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Abstract 

Optimizing CPU performance has become a critical focus in computing systems due to the increasing 

demand for speed, efficiency, and energy conservation. Among various performance-enhancing 

strategies, cache design plays a pivotal role in bridging the gap between high-speed processors and 

slower memory systems. This paper explores advanced cache design and optimization techniques to 

enhance CPU performance, emphasizing their applicability in modern embedded systems, mobile 

devices, and high-performance computing platforms [3]. The study begins with an overview of 

conventional cache architectures, such as direct-mapped, set-associative, and fully associative caches, 

highlighting their respective benefits and limitations. Advanced techniques, including variable-way set-

associative caches, adaptive cache resizing, and analytical design space exploration, are then discussed. 

These approaches aim to minimize cache misses, reduce power consumption, and optimize resource 

utilization by dynamically tailoring cache parameters to specific workloads. 

Furthermore, the paper investigates innovative methodologies, such as machine learning-assisted cache 

tuning, hybrid cache designs combining SRAM and non-volatile memory, and energy-efficient 

replacement policies [2]. The integration of predictive modeling and simulation tools for rapid design 

exploration is also emphasized, enabling designers to evaluate cache configurations against a vast design 

space efficiently. Experimental results from benchmarks reveal that employing these advanced 

techniques can significantly reduce cache miss rates, improve data access latency, and lower energy 

consumption without compromising system performance. This research underscores the importance of 

cache design as a critical enabler for next-generation CPU performance enhancements, particularly in 

domains constrained by power and thermal budgets. The findings provide valuable insights for 

researchers and engineers seeking to develop more efficient and adaptable cache systems, paving the 

way for continued innovation in CPU architecture and overall system design [1]. 

 

Keywords: Cache Optimization, CPU Performance Tuning, Memory Hierarchy Design, Adaptive 

Cache Architectures, Energy-Efficient Computing 

 

1. Introduction 

As computing demands grow across diverse applications, from embedded systems and mobile devices to 

high-performance computing (HPC) platforms, the performance of Central Processing Units (CPUs) is a 

fundamental driver of system efficiency and user experience. The ever-expanding gap between 
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processor speed and memory latency, known as the memory wall, has underscored the critical role of 

cache memory in maintaining high CPU performance. Caches, acting as high-speed intermediaries 

between CPUs and main memory, significantly influence data access times, power consumption, and 

system throughput. Consequently, advancements in cache design and optimization have emerged as key 

enablers of CPU performance enhancements [4]. 

Traditional cache architectures—such as direct-mapped, set-associative, and fully associative caches—

have provided effective solutions for improving data locality and reducing memory access latency. 

However, these conventional designs face challenges in adapting to modern workloads, which are 

characterized by varying access patterns, dynamic data requirements, and stringent power constraints. 

To address these challenges, innovative approaches in cache design have been proposed, emphasizing 

adaptability, efficiency, and workload-specific optimization. This study explores cutting-edge techniques 

in cache design and optimization, focusing on their impact on CPU performance. Key areas of 

discussion include variable-way set-associative caches, which adjust associativity dynamically to 

balance performance and energy efficiency, and adaptive resizing techniques that tailor cache size to 

workload demands [6]. Additionally, analytical models and machine learning-based methodologies are 

examined for their ability to expedite design space exploration and predict optimal configurations with 

high accuracy. Beyond traditional designs, hybrid caches combining static RAM (SRAM) and non-

volatile memory are gaining traction for their potential to address power and latency concerns in energy-

constrained environments. This research also delves into advanced replacement policies and data 

placement strategies that further optimize cache utilization [9]. 

The significance of this work lies in its holistic approach to enhancing CPU performance through cache 

design, offering practical insights and experimental validations to support its findings. By bridging the 

gap between theoretical advancements and real-world applications, this study aims to provide a 

comprehensive resource for researchers, system architects, and engineers striving to optimize CPU 

performance in an era where efficiency and adaptability are paramount. Ultimately, the insights from 

this research pave the way for the development of more intelligent and resource-efficient computing 

systems [8]. 

 

2. CPI calculation for the benchmarks 

CPU benchmarks are standardized tests designed to evaluate the performance of a processor under 

specific workloads. They provide quantitative metrics that help compare different CPUs across diverse 

applications, including gaming, multimedia, scientific computing, and enterprise workloads. 

Benchmarks play a crucial role in guiding hardware selection, system optimization, and architecture 

design. 

Benchmarks are generally categorized into synthetic, application-based, and microbenchmarks. 

