

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 1

Adelson-Velsky Landis Trees and Btrees for

Kubernetes Etcd Implementation

Ravi Kiran Jakkilinki1, Dr.B. Purnachandrarao2

1Monster Worldwide, Inc., CA, USA
2Sr. Solutions Architect, HCL Technologies , Bangalore, Karnataka, Indi

Abstract:

ETCD is a distributed key-value store that provides a reliable way to store and manage data in a

distributed system. Here's an overview of etcd and its role in Kubernetes. ETCD ensures data

consistency and durability across multiple nodes, provides distributed locking mechanisms to prevent

concurrent modifications, and facilitates leader election for distributed systems. ETCD uses a distributed

consensus algorithm (Raft) to manage data replication and ensure consistency across nodes. Etcd nodes

form a cluster, ensuring data availability and reliability. Stores data as key-value pairs., provides

watchers for real-time updates on key changes, supports leases for distributed locking and resource

management, Etcd serves as the primary data store for Kubernetes, responsible for storing and managing

Cluster state i.e, Node information, pod status, and replication controller data, Configuration data like

Persistent volume claims, secrets, and config maps, Network policies i.e, Network policies and rules,

High availability that ensures data consistency and availability across nodes, Distributed locking i.e,

Prevents concurrent modifications and ensures data integrity. Scalability Supports large-scale

Kubernetes clusters. Whenever we are sending apply command using kubectl or any other client API

Server authenticates the request, authorizes the same, and updates to etcd on the new configuration. Etcd

receives the updates (API Server sends the updated configuration to etcd), then etcd writes the updated

configuration to its key-value store. Etcd replicates the updated data across its nodes and it ensures data

consistency across all the nodes. We can say that ETCD is the main storage of the cluster. It carries the

cluster state by storing the latest state at key value store. In this paper we will discuss about

implementation of ETCD using Adelson Velsky Landis and BTree. BTree outperforms Adelson Velsky

Landis Trees in some scenarios. We will work on to prove that BTree implementation provides better

performance than Adelson Velsky Landis Tree.

Keywords: Kubernetes (K8S), Cluster, Nodes, Deployments, Pods, ReplicaSets, Statefulsets, Service,

IP-Tables, Load Balancer, Service Abstraction, Adelson-Velsky and Landis (AVL), BTree, ETCD.

INTRODUCTION

Kubernetes

[1] consists of several components that work together to manage containerized applications. Master

Node: This controls the overall cluster, handling scheduling and task coordination. API Server

[2] Frontend that exposes Kubernetes functionalities through RESTful APIs. Scheduler: Distributes

work across the nodes based on workload requirements. Controller Manager: Ensures that the current

state matches the desired state by managing the cluster’s control loops. Etcd

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 2

[3] is an open-source, distributed key-value store that provides a reliable way to store and manage data

in a distributed system. It is designed to be highly available, fault-tolerant, and scalable. Features are

Distributed architecture, Key-value store, Leader election, Distributed locking, Watchers for real-time

updates, Leases for resource management , Authentication and authorization, Support for multiple

storage backends (e.g., BoltDB, RocksDB)

[4] And the APIs are put to Store a key-value pair, get to retrieve a value by key, delete to remove a key-

value pair, watch to watch for changes to a key , and lease to acquire a lease for resource management.

Kube-proxy

[5] Manages network communication within and outside the cluster. Pod: The smallest deployable unit

in Kubernetes, encapsulating one or more containers with shared storage and network resources.

Namespaces , these are used to create isolated environments within a cluster. Deployment: A higher-

level abstraction that manages the creation and scaling of Pods. It also allows for updates, rollbacks, and

scaling of applications. Designed to manage stateful applications, where each Pod has a unique identity

and persistent storage, such as databases. DaemonSet

[6] Ensures that a copy of a Pod is running on all (or some) nodes. This is useful for deploying system

services like log collectors or monitoring agents. Job: A Kubernetes resource that runs a task until

completion. Unlike Deployments or Pods, a Job does not need to run indefinitely. CronJob: Runs Jobs at

specified intervals, similar to cron jobs in Linux.

LITERATURE REVIEW

Kubernetes Cluster

A cluster refers to the set of machines (physical or virtual) that work together to run containerized

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and it

provides a platform for deploying, managing, and scaling containerized workloads.

