

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 1

Comparative Analysis of Branch Prediction

Techniques Across Diverse Benchmark Suites

Sai Kumar Marri1, E. Sikender2

1Student Researcher, Department of Electrical Engineering, UTD
2Student Researcher, Department of Electrical and Communications Engineering, VCE

Abstract

Branch prediction is a critical aspect of modern microprocessor design, significantly influencing

performance and energy efficiency in pipelined architectures. Accurate branch predictors reduce pipeline

stalls, enhance instruction-level parallelism and overall system throughput. This study provides a

comprehensive analysis of various branch prediction techniques, including bimodal predictors,

perceptron-based predictors, hybrid schemes, and low-power alternatives, as applied to diverse

benchmark suites such as SPEC CPU2000, Mibench, and Mediabench. The paper explores the

architectural principles, advantages, and limitations of these predictors, emphasizing their accuracy,

power consumption, and hardware overhead. Key innovations like genetic algorithm-enhanced

predictors and neural network-based designs are discussed, highlighting their ability to adapt

dynamically to workload characteristics [6][2]. Furthermore, the study examines novel approaches, such

as undervolting predictors for energy efficiency [5] and complementary predictors designed to address

misprediction patterns [4].

Simulation results obtained from platforms like SimpleScalar and gem5 demonstrate the predictors'

performance across various benchmarks, revealing trade-offs between prediction accuracy,

computational complexity, and energy efficiency. For instance, perception-based predictors show

superior accuracy with long history lengths [2][6], whereas low-power designs like TBIT minimize

energy usage with negligible performance degradation, making them ideal for embedded systems [7].

Hybrid predictors, which combine global and local history, strike a balance between performance and

complexity [3][6]. This analysis highlights the evolving landscape of branch prediction technologies and

underscores the importance of tailoring predictor designs to specific application domains. By leveraging

these insights, designers can optimize processors for high performance, reduced power consumption, or

a combination of both, meeting the demands of modern computing systems. This work serves as a

foundational reference for advancing branch predictor research and development in future architectures

[1][5].

Keywords: Branch Prediction, Processor Performance, Energy Efficiency, Benchmark Analysis, Hybrid

Predictors.

1. Introduction

Branch prediction plays a pivotal role in modern microprocessor architecture, serving as a cornerstone

for achieving high performance and energy efficiency in pipelined systems. The increasing complexity

of applications and the demand for faster processing speeds have driven the development of

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 2

sophisticated branch predictors capable of minimizing control hazards. By speculatively predicting the

outcome of branch instructions, these predictors enable the processor to maintain an uninterrupted

instruction flow, thereby reducing pipeline stalls and maximizing instruction-level parallelism (ILP)

[1][3]. Branch prediction accuracy is crucial to system performance, as mispredictions lead to pipeline

flushing, wasted computational resources, and additional energy consumption. The evolution of branch

prediction strategies has introduced a variety of designs, ranging from simple static and dynamic

predictors to more complex neural network-based and hybrid approaches. Each of these designs offers

unique trade-offs in terms of prediction accuracy, power consumption, and implementation complexity,

making it essential to evaluate their performance under varying workloads and application domains

[2][6][7].

This paper presents a comprehensive analysis of several branch prediction techniques, focusing on their

implementation and performance across diverse benchmark suites such as SPEC CPU2000, Mibench,

and Mediabench. The study includes traditional methods like bimodal and global history-based

predictors, as well as advanced techniques such as perception-based predictors, hybrid predictors

combining local and global histories, and low-power designs tailored for embedded systems [3][7].

Additionally, novel approaches like genetic algorithm-optimized predictors and undervolting strategies

are explored, highlighting their potential to enhance energy efficiency without compromising

performance [5][6]. The benchmarks selected for this analysis represent a broad spectrum of real-world

applications, enabling a thorough evaluation of predictor performance across computationally intensive

tasks and power-sensitive scenarios. Simulation tools such as SimpleScalar and gem5 provide a detailed

modeling environment, facilitating the measurement of prediction accuracy, misprediction rates, energy

consumption, and hardware overhead [2][6].