Synthetic benchmarks simulate a range of tasks to assess overall performance, often yielding a 

composite score. Application-based benchmarks measure performance using real-world applications, 

offering insights into CPU’s practical efficiency. Microbenchmarks focus on specific processor features, 

such as cache performance, memory latency, or floating-point operations, isolating aspects of CPU 

behavior. Key performance metrics in CPU benchmarking include clock speed, instructions per cycle 

(IPC), throughput, and power efficiency. Advanced benchmarks also evaluate multi-threading 

capabilities, thermal performance, and workload-specific optimizations, making them relevant for 

modern multi-core processors. 
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Figure 1: CPI calculation 

 

CPI (Cycles Per Instruction) is a key performance metric in computer architecture, indicating the 

average number of clocks cycles a processor takes to execute a single instruction. It reflects the 

efficiency of the CPU in handling workloads and depends on factors like instruction complexity, cache 

performance, and pipeline architecture. A lower CPI signifies higher efficiency, meaning the processor 

can execute more instructions per cycle. CPI is influenced by the workload and processor design, 

including multi-core and out-of-order execution capabilities. It is often used alongside clock speed and 

IPC (Instructions Per Cycle) to evaluate overall CPU performance. 

Popular CPU benchmark suites like SPEC (Standard Performance Evaluation Corporation), Cinebench, 

and Geekbench provide standardized testing environments. These tools help identify performance 

bottlenecks, validate design improvements, and optimize systems for specific use cases. As computing 

evolves, benchmarks are adapting to include metrics for artificial intelligence, virtualization, and energy 

efficiency, ensuring relevance in an era of diverse and specialized workloads. 

Computed the cycles per instruction (CPI) for a set of benchmarks with baseline X86 configuration as 

follows: 

• CPU Models – timing 

• Cache levels - two (L1 (instruction & data) & L2 (Unified)) 

• L1 instruction cache size - 128kB 

• L1 data cache size - 128kB 

• L2 cache size - 1MB 

• L1 instruction associativity – 2 

• L1 data associativity – 2 

• L2 associativity – 2 

• cache line size – 64 

Computed CPI with a L1 miss penalty of 6 cycles, L2 miss penalty of 50 cycles, and 1 cycle cache hit. 

CPI is derived from the below equation. 

 

 
3. Optimize CPI for each benchmark 

By exploring the design space using different configurations, we found an optimal configuration of  

cache design with lower CPI (best performance). Cache design configuration explored different factors  
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such as associativity, block size and size allocation of L1 and L2 cache. 

a) Benchmark – I (401.bzip2) 

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified 

the associativity and cache line size to derive the lowest CPI. 

 

 

 
Figure 2: Benchmark – 1: Associativity vs CPI 

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and 

L2 cache sizes. 

 

 
Figure 3: Benchmark – 1: Design choices vs CPI 

 

 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 8 128 1.066336

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.03413

128kB 256kB 2 8 128 1.03413

128kB 128kB 2 4 64 1.056151

256kB 256kB 1 8 128 1.059201

128kB 256kB 1 8 128 1.059201

128kB 128kB 1 8 128 1.066336
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b) Benchmark – II (429.mcf) 

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified  

the associativity and cache line size to derive the lowest CPI. 

 
 

 
Figure 4: Benchmark – 2: Associativity vs CPI 

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and 

L2 cache sizes. 

 

 
Figure 5: Benchmark – 2: Design choices vs CPI 

 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 8 128 1.495679

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.368246 2622727

128kB 256kB 2 8 128 1.368246 2491671

128kB 128kB 2 4 128 1.410814 2359927

256kB 256kB 1 8 128 1.452938 1574167

128kB 256kB 1 8 128 1.452938 1443111

128kB 128kB 1 8 128 1.495679 1312055
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c) Benchmark – III (456.hmmer) 

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified 

the associativity and cache line size to derive the lowest CPI.  

 

 

 
Figure 6: Benchmark – 3: Associativity vs CPI 

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and 

L2 cache sizes. 

 

 
Figure 7: Benchmark – 3: Design choices vs CPI 

 

 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 8 128 1.001007

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 1 8 128 1.000364

256kB 256kB 2 8 128 1.000364

128kB 256kB 1 8 128 1.000364

128kB 256kB 1 2 128 1.000369

128kB 128kB 1 4 128 1.000947

128kB 128kB 1 8 128 1.001007
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d) Benchmark- IV (458.sjeng) 

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified 

the associativity and cache line size to derive the lowest CPI. 

 
 

 
Figure 8: Benchmark – 4: Associativity vs CPI 

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and 

L2 cache sizes. 

 
 

 
Figure 9: Benchmark – 4: Design choices vs CPI 

 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

128kB 128kB 1 4 128 1.474073

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.473388

128kB 256kB 2 8 128 1.473388

256kB 256kB 1 8 128 1.473761

128kB 256kB 1 8 128 1.473761

128kB 128kB 1 8 128 1.473952

128kB 128kB 1 4 128 1.474073
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e) Benchmark-V (470.lbm) 

With base configuration of L1 cache & L2 cache size of 128kB and L2 cache size of 1MB, we modified 

the associativity and cache line size to derive the lowest CPI. 

 
 

 
Figure 10: Benchmark – 5: Associativity vs CPI 

 

By fixing Associativity = 8, cache line size = 128, we explored the cache design by varying the L1 and 

L2 cache sizes. 