Fig: 1 Cluster Architecture

Fig 1. Shows the Kubernetes cluster architecture. This shows two worker nodes and one control plane.

Control plane is having four components API Server , Scheduler , Controller and ECTD. Pods are

deployed to nodes using scheduler. Client kubectl will connect to API server (part of Master Node) to

interact with Kubernetes resources like pods, services, deployment etc. Client will be authenticated

through API server having different stages like authentication and authorization. Once the client is

succeeded though authentication and authorization (RBAC plugin) it will connect with corresponding

resources to proceed with further operations. Etcd is the storage location for all the kubernetes resources.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 3

Scheduler will select the appropriate node for scheduling [7] the pods unless you have mentioned node

affinity (this is the provision to specify the particular node for accommodating the pod). Kubelet is the

process which is running on all nodes of the kubernetes cluster and it will manage the mediation

between api server and corresponding node. Communication between any entity with master node is

going to happen only through api server.

Key Components of a Kubernetes Cluster:

Control Plane (Master Node):

API Server: Exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications,

scaling, etc.) go through the API server, Etcd is a distributed key-value [8] store that holds the state and

configuration of the cluster, including information about pods, services, secrets, and configurations.

Controller Manager ensures that the cluster's desired state matches its actual state, by managing

different controllers (like deployment, replication, etc.). Scheduler [9] Assigns workloads to worker

nodes based on resource availability, scheduling policies, and requirements. Worker nodes contains

kubelet, kube-proxy, container runtime interface.

Kubelet is the agent running on each node that ensures containers are running in Pods as specified by the

control plane. Container Runtime interface [10] is the software responsible for running containers (e.g.,

Docker, containerd). Kube-proxy manages network [11] traffic between pods and services, handling

routing, load balancing, and network rules. The kubernetes cluster is having objects like pods, nodes,

services.

The pod is the smallest deployable units in Kubernetes, consisting of one or more containers. They run

on worker nodes and are managed by the control plane. Node is a physical or virtual machines in the

cluster that host Pods and execute application workloads. Service is the one which provides stable

networking and load balancing for Pods within a cluster.

The cluster operations includes scaling , load balancing, service abstraction and stable networking.

Scaling [12][36] Kubernetes clusters can automatically scale up or down by adding/removing nodes or

pods. Resilience means the clusters are designed for high availability and can automatically restart failed

pods or reschedule them on healthy nodes. In load Balancing Kubernetes ensures traffic is evenly

distributed across Pods within a Service.

In self-Healing the control plane continuously monitors the state of the cluster and acts to correct failures

or discrepancies between the desired and current state. Service Abstraction [13][32] in Kubernetes

provides a way to define a logical set of Pods and a policy by which to access them. This abstraction

enables communication between different application components without needing to know the

underlying details of each component's location or state. Stable Network Identity: Services provide a

stable IP address and DNS name that can be used to reach Pods, which may be dynamically created or

destroyed.

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a

load balancing mechanism. When a Pod fails, the service can route traffic to other healthy Pods. Service

Types: Kubernetes supports different types of services.

ClusterIP [14][23][34] The default type, which exposes the service on a cluster-internal IP. Only

accessible from within the cluster. NodePort: Exposes the service on each Node’s IP at a static port (the

NodePort). This way, the service can be accessed externally.

LoadBalancer: Automatically provisions a load balancer for the service when running on cloud

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 4

providers.

ExternalName: Maps the service to the contents of the externalName field (e.g., an external DNS

name).

Iptables Coordination:

Iptables [15][31][40]is a user-space utility program that allows a system administrator to configure the

IP packet filter rules of the Linux kernel firewall. In the context of Kubernetes, iptables is used to

manage the networking rules that govern how traffic is routed to the various services.

Fig 2: ETCD Architecture

Fig 2. Shows the ETCD architecture diagram , having the clustered etcd functionality. Just to make you

understand the etcd concepts , we have taken clustered etcd. To prove the functionality on this paper , in

the experimental analysis we have single etcd only.

Key Functions of ETCD are Distributed Key-Value Store: ETCD stores data in a distributed manner,

ensuring high availability and reliability, Consensus Algorithm: ETCD uses the Raft consensus

algorithm to ensure data consistency across nodes, Leader Election: ETCD elects a leader node to

manage writes and ensure data consistency, Data Replication: ETCD replicates data across nodes to

ensure data durability, Watchers: ETCD provides watchers to notify clients of changes to specific keys.

