

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 1

Enhancing CPU Performance Through

Advanced Cache Design and Optimization

Techniques

Sai Kumar Marri1, E. Sikender2

1Student Researcher, Department of Electrical Engineering, UTD
2Student Researcher, Department of Electrical and Communications Engineering, VCE

Abstract

Optimizing CPU performance has become a critical focus in computing systems due to the increasing

demand for speed, efficiency, and energy conservation. Among various performance-enhancing

strategies, cache design plays a pivotal role in bridging the gap between high-speed processors and

slower memory systems. This paper explores advanced cache design and optimization techniques to

enhance CPU performance, emphasizing their applicability in modern embedded systems, mobile

devices, and high-performance computing platforms [3]. The study begins with an overview of

conventional cache architectures, such as direct-mapped, set-associative, and fully associative caches,

highlighting their respective benefits and limitations. Advanced techniques, including variable-way set-

associative caches, adaptive cache resizing, and analytical design space exploration, are then discussed.

These approaches aim to minimize cache misses, reduce power consumption, and optimize resource

utilization by dynamically tailoring cache parameters to specific workloads.

Furthermore, the paper investigates innovative methodologies, such as machine learning-assisted cache

tuning, hybrid cache designs combining SRAM and non-volatile memory, and energy-efficient

replacement policies [2]. The integration of predictive modeling and simulation tools for rapid design

exploration is also emphasized, enabling designers to evaluate cache configurations against a vast design

space efficiently. Experimental results from benchmarks reveal that employing these advanced

techniques can significantly reduce cache miss rates, improve data access latency, and lower energy

consumption without compromising system performance. This research underscores the importance of

cache design as a critical enabler for next-generation CPU performance enhancements, particularly in

domains constrained by power and thermal budgets. The findings provide valuable insights for

researchers and engineers seeking to develop more efficient and adaptable cache systems, paving the

way for continued innovation in CPU architecture and overall system design [1].

Keywords: Cache Optimization, CPU Performance Tuning, Memory Hierarchy Design, Adaptive

Cache Architectures, Energy-Efficient Computing

1. Introduction

As computing demands grow across diverse applications, from embedded systems and mobile devices to

high-performance computing (HPC) platforms, the performance of Central Processing Units (CPUs) is a

fundamental driver of system efficiency and user experience. The ever-expanding gap between

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 2

processor speed and memory latency, known as the memory wall, has underscored the critical role of

cache memory in maintaining high CPU performance. Caches, acting as high-speed intermediaries

between CPUs and main memory, significantly influence data access times, power consumption, and

system throughput. Consequently, advancements in cache design and optimization have emerged as key

enablers of CPU performance enhancements [4].

Traditional cache architectures—such as direct-mapped, set-associative, and fully associative caches—

have provided effective solutions for improving data locality and reducing memory access latency.

However, these conventional designs face challenges in adapting to modern workloads, which are

characterized by varying access patterns, dynamic data requirements, and stringent power constraints.

To address these challenges, innovative approaches in cache design have been proposed, emphasizing

adaptability, efficiency, and workload-specific optimization. This study explores cutting-edge techniques

in cache design and optimization, focusing on their impact on CPU performance. Key areas of

discussion include variable-way set-associative caches, which adjust associativity dynamically to

balance performance and energy efficiency, and adaptive resizing techniques that tailor cache size to

workload demands [6]. Additionally, analytical models and machine learning-based methodologies are

examined for their ability to expedite design space exploration and predict optimal configurations with

high accuracy. Beyond traditional designs, hybrid caches combining static RAM (SRAM) and non-

volatile memory are gaining traction for their potential to address power and latency concerns in energy-

constrained environments. This research also delves into advanced replacement policies and data

placement strategies that further optimize cache utilization [9].

The significance of this work lies in its holistic approach to enhancing CPU performance through cache

design, offering practical insights and experimental validations to support its findings. By bridging the

gap between theoretical advancements and real-world applications, this study aims to provide a

comprehensive resource for researchers, system architects, and engineers striving to optimize CPU

performance in an era where efficiency and adaptability are paramount. Ultimately, the insights from

this research pave the way for the development of more intelligent and resource-efficient computing

systems [8].