The objective of this study is to provide valuable insights into the strengths and limitations of different

branch prediction techniques, guiding processor designers in selecting or developing optimal predictors

for specific applications. As modern systems increasingly prioritize a balance between performance and

energy efficiency, understanding these trade-offs becomes critical. By comparing various predictors

under standardized benchmarks, this work aims to contribute to the ongoing advancements in

microprocessor architecture, supporting the development of more efficient and adaptive computing

systems [1][4]. In the subsequent sections, we delve into the architectural details of each predictor type,

analyze their simulation results, and discuss their suitability for different computing environments,

paving the way for future innovations in branch prediction technology.

2. Setting up the Simulator

For the analysis of the branch predictors, we are required to compile the simulator enabling different

branch predictors. We worked with the source files from the gem5.org website but the latest simulator

versions have issues in reporting the number of BTB hits (BTBHits). This parameter always reported as

zero and eventually BTBMisPct reported as 100% for all the predictors. By default, the branch predictor

support not enabled in the simulator. We enabled the branch predictor by modifying

BaseSimpleCPU.py. Different branch predictors enabled and recompiled the simulator. Simulator is

compiled using the command scons ./build/X86/gem5.opt. After recompilation, simulator sanity is

verified by running the simple hello world program on the simulator to cross check for errors.

Simulator compilation and running a simple hello world program generates output files in m5out

directory. Posting the config.ini results from the three branch predictors. We have added additional

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 3

parameters BTBMissPct and BranchMispredPercent to the source files and generated the stats file with

the new parameters.

Figure 1: Adding support for branch predictor to simulator

a. BTBMisPct: This parameter computes the BTB miss percentage. We have used existing

parameters to derive the miss percentage.

BTBMisPct = (1 – (BTBHits/BTBLookups)) * 100

BTBHits – number of BTB hits

BTBLookups – number of BTB references

b. BranchMispredPercent: This parameter computes the percentage of branch misprediction.

BranchmispredPercent = (numBranchMispred / numBranches) * 100

numBranchMispred – number of mispredicted branches

numBranches – number of branches fetched

Figure 2: source code changes (bpred_unit.cc)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 4

To add support for BTBMisPct, we modified bpred_unit.cc and bpred_unit.hh source directory -

gem5/src/cpu/pred

Figure 3: Source code changes (base.cc)

3. Analyzing Benchmarks with Different Branch Predictors

We have recompiled the simulator after adding the additional parameters to the source code and checked

the parameter (BTBMisPct and BranchMispredPercent) numbers for different branch predictors. These

numbers are generated for simple hello world programs and compared the results.

From the analysis of three branch predictors:

• BTB hit percentage is maximum with the BiMode branch predictor and minimum with the

Tournament branch predictor.

• Branch misprediction percentage is maximum with the BiMode branch predictor and almost same

misprediction percentage with both LocalBP and TournamentBP.

We compiled the simulator with different branch predictors and simulated five benchmarks. These

benchmarks compare all the three branch predictors to understand the effectiveness of each branch

predictors. These benchmarks are run up to five million instructions.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 5

a. Benchmark-I (401.bzip2)

• Benchmark – I have a better branch prediction with the BiMode branch predictor.

• Benchmark – I have a better BTB hit percentage with the BiMode branch predictor.

• All the branch predictors have resulted similar CPI with the benchmark – I.

b. Benchmark-II (429.mcf)

• Benchmark – II has a better branch prediction with the Tournament branch predictor.

• Benchmark – II has a better BTB hit percentage with the BiMode branch predictor.

• All the branch predictors have resulted similar CPI with the benchmark – II.

c. Benchmark-III (456.hmmer)

• Benchmark – III has a better branch prediction with the Tournament branch predictor.

• Benchmark – III has a better BTB hit percentage with the BiMode branch predictor.

• All the branch predictors have resulted similar CPI with the benchmark – III.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 6

d. Benchmark- IV (458.sjeng)

• Benchmark – IV has a better branch prediction with the BiMode branch predictor.

• Benchmark – IV has a better BTB hit percentage with the BiMode branch predictor.

• All the branch predictors have resulted similar CPI with the benchmark – IV.

e. Benchmark- V (470.lbm)

• Benchmark – V has a better branch prediction with the BiMode branch predictor.

• Benchmark – V has a better BTB hit percentage with the BiMode branch predictor.

• All the branch predictors have resulted similar CPI with the benchmark – V.

