

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210122492 Volume 3, Issue 1, January-February 2021 1

Advanced Cloud-Native Development and

Deployment Models

Prathyusha Kosuru

Project Delivery Specialist

Abstract

This paper talks about the ideas, main tools, and best practices behind cloud-native development. It also

talks about how it can help improve flexibility, cut down on time to market, and make operations more

efficient. It also talks about the problems that companies have when they try to use cloud-native

strategies, like how to handle complexity, keep data safe, and stay in compliance in a spread setting

(Ghofrani & Lübke, 2018).

Keywords: Cloud-native, Microservices, Containerization, Kubernetes, Docker, DevOps, Continuous

Integration (CI), Continuous Deployment (CD), Scalability

I. Introduction

Cloud native development is transforming how applications are developed, deployed and managed to

take full advantage of cloud computing for scalability, availability and economical applications. As

opposed to established end-user infrastructure options, cloud-native strategies enable applications to be

built and run within a distributed framework. This paper will analyze cloud-native solutions for full

stack development with special emphasis on the issues of resiliency, scalability and cost. Also, it will

involve service by service and deployment model comparisons across the primary cloud suites-AWS,

Microsoft Azure, and Google Cloud Platform (GCP) (Laszewski et al., 2018).

II. Cloud-Native Architecture

A cloud-native architecture is specifically aimed at working in the context of the cloud environment of

application. It facilitates the optimizations of resilience, scalability as well as efficiency. Key

components include:

1. Microservices Architecture: The microservices represent a pattern highly favored by cloud-native

applications where applications are formed by small, loosely coupled, and independently deployable

services. This approach enhances flexibility since individual microservices can be developed and scaled

differently and independently one from the other in order to avoid compromising the other services in a

single application.

2. Containers and Orchestration: Services in cloud native environments are developed inside contain-

ers, which are managed by tools like Kubernetes that are lightweight and portable. Kubernetes makes it

easy to deploy, scale and manage those applications in multiple clouds and provide them with

consistency (Saraswat & Tripathi, 2020).

3. Serverless Computing: Serverless programming simply permits developers to run code without

having to worry about servers or having to provision for any. AWS Lambda, Azure Functions, Google

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210122492 Volume 3, Issue 1, January-February 2021 2

Cloud Functions, etc., trigger functions to run based on events and all the resources required are charged

only when being used. This model increases cost effectiveness and also reduces infrastructure

complexity (Nogueira et al., 2018).

4. Event-Driven and Messaging Architectures: Applications based on particular events, sometimes

called event-driven architectures, are used in cloud-native environments due to their ability to scale and

decouple. AWS SNS/SQS, Azure Service Bus, GCP Pub/Sub are other good examples of how

communication between services is arranged to make applications more adaptive to changes in the

loading or in the number of requests.

5. DevOps and CI/CD: CI/CD is the practice that enables integration and deployment of new material, as

well as testing. There are quite a number of CI/CD solutions available in cloud platforms to help in the

quick creation, testing, and roll out of updates between development and operations teams.

III. Full-Stack Development for Cloud-Native Pervasive Practices

To build cloud-native full-stack applications, certain best practices are crucial for achieving resilience,

scalability, and cost efficiency:

1. Resilience:

In this context, resilience is to build applications in a way such that the application itself can tolerate

failure. Key practices include:

Redundancy and Load Balancing: Unless one part of the load balancers and redundant instances, the

others help to deal with requests.

Automated Recovery: Such services as AWS Auto Scaling, Azure Scale Sets, and GCP Instance Groups

provide a self-service of resources in response to loads that are very important for application

availability.

Monitoring and Alerting: AWS, Azure, and Google all offer toolsets to monitor a cloud platform

(AWS CloudWatch, Azure Monitor, GCP Stackdriver) and identify problems in near real-time and

sound the alarm to remediate potential failures.

2. Scalability:

Flexibility is especially important because the application must be able to handle a fluctuating amount of

users without sacrificing quality (Ghofrani & Lübke, 2018).

Elastic Scaling: Services elasticity makes it possible for applications to scale up or down in resource use

depending on the workload. Consumers have scalable services such as AWS Elastic Beanstalk, AZURE

App Services, and GCP App Engine (Nogueira et al., 2018).

Distributed Databases: These include distributed databases (for instance Amazon DynamoDB,

Microsoft Azure Cosmos DB, Google Cloud Spanner) to support horizontal scalability so that databases

can take large capacities of data without a performance choke point.