2. CPI calculation for the benchmarks

CPU benchmarks are standardized tests designed to evaluate the performance of a processor under

specific workloads. They provide quantitative metrics that help compare different CPUs across diverse

applications, including gaming, multimedia, scientific computing, and enterprise workloads.

Benchmarks play a crucial role in guiding hardware selection, system optimization, and architecture

design.

Benchmarks are generally categorized into synthetic, application-based, and microbenchmarks.

Synthetic benchmarks simulate a range of tasks to assess overall performance, often yielding a

composite score. Application-based benchmarks measure performance using real-world applications,

offering insights into CPU’s practical efficiency. Microbenchmarks focus on specific processor features,

such as cache performance, memory latency, or floating-point operations, isolating aspects of CPU

behavior. Key performance metrics in CPU benchmarking include clock speed, instructions per cycle

(IPC), throughput, and power efficiency. Advanced benchmarks also evaluate multi-threading

capabilities, thermal performance, and workload-specific optimizations, making them relevant for

modern multi-core processors.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 3

Figure 1: CPI calculation

CPI (Cycles Per Instruction) is a key performance metric in computer architecture, indicating the

average number of clocks cycles a processor takes to execute a single instruction. It reflects the

efficiency of the CPU in handling workloads and depends on factors like instruction complexity, cache

performance, and pipeline architecture. A lower CPI signifies higher efficiency, meaning the processor

can execute more instructions per cycle. CPI is influenced by the workload and processor design,

including multi-core and out-of-order execution capabilities. It is often used alongside clock speed and

IPC (Instructions Per Cycle) to evaluate overall CPU performance.

Popular CPU benchmark suites like SPEC (Standard Performance Evaluation Corporation), Cinebench,

and Geekbench provide standardized testing environments. These tools help identify performance

bottlenecks, validate design improvements, and optimize systems for specific use cases. As computing

evolves, benchmarks are adapting to include metrics for artificial intelligence, virtualization, and energy

efficiency, ensuring relevance in an era of diverse and specialized workloads.

Computed the cycles per instruction (CPI) for a set of benchmarks with baseline X86 configuration as

follows:

• CPU Models – timing

• Cache levels - two (L1 (instruction & data) & L2 (Unified))

• L1 instruction cache size - 128kB

• L1 data cache size - 128kB

• L2 cache size - 1MB

• L1 instruction associativity – 2

• L1 data associativity – 2

• L2 associativity – 2

• cache line size – 64

Computed CPI with a L1 miss penalty of 6 cycles, L2 miss penalty of 50 cycles, and 1 cycle cache hit.

CPI is derived from the below equation.

3. Optimize CPI for each benchmark

By exploring the design space using different configurations, we found an optimal configuration of

cache design with lower CPI (best performance). Cache design configuration explored different factors

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 4

such as associativity, block size and size allocation of L1 and L2 cache.

a) Benchmark – I (401.bzip2)

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified

the associativity and cache line size to derive the lowest CPI.

Figure 2: Benchmark – 1: Associativity vs CPI

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and

L2 cache sizes.

Figure 3: Benchmark – 1: Design choices vs CPI

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 8 128 1.066336

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.03413

128kB 256kB 2 8 128 1.03413

128kB 128kB 2 4 64 1.056151

256kB 256kB 1 8 128 1.059201

128kB 256kB 1 8 128 1.059201

128kB 128kB 1 8 128 1.066336

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 5

b) Benchmark – II (429.mcf)

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified

the associativity and cache line size to derive the lowest CPI.

Figure 4: Benchmark – 2: Associativity vs CPI

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and

L2 cache sizes.

Figure 5: Benchmark – 2: Design choices vs CPI

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 8 128 1.495679

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.368246 2622727

128kB 256kB 2 8 128 1.368246 2491671

128kB 128kB 2 4 128 1.410814 2359927

256kB 256kB 1 8 128 1.452938 1574167

128kB 256kB 1 8 128 1.452938 1443111

128kB 128kB 1 8 128 1.495679 1312055

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 6

c) Benchmark – III (456.hmmer)

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified

the associativity and cache line size to derive the lowest CPI.