 
 

 
Figure 11: Benchmark – 5: Design choices vs CPI 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.425413

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI

256kB 256kB 2 8 128 1.425413

128kB 256kB 2 8 128 1.425413

128kB 128kB 1 8 128 1.42542

256kB 128kB 1 8 128 1.42542

128kB 128kB 1 4 128 1.425446

128kB 128kB 1 2 128 1.425598
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4. Defining cost function 

We defined a cost function for the caches in terms of area overhead. We defined the cost based on the 

number of transistors of the logic circuits. ‘x’ is an arbitrary cost unit. 

 
We assumed L1 & L2 cache cost is same as per sizes. L2 cache is slower than L1 cache as the SRAM 

latency increases with the size. For associativity, we assumed additional mux logic and comparator logic 

required. For Multiple cache lines, we assumed additional comparator logic required. For larger cache 

sizes, as the number of bytes increases the size of the die increases and the cost of design increases. 

With the base configuration discussed in section-3, we computed the cost for each benchmark. 

• L1 instruction cache size – 128kB 

• L1 data cache size – 128kB 

• L2 cache size – 1MB 

• L1 instruction associativity – 2 

• L1 data associativity – 2 

• L2 associativity – 2 

• cache line size – 64 

Cost of the cache design as per the above configuration = 1310975x 

 

5. Optimize cache design based on performance/cost 

Cache design configuration optimized for high performance (lower CPI) and lower cost. 

a) Benchmark – I (401.bzip2) 

 
 

 
Figure 12: Benchmark – 1: CPI vs Cost 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.03413 2622727

128kB 256kB 2 8 128 1.03413 2491671

128kB 128kB 2 4 64 1.056151 2359831

256kB 256kB 1 8 128 1.059201 1574167

128kB 256kB 1 8 128 1.059201 1443111

128kB 128kB 1 8 128 1.066336 1312055
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b) Benchmark – II (429.mcf) 

 

 
Figure 13: Benchmark – 2: CPI vs Cost 

c) Benchmark – III (456.hmmer) 

 

 
Figure 14: Benchmark – 3: CPI vs Cost 

 

 

 

 

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.368246 2622727

128kB 256kB 2 8 128 1.368246 2491671

128kB 128kB 2 4 128 1.410814 2359927

256kB 256kB 1 8 128 1.452938 1574167

128kB 256kB 1 8 128 1.452938 1443111

128kB 128kB 1 8 128 1.495679 1312055

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 1 8 128 1.000364 1574167

256kB 256kB 2 8 128 1.000364 2622727

128kB 256kB 1 8 128 1.000364 1443111

128kB 256kB 1 2 128 1.000369 1442091

128kB 128kB 1 4 128 1.000947 1311359

128kB 128kB 1 8 128 1.001007 1312055
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d) Benchmark- IV (458.sjeng) 

 

 
Figure 15: Benchmark – 4: CPI vs Cost 

 

e) Benchmark-V (470.lbm) 

 

 
Figure 16: Benchmark – 5: CPI vs Cost 

 

6. Conclusion 

Advanced cache design and optimization techniques play a pivotal role in enhancing CPU performance,  

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.473388 2622727

128kB 256kB 2 8 128 1.473388 2491671

256kB 256kB 1 8 128 1.473761 1574167

128kB 256kB 1 8 128 1.473761 1443111

128kB 128kB 1 8 128 1.473952 1312055

128kB 128kB 1 4 128 1.474073 1311359

L1 Icache l1 Dcache L2 Cache Assoc Cachelines CPI Cost

256kB 256kB 2 8 128 1.425413 2622727

128kB 256kB 2 8 128 1.425413 2491671

128kB 128kB 1 8 128 1.42542 1312055

256kB 128kB 1 8 128 1.42542 1443111

128kB 128kB 1 4 128 1.425446 1311359

128kB 128kB 1 2 128 1.425598 1311023
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addressing challenges posed by modern workloads and energy constraints. This study has explored 

innovative approaches, such as variable-way set-associative caches, adaptive resizing techniques, and 

hybrid memory solutions, to optimize cache utilization and reduce latency. These techniques enable 

CPUs to handle dynamic workloads more efficiently, lowering cache miss rates and improving the 

overall system throughput. The integration of predictive modeling, machine learning-based cache tuning, 

and analytical design space exploration further highlights the potential to automate and accelerate cache 

optimization. By tailoring cache configurations to specific applications and hardware environments, 

these methods ensure a fine balance between performance and power efficiency, crucial for embedded 

systems, mobile devices, and high-performance computing platforms [5]. 

The findings underscore the importance of adaptability in cache architecture to cater to diverse and 

evolving computational demands. By addressing key bottlenecks such as cache conflicts and memory 

access delays, these advancements pave the way for significant gains in CPU efficiency and energy 

savings. Future research should focus on extending these techniques to multi-core and heterogeneous 

computing environments, where cache behavior becomes increasingly complex. These efforts will 

continue to drive innovation, making CPUs faster, more efficient, and better suited to meet the demands 

of modern computing systems [7]. 
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