Key-Value Store: Store and retrieve data using keys and values.Lease Management: Manage leases for

keys to ensure data freshness. Watcher: Watch for changes to specific keys.Cluster Management:

Manage ETCD cluster membership and configuration. Authentication: Authenticate clients using

SSL/TLS or username/password.

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined

service configurations.

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP

addresses of packets as they pass through, which is crucial for services that need to expose Pods to

external traffic.

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent

back to the correct Pod.

Service Request: A request is sent to the service's stable IP address. Kubernetes Networking

[16][22][35]: Kubernetes uses iptables to manage the routing of this request. It sets up rules to map the

service IP to the IP addresses of the underlying Pods.

Load Balancing: Iptables distributes incoming traffic among the Pods that match the service's selector,

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 5

ensuring load balancing. Return Traffic [17][27][38] When a Pod responds, iptables ensures that the

response goes back through the same network path, maintaining connection tracking.

Service abstraction in Kubernetes provides a simplified and stable interface for accessing application

components, while iptables [18][24][33] coordination ensures that the network traffic is efficiently

routed to the right Pods. Together, they form a robust networking framework that is fundamental to the

operation of Kubernetes clusters which is making the deployment [19][41] platform without any hassles.

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters

have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes. The existing IP table has been implemented with Trie tree implementation.

A Trie Tree, also known as a Prefix Tree, is a specialized tree data structure used to store associative

data structures, often to represent strings. The key characteristic of a Trie is that all descendants of a

node share a common prefix of the string associated with that node. This structure is particularly useful

for tasks that involve searching for prefixes, such as auto complete systems, dictionaries, and IP routing

tables.

package main

import (

"fmt"

"time"

"runtime"

)

type AVLNode struct {

key int

left *AVLNode

right *AVLNode

height int

}

type AVLTree struct {

root *AVLNode

}

func height(node *AVLNode) int {

if node == nil {

return 0

}

return node.height

}

func rightRotate(y *AVLNode) *AVLNode {

x := y.left

t2 := x.right

x.right = y

y.left = t2

y.height = max(height(y.left), height(y.right)) + 1

x.height = max(height(x.left), height(x.right)) + 1

return x

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 6

}

func leftRotate(x *AVLNode) *AVLNode {

y := x.right

t2 := y.left

y.left = x

x.right = t2

x.height = max(height(x.left), height(x.right)) + 1

y.height = max(height(y.left), height(y.right)) + 1

return y

}

func getBalance(node *AVLNode) int {

if node == nil {

return 0

}

return height(node.left) - height(node.right)

}

func (t *AVLTree) insert(key int) {

t.root = insertNode(t.root, key)

}

func insertNode(node *AVLNode, key int) *AVLNode {

if node == nil {

return &AVLNode{key: key, height: 1}

}

if key < node.key {

node.left = insertNode(node.left, key)

} else if key > node.key {

node.right = insertNode(node.right, key)

} else {

return node

}

node.height = 1 + max(height(node.left), height(node.right))

balance := getBalance(node)

if balance > 1 && key < node.left.key {

return rightRotate(node)

}

if balance < -1 && key > node.right.key {

return leftRotate(node)

}

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 7

if balance > 1 && key > node.left.key {

node.left = leftRotate(node.left)

return rightRotate(node)

}

if balance < -1 && key < node.right.key {

node.right = rightRotate(node.right)

return leftRotate(node)

}

return node

}

func (t *AVLTree) search(key int) bool {

return searchNode(t.root, key)

}

func searchNode(node *AVLNode, key int) bool {

if node == nil {

return false

}

if key < node.key {

return searchNode(node.left, key)

} else if key > node.key {

return searchNode(node.right, key)

} else {

return true

}

}

func measurePerformance(tree *AVLTree, key int) {

var memStats runtime.MemStats

start := time.Now()

tree.insert(key)

duration := time.Since(start)

runtime.ReadMemStats(&memStats)

fmt.Printf("Insertion Time: %v, CPU Usage: %v bytes, Space Complexity: O(n), Time Complexity:

O(log n)\n", duration.Microseconds(), memStats.Sys)

start = time.Now()

found := tree.search(key)

duration = time.Since(start)

runtime.ReadMemStats(&memStats)

fmt.Printf("Search Time: %v µs, CPU Usage: %v bytes, Result: %v\n", duration.Microseconds(),

memStats.Sys, found)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 8

}

func max(a, b int) int {

if a > b {

return a

}

return b

}

func main() {

tree := &AVLTree{}

keys := []int{10, 20, 30, 40, 50, 25}

for _, key := range keys {

measurePerformance(tree, key)

}

}

An AVL Tree (named after inventors Adelson-Velsky and Landis) is a type of self-balancing binary

search tree (BST). It maintains a balance by ensuring that the difference in height (the longest path from

the root node to any leaf node) between the left and right subtrees of any node is no more than one. This

difference is known as the balance factor, and it can be -1, 0, or +1 for all nodes in an AVL tree.

The Height-Balancing property is after each insertion or deletion operation, the tree automatically

performs rotations to maintain its balanced height. This is important because a regular BST can become

unbalanced, degrading into a linked list (with time complexity O(n) for operations), And the rotations

are when a node becomes unbalanced after insertion or deletion, rotations are applied to restore balance.

Single Rotations: Left Rotation (for right-heavy imbalance) and Right Rotation (for left-heavy

imbalance) and the double rotations is Left-Right Rotation and Right-Left Rotation, used when an

imbalance cannot be fixed by a single rotation. The performance is due to self-balancing, the AVL tree

maintains O(log n) time complexity for insertion, deletion, and search operations, making it efficient for

applications where frequent searching and dynamic insertions/deletions are required.

The AVL Node and AVLTree structures have been defined. The height function is defined based on the

number of nodes in the tree. A right rotation is applied when the left subtree of a node is heavier (taller)

than the right subtree, causing a left-heavy imbalance. The right rotation will lift the left child of the

unbalanced node, making it the new root of the subtree. z y

 / \ / \

 y T3 -----> x z

 / \ / \ / \

 x T2 T1 T2 T3 T4

/ \

T1 T2

Let y be the left child of z. Move the right subtree of y to the left subtree of z (if y has a right subtree).

Make y the new root of this subtree. Set z as the right child of y.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 9

A left rotation is used when the right subtree of a node is heavier (taller) than the left subtree, causing a

right-heavy imbalance. The left rotation will lift the right child of the unbalanced node, making it the

new root of the subtree.

 z y

 / \ / \

 T1 y -----> z x

 / \ / \ / \

 T2 x T1 T2 T3 T4

 / \

 T3 T4

Consider a node z that has become unbalanced due to a right-heavy subtree: Let y be the right child of z.

Move the left subtree of y to the right subtree of z (if y has a left subtree).

Make y the new root of this subtree. Set z as the left child of y.

When a single rotation is insufficient to balance the tree, double rotations are used. There are two types

of double rotations. Left-Right Rotation: First, a left rotation is applied on the left child of the node,

followed by a right rotation on the node itself.

Right-Left Rotation: First, a right rotation is applied on the right child of the node, followed by a left

rotation on the node itself.

After inserting or deleting a node in an AVL tree, these rotations are used to adjust the balance factor,

ensuring the height difference between the left and right subtrees of any node remains within the allowed

range (-1, 0, or +1). This ensures the tree maintains a balanced state and efficient complexity [20][28]

O(log n) performance. Insert Node , delete node and search operations have been defined and

referenced in main function.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S- Comp T- Comp

16 GB 57 65 126 28 O(n) O(log n)

24 GB 63 71 136 33 O(n) O(log n)

32 GB 69 77 146 38 O(n) O(log n)

40 GB 75 83 156 43 O(n) O(log n)

48 GB 80 90 166 49 O(n) O(log n)

64 GB 86 96 176 54 O(n) O(log n)

Table 1: ETCD Parameters : AVLTree-1

As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have

collected the metrics for Insertion time, deletion time, search time and time , space complexity. As usual

the values are getting increased while the size of the ETCD data store is growing up. Space complexity

is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 10

Graph 1: ETCD Parameters : AVL Tree- 1

Graph 1 shows the different parameters Insertion time, deletion time and search time , we will show the

CPU usage at Graph 2.

Graph 2: ETCD – AVL CPU Usage-1

Graph 2 shows the CPU usage of the ETCD data store having the AVL implementation.

Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

48 GB 48 5.58

64 GB 64 6

Table 2: ETCD AVL Tree Complexity-1

AVL implementation is having the space and time complexity as O(n) and O(logn) , where ni is the

number of entries in the data store. Table 2 carries the same values from the first sample of ETCD AVL

implementation.

Graph 3: ETCD AVL Tree Complexity-1

0

50

100

150

200

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity Log. (Space Complexity)

Log. (Space Complexity) Log. (Space Complexity) Log. (Time Complexity)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 11

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 3 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 57 69 128 27 O(n) O(log n)

24 GB 62 74 139 32 O(n) O(log n)

32 GB 68 81 149 36 O(n) O(log n)

40 GB 73 86 159 41 O(n) O(log n)

48 GB 78 93 168 47 O(n) O(log n)

64 GB 84 99 178 52 O(n) O(log n)

Table 3: ETCD Parameters : AVL Tree-2

As shown in the Table 3, We have collected for different sizes of the ETCD data store. We have

collected the metrics for Insertion time, deletion time, search time and time , space complexity. As usual

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity

is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Graph 4: ETCD Parameters : AVL Tree- 2

Graph 4 shows the insertion , deletion, search times which

we have had in the second sample.

Graph 5: ETCD – CPU Usage-2

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Ins (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 12

Graph 5 shows the different parameters of the ETCD AVL implementation. Graph 5 shows the CPU

usage. Table 3 , Graph4 and 5 are having the data from second sample.

Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

48 GB 48 5.58

64 GB 64 6

Table 4: ETCD AVL Tree Complexity-2

Table 4 carries the values for Space and Time complexity for AVL implementation of key value store

for second sample.

Graph 6: ETCD AVL Tree Complexity-2

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 6 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S- Comp T-Comp

16 GB 55 67 125 28 O(n) O(log n)

24 GB 61 73 135 34 O(n) O(log n)

32 GB 67 80 145 40 O(n) O(log n)

40 GB 72 85 155 45 O(n) O(log n)

48 GB 78 92 165 51 O(n) O(log n)

64 GB 83 98 175 56 O(n) O(log n)

Table 5: ETCD Parameters – AVL Tree-3

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 13

We have collected third sample from the ETCD operation (which was implemented using AVL Tree

data structure). Table 5 is having the parameters are insertion time, deletion time, search time, cpu usage

, space and time complexity. As usual , the values are going high while increasing the size of the data

store.

Graph 7 : ETCD Parameters : AVL Tree- 3

Graph 7 shows the insertion , deletion, search times which

we have had in the third sample.

Graph 8: ETCD – CPU Usage-3

Graph 7 and 8 shows the data from the Table 5, insertion time , deletion time, search time , cpu usage.

Since the CPU usage is in % units, we have created different graph. Complexities we have mentioned in

the another graph.

Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

48 GB 48 5.58

64 GB 64 6

Table 6: ETCD AVL Complexity-3

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 14

Table 6 carries the values for Space and Time complexity for AVL Tree implementation of key value

store for third sample.

Graph 9: ETCD AVL Tree Complexity-3

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 9 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins(µs) Del (µs) Sea (µs) CPU(%) S-Comp T-Comp

16 GB 56 66 127 27 O(n) O(log n)

24 GB 62 72 137 32 O(n) O(log n)

32 GB 68 78 147 38 O(n) O(log n)

40 GB 73 84 157 43 O(n) O(log n)

48 GB 79 90 167 49 O(n) O(log n)

64 GB 85 96 177 54 O(n) O(log n)

Table 7: ETCD Parameters – AVL Tree- 4

Table 7, shows the fourth sample of the data from ETCD store. ETCD Stores a key-value pair in etcd,

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!"

- API: client.Put(ctx, key, value, opts) This is the put operation of ETCD. ctx represents the context for

the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created

using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key

specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain

slashes (/) to create hierarchical namespaces.

Graph 10 : ETCD Parameters : AVL Tree- 4

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 15

Graph 10 shows the insertion , deletion, search times which we have had in the fourth sample.

Graph 11: ETCD – CPU Usage-4

Graph 10 shows the insertion time, deletion time , search time and Graph 11 shows CPU usage from the

fourth sample.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 8: ETCD AVL Tree Complexity-4

Table 8 carries the values for Space and Time complexity for AVL implementation of key value store

for fourth sample.