Figure 6: Benchmark – 3: Associativity vs CPI

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and

L2 cache sizes.

Figure 7: Benchmark – 3: Design choices vs CPI

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 8 128 1.001007

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 1 8 128 1.000364

256kB 256kB 2 8 128 1.000364

128kB 256kB 1 8 128 1.000364

128kB 256kB 1 2 128 1.000369

128kB 128kB 1 4 128 1.000947

128kB 128kB 1 8 128 1.001007

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 7

d) Benchmark- IV (458.sjeng)

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified

the associativity and cache line size to derive the lowest CPI.

Figure 8: Benchmark – 4: Associativity vs CPI

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and

L2 cache sizes.

Figure 9: Benchmark – 4: Design choices vs CPI

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 4 128 1.474073

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.473388

128kB 256kB 2 8 128 1.473388

256kB 256kB 1 8 128 1.473761

128kB 256kB 1 8 128 1.473761

128kB 128kB 1 8 128 1.473952

128kB 128kB 1 4 128 1.474073

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 8

e) Benchmark-V (470.lbm)

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified

the associativity and cache line size to derive the lowest CPI.

Figure 10: Benchmark – 5: Associativity vs CPI

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and

L2 cache sizes.

Figure 11: Benchmark – 5: Design choices vs CPI

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.425413

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.425413

128kB 256kB 2 8 128 1.425413

128kB 128kB 1 8 128 1.42542

256kB 128kB 1 8 128 1.42542

128kB 128kB 1 4 128 1.425446

128kB 128kB 1 2 128 1.425598

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 9

4. Defining cost function

We defined a cost function for the caches in terms of area overhead. We defined the cost based on the

number of transistors of the logic circuits. ‘x’ is an arbitrary cost unit.

We assumed L1 & L2 cache cost is same as per sizes. L2 cache is slower than L1 cache as the SRAM

latency increases with the size. For associativity, we assumed additional mux logic and comparator logic

required. For Multiple cache lines, we assumed additional comparator logic required. For larger cache

sizes, as the number of bytes increases the size of the die increases and the cost of design increases.

With the base configuration discussed in section-3, we computed the cost for each benchmark.

• L1 instruction cache size – 128kB

• L1 data cache size – 128kB

• L2 cache size – 1MB

• L1 instruction associativity – 2

• L1 data associativity – 2

• L2 associativity – 2

• cache line size – 64

Cost of the cache design as per the above configuration = 1310975x

5. Optimize cache design based on performance/cost

Cache design configuration optimized for high performance (lower CPI) and lower cost.

a) Benchmark – I (401.bzip2)

Figure 12: Benchmark – 1: CPI vs Cost

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.03413 2622727

128kB 256kB 2 8 128 1.03413 2491671

128kB 128kB 2 4 64 1.056151 2359831

256kB 256kB 1 8 128 1.059201 1574167

128kB 256kB 1 8 128 1.059201 1443111

128kB 128kB 1 8 128 1.066336 1312055

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 10

b) Benchmark – II (429.mcf)

Figure 13: Benchmark – 2: CPI vs Cost

c) Benchmark – III (456.hmmer)

Figure 14: Benchmark – 3: CPI vs Cost

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.368246 2622727

128kB 256kB 2 8 128 1.368246 2491671

128kB 128kB 2 4 128 1.410814 2359927

256kB 256kB 1 8 128 1.452938 1574167

128kB 256kB 1 8 128 1.452938 1443111

128kB 128kB 1 8 128 1.495679 1312055

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 1 8 128 1.000364 1574167

256kB 256kB 2 8 128 1.000364 2622727

128kB 256kB 1 8 128 1.000364 1443111

128kB 256kB 1 2 128 1.000369 1442091

128kB 128kB 1 4 128 1.000947 1311359

128kB 128kB 1 8 128 1.001007 1312055

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 11

d) Benchmark- IV (458.sjeng)