3. Cost Efficiency:

Cloud-native approaches also pay much attention to using resources efficiently to avoid excessive

consumption and excessive utilization of resources.

Serverless and Managed Services: Since most of the services provided are serverless and managed,

there are no infrastructure needs because the cost is bound to usage patterns.

Autoscaling and Right-Sizing: Autoscaling also gives the ability to provision resources on-demand and

thus give protection against over-provisioning. Tools on cloud platforms apply resourcing data to

determine ideal instance sizes in order to avoid costs (Laszewski et al., 2018).

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210122492 Volume 3, Issue 1, January-February 2021 3

IV. Cloud Platform Comparison: Amazon Web Service, Azure Microsoft, and Google cloud

platform

Each major cloud provider—AWS, Azure, and GCP—offers a range of services tailored for cloud-native

development, but they differ in certain aspects of resilience, scalability, and cost-efficiency:

1. Resilience and Availability

AWS: First, the Amazon Web Services provide high availability through multiple Availability Zones

and Regions. There are AWS Services such as Auto Scaling and Elastic Load Balancing to make

networks more reliable; CloudWatch is a feature offering monitoring and alert solutions.

Azure: Azure has Zones and Regions for availability, with Azure Scale Sets and Load Balancer that

contribute to reliability. Azure Monitor provides application health monitoring in the most generalized

sense (Saraswat & Tripathi, 2020).

GCP: Google Cloud offers regions and zones to guarantee the availability of application services; Load

Balancing and Instance Groups help GCP enable auto scaling. GCP Operations Suite (Previous:

Stackdriver) supports Monitoring across services.

2. Scalability

AWS: Auto Scaling for Elastic Beanstalk, for applications, and ECS/EKS for Kubernetes, and

DynamoDB, the scalable managed NoSQL service. S3 of AWS also adapts to data volumes whereby it

expands in size as the data increases.

Azure: Azure App Services and AKS (Azure Kubernetes Service) is a scalable service for applications.

Azure Cosmos DB provides availability across multiple regions coupled with auto indexing and as such

very suitable for large scale applications.

GCP: Google’s App Engine and Google Kubernetes Engine, known GKE for short, offer scalable

solutions for applications. Large datasets are comfortable for GCP’s Cloud Spanner and Bigtable

databases, meant for enormous scale (Nogueira et al., 2018).

3. Cost Efficiency

AWS: AWS Lambdas, with EC2 Spot Instances as well as S3 Infrequent Access storage, ensures that

you only pay for what you use due to the pay-per-usage model. AWS also has a Savings Plan for

reserved instances for more predictable charges.

Azure: Azure Functions and Reserved VM Instances are the cost-saving opportunities for using

serverless computing and virtual machines. Cost is advised based on the usage of the resources.

GCP: This is possible by using GCP’s preemptible VMs as well as per second billing for resources, and

of course committed use contracts. Google’s Recommender tool also gives details of cost reduction

opportunities in the services it offers (Ghofrani & Lübke, 2018).

V. Conclusion

DevOps and deploying on the cloud have become the need for contemporary full-stack applications to

enable organizations to harness robust, scalable, and affordable cloud technologies. AWS, Azure, and

GCP are the major cloud providers that provide sound tools and services containing enough capabilities

allowing cloud-native development, each of these providers has its pros related to resilience, scalability,

and cost-efficiency. When organizations keep on adapting cloud-native practices, they can come up with

better approaches to organizational applications while considering costs and meeting the consumers’

needs and fixing issues to do with stability and resilience of the applications.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210122492 Volume 3, Issue 1, January-February 2021 4

Reference

1. Ghofrani, J., & Lübke, D. (2018). Challenges of Microservices Architecture: A Survey on the State

of the Practice. ZEUS, 2018, 1-8.

2. Laszewski, T., Arora, K., Farr, E., & Zonooz, P. (2018). Cloud Native Architectures: Design high-

availability and cost-effective applications for the cloud. Packt Publishing Ltd.

3. Nogueira, A. F., Ribeiro, J. C., Zenha-Rela, M. A., & Craske, A. (2018, September). Improving la

redoute's ci/cd pipeline and devops processes by applying machine learning techniques. In 2018 11th

international conference on the quality of information and communications technology

(QUATIC) (pp. 282-286). IEEE.

4. Saraswat, M., & Tripathi, R. C. (2020, December). Cloud computing: Comparison and analysis of

cloud service providers-AWs, Microsoft and Google. In 2020 9th international conference system

modeling and advancement in research trends (SMART) (pp. 281-285). IEEE.

https://www.ijfmr.com/