4. Modifying the Branch Predictor sizes

For this analysis, we choose tournament branch predictor, modified the sizes of the predictor. Gem5

simulator recompiled with new predictor sizes and simulated for all the benchmarks. Predictor sizes

were modified in this file: gem5/src/cpu/pred/BranchPredictor.py

a. Benchmark – I (401.bzip2)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 7

With the modified predictor sizes, this benchmark has minimal decrease in the branch prediction BTB

hit percentage. New branch predictor numbers were not effective with this benchmark.

b. Benchmark – II (429.mcf)

 With the modified predictor sizes, this benchmark has minimal decrease in the branch prediction BTB

hit percentage. New branch predictor numbers were not effective with this benchmark.

c. Benchmark – III (456.hmmer)

 With the modified predictor sizes, this benchmark has minimal improvement in the BTB hit percentage

and minimal decrease in the branch prediction percentage.

d. Benchmark – IV (4578.sjeng2)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 8

With the modified predictor sizes, this benchmark has minimal decrease in the branch prediction BTB

hit percentage. New branch predictor numbers were not effective with this benchmark.

e. Benchmark – V (470.lbm)

 With the modified predictor sizes, this benchmark has minimal improvement in the BTB hit percentage

and minimal decrease in the branch prediction percentage.

5. Conclusion

Branch prediction remains a cornerstone in advancing microprocessor performance and energy

efficiency, with its accuracy directly impacting instruction-level parallelism and resource utilization.

This study has explored a wide range of branch prediction techniques, from traditional approaches like

bimodal and global history predictors to advanced perceptron-based and hybrid schemes. Through

simulations across benchmark suites like SPEC CPU2000 and Mibench, we highlighted the trade-offs

between prediction accuracy, power consumption, and hardware complexity inherent in these methods

[1][3][6]. Innovative approaches, such as genetic algorithm-optimized predictors and undervolting

strategies, demonstrate significant potential for improving efficiency without sacrificing performance

[5][6]. While perceptron-based predictors excel in leveraging long history lengths for higher accuracy,

hybrid designs strike a critical balance between simplicity and performance. Additionally, low-power

predictors tailored for embedded systems effectively address energy constraints, making them ideal for

mobile and IoT devices [2][7]. This comparative analysis underscores the importance of selecting

prediction techniques aligned with specific application needs. As workloads grow more diverse, branch

predictor designs must continue evolving, incorporating adaptive and energy-efficient strategies. This

work serves as a foundation for future research, aiming to optimize the interplay between performance,

power, and complexity in branch prediction systems [4][5].

6. References

1. Impact of Inaccurate Design of Branch Predictors on Processors' Power Consumption Baisakhi Das,

Gunjan Bhattacharya, Ilora Maity, Biplab K Sikdar. IEEE Ninth International Conference on

Dependable, Autonomic and Secure Computing, 2011. DOI: 10.1109/DASC.2011.73.

2. A Study of Perceptron Based Branch Prediction on Simplescalar Platform Yang Lu, Yi Liu, He

Wang. IEEE, 2011. DOI: Not available in provided snippet.

3. A Study for Branch Predictors to Alleviate the Aliasing Problem in Pipelining Tieling Xie, Robert

Evans, Yul Chu. IEEE, 2005. DOI: 10.1109/ICCD.2005.603.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR210433084 Volume 3, Issue 4, July-August 2021 9

4. Branch Misprediction Prediction: Complementary Branch Predictors Resit Sendag, Joshua J. Yi,

Peng-fei Chuang. IEEE Computer Architecture Letters, 2007. DOI: 10.1109/MCAL.2007.103.

5. Analysis and Characterization of Ultra Low Power Branch Predictors Athanasios Chatzidimitriou,

George Papadimitriou, Dimitris Gizopoulos, Shrikanth Ganapathy, John Kalamatianos. IEEE

International Conference on Computer Design, 2018. DOI: 10.1109/ICCD.2018.00030.

6. Enhancing Branch Predictors using Genetic Algorithm Md Sarwar M Haque, Salami Onoruoiza, Md

Rafiul Hassan, Joarder Kamruzzaman, Muhammad Sulaiman, Md Arifuzzaman. 8th International

Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019. DOI:

10.1109/ICMSAO.2019.00030.

7. Low Power Branch Predictor for Embedded Processors Sunwook Kim, Eutteum Jo, Hyungshin

Kimi. IEEE International Conference on Computer and Information Technology (CIT), 2010. DOI:

10.1109/CIT.2010.59.

 Licensed under Creative Commons Attribution-ShareAlike 4.0 International License

https://www.ijfmr.com/
http://creativecommons.org/licenses/by-sa/4.0/