Figure 15: Benchmark – 4: CPI vs Cost

e) Benchmark-V (470.lbm)

Figure 16: Benchmark – 5: CPI vs Cost

6. Conclusion

Advanced cache design and optimization techniques play a pivotal role in enhancing CPU performance,

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.473388 2622727

128kB 256kB 2 8 128 1.473388 2491671

256kB 256kB 1 8 128 1.473761 1574167

128kB 256kB 1 8 128 1.473761 1443111

128kB 128kB 1 8 128 1.473952 1312055

128kB 128kB 1 4 128 1.474073 1311359

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.425413 2622727

128kB 256kB 2 8 128 1.425413 2491671

128kB 128kB 1 8 128 1.42542 1312055

256kB 128kB 1 8 128 1.42542 1443111

128kB 128kB 1 4 128 1.425446 1311359

128kB 128kB 1 2 128 1.425598 1311023

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210632925 Volume 3, Issue 1, January-February 2021 12

addressing challenges posed by modern workloads and energy constraints. This study has explored

innovative approaches, such as variable-way set-associative caches, adaptive resizing techniques, and

hybrid memory solutions, to optimize cache utilization and reduce latency. These techniques enable

CPUs to handle dynamic workloads more efficiently, lowering cache miss rates and improving the

overall system throughput. The integration of predictive modeling, machine learning-based cache tuning,

and analytical design space exploration further highlights the potential to automate and accelerate cache

optimization. By tailoring cache configurations to specific applications and hardware environments,

these methods ensure a fine balance between performance and power efficiency, crucial for embedded

systems, mobile devices, and high-performance computing platforms [5].

The findings underscore the importance of adaptability in cache architecture to cater to diverse and

evolving computational demands. By addressing key bottlenecks such as cache conflicts and memory

access delays, these advancements pave the way for significant gains in CPU efficiency and energy

savings. Future research should focus on extending these techniques to multi-core and heterogeneous

computing environments, where cache behavior becomes increasingly complex. These efforts will

continue to drive innovation, making CPUs faster, more efficient, and better suited to meet the demands

of modern computing systems [7].

7. References

1. Kenneth O’Neal and Philip Brisk, "Predictive Modeling for CPU, GPU, and FPGA Performance and

Power Consumption: A Survey," IEEE Computer Society Annual Symposium on VLSI, 2018.

2. Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi, "Mobile CPU’s Rise to Power: Quantifying

the Impact of Generational Mobile CPU Design Trends on Performance, Energy, and User

Satisfaction," The University of Texas at Austin, 2016.

3. Priati Assiroj, April Lia Hananto, Ahmad Fauzi, and Harco Leslie Hendric Spits Warnars, "High

Performance Computing (HPC) Implementation: A Survey," INAPR International Conference,

IEEE, 2018.

4. Xiancheng Xu, "Flow Cache Design for Improving Traffic Collection in NP-based Network Monitor

System," International Conference on E-Business and E-Government, IEEE, 2010.

5. Ramy E. Aly, Bharat R. Nallamilli, and Magdy A. Bayoumi, "Variable-way Set Associative Cache

Design for Embedded System Applications," IEEE, 2004.

6. Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long, "CAPES:

Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement

Learning," SC17, Denver, CO, 2017.

7. Michał Getka and Michał Karpowicz, "Fixed-Point Self-Tuning CPU Performance Controller for

Linux Kernel," IEEE, 2019.

8. Xiaoan Ding, Yi Liu, and Depei Qian, "JellyFish: Online Performance Tuning with Adaptive

Configuration and Elastic Container in Hadoop YARN," IEEE International Conference on Parallel

and Distributed Systems, 2015.

9. Arijit Ghosh and Tony Givargis, "Analytical Design Space Exploration of Caches for Embedded

Systems," Proceedings of the Design, Automation and Test in Europe Conference and Exhibition

(DATE), IEEE, 2003.

 Licensed under Creative Commons Attribution-ShareAlike 4.0 International License

https://www.ijfmr.com/
http://creativecommons.org/licenses/by-sa/4.0/

