to understand the complexity of how the system works to 

build appropriate test cases. 

For example: 

• It is trained on use cases like user login, add to cart and payment. 

• The final set of injection points includes edge cases — stuck on a failed login, invalid payment 

particulars, and out-of-stock products so the LLM responds with test cases for that. 

 

5.4 Test Case Generation Process 

After the LLM has been fine-tuned it can be used to generate test cases. For example, consider the flow 

for generating checkout test cases as given below. 

5.4.1 Test Case Generation of User Authentication  

Example- "Generate test cases for Validate User Login." 

Generated Test Cases: 

• Use the right id-password to authenticate login. 

• Verification login with wrong username or password. 

• Sign in using third-party authentication (for example, it can be Google) 

• Verify session invalidation after login getting successful 

• Execute Load Testing for Sign in (Example: During flash sale). 

5.4.2 Test Case Generation of Shopping Cart 

Example Prompt: "Write shopping cart test cases." 

Generated Test Cases: 

• Place one item in the cart and validate 

• Select multiple items from Category A/B/C. 

• Enter the Coupon Code and Confirm that Price Changes. 

• Delete 1 item of cart and confirm Total price is scheduled. 

• Verify that cart items are saved after logging out and re-logging back in. 

• Assert that inserting items that are not in stock displays an error. 

5.4.3 Test Cases Generation for Processing Payment. 

Event: "Create the payment gateway test cases." 

Generated Test Cases: 

• Process the payment using authentic credit card information. 

• To interact with card details that are invalid (e.g., expired card) 

• Deal with low balance payments 
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• Verify PayPal transactions. 

• Simulate a network failure while processing the payment. 

• Verify that they apply discount codes when payment is done. 

 

5.5 Validation and Refinement 

The generated test cases must be validated by human test engineers for relevance and correctness. For 

example, human-in-the-loop validation can be used by allowing it to browse the test cases, hunting for 

false positives and other irrelevant test cases and correcting them. They are retraining the LLM over 

validated test data thus the feedback loop allows the LLM to adapt and change over time. 

 

5.6 Integration with Testing Frameworks 

Validated, the test cases generated by the LLM fit seamlessly into the current testing frameworks like 

Selenium, JUnit, or TestNG. Such tools can automatically run the test cases in various environments to 

confirm that new features and code modifications will not cause regressions or break already working 

functionality. 

• CI/CD pipelines can automatically execute these test cases every time new code is committed, ensuring 

immediate feedback to developers about potential problems. 

• Regression Testing: Each time a new feature is added, the LLM can be executed again to create test 

cases for any new functionality so that existing tests do not break, and new functional areas are covered 

well. 

 

6. Conclusion and Future Work 

In this example study, it has been demonstrated how one can automate the test case generation for a 

complex e-commerce platform in a controlled test environment using Large Language Models (LLMs). 

The LLM can produce detailed test cases good for important features like user logins, shopping carts, and 

checkout by examining system documentation, user stories, and previous test documentation. By 

automating this process, the effort around manual testing is decreased, test coverage is increased, and 

system reliability is improved. 

These results are promising but face challenges including false positives, data quality, and model 

explainability. In the future, research work should aim to improve the accuracy of LLM derived test cases 

directly addresses the rare edge case problem and developing approaches to reduce the computational 

requirement for training large scale models are all avenues of interest. 
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