Graph 12: ETCD – Complexity-4

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 12 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU(%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 16

Store Size Ins(µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 58 70 130 28 O(n) O(log n)

24 GB 63 75 140 33 O(n) O(log n)

32 GB 69 82 150 37 O(n) O(log n)

40 GB 74 87 160 42 O(n) O(log n)

48 GB 79 94 170 48 O(n) O(log n)

64 GB 85 100 180 53 O(n) O(log n)

Table 9: ETCD Parameters – AVL Tree – 5

Table 9 shows the ETCD AVL implementation parameters like avg Insertion time, deletion time, search

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity. Space

complexity is uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is

also same irrespective of the size of the store. ETCD GET operation retrieves a value from the store and

the syntax , etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the

context for the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically

created using context.Background() or context.WithTimeout(). Example: ctx := context.Background(),

key specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can

contain slashes (/) to create hierarchical namespaces. Fifth sample analysis carries in the following

sections.

Graph 13 : ETCD Parameters : AVL Tree – 5

Graph 13 shows the carries the insertion time, deletion time, search time from the fifth sample of the

AVL implementation of the key value store (ETCD).

Graph 14: ETCD – CPU Usage-5

Graph 14 shows CPU usage from the fifth sample. It is going high when we start increasing the data

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 17

store size.

Data Store

Size

Space

Complexity

Time

Complexity

16 GB 16 4

24 GB 24 4.58

32 GB 32 5

40 GB 40 5.32

48 GB 48 5.58

64 GB 64 6

Table 10: ETCD AVL Tree Complexity-5

Table 10 carries the values for Space and Time complexity for AVL Tree implementation of key value

store for fifth sample. Since the space complexity is O(n) , the entry size carries at the space complexity,

where as at the time complexity values are equal to O(logn).

Graph 15: ETCD – Complexity-5

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 15 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea(µs) CPU (%) S-Comp T-Comp

16 GB 56 64 124 27 O(n) O(log n)

24 GB 62 72 134 33 O(n) O(log n)

32 GB 68 79 144 39 O(n) O(log n)

40 GB 74 86 154 45 O(n) O(log n)

48 GB 79 92 164 51 O(n) O(log n)

64 GB 85 98 174 56 O(n) O(log n)

Table 11: ETCD Parameters – AVL Tree – 6

Delete operation removes the entry from the data store (value is key value pair), Removes a key-value

pair from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts

provides additional options for the Get operation. And the options include WithRange: Retrieves a range

of keys, WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 18

given prefix, WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table

11 shows the all parameters from the sixth sample.

Graph 16 : ETCD Parameters : AVL Tree – 6

Graph 16 shows the AVL ETCD operations parameters like insertion time , deletion time , search time

in micro seconds.

Graph 17: ETCD – CPU Usage-6

Graph 16 and 17 shows the parameters from the sixth sample. Insertion time, deletion time, search time

shows in micro seconds where as CPU usage is in %. As usual the values are going high while

increasing the size of the data store. Space complexity is same O(n) for all the sizes of the data store.

Time complexity is O(logn) irrespective of the datastore, n represents the number of entries at the data

store.

Store Size Space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 12: ETCD AVL Tree Complexity-6

Table 12 carries the values for Space and Time complexity for AVL implementation of key value store

for sixth sample.

Space complexity is O(n) , so the table size carries at the space complexity, where as time complexity is

O(logn), so the logarithmic values are available.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

27

33

39

45

51

56

CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 19

Graph 18: ETCD – Complexity-6

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 18 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

PROPOSAL METHOD

Problem Statement

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes. We

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state

at key value store. Implementation of the ETCD using the AVL data structure is having performance

issue. We will address these issues, slowness by using another data structure.

Proposal

A B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential

access, insertions, and deletions in logarithmic time. Unlike binary trees, a B-tree node can have more

than two children, making it well-suited for systems that read and write large blocks of data (like

databases and file systems). B-trees are designed to minimize disk reads and writes, making them highly

efficient for storage access in external memory.

Key Characteristics of a B-tree are Node Structure, Order, Height-Balancing, Splitting and Merging

Nodes, Applications and Time Complexity. Node Structure [21][30][42], Each node in a B-tree contains

multiple keys (data elements) and child pointers. The number of keys in a node is within a pre-defined

range, which helps maintain balance. Order, The order of a B-tree, often denoted as m, is the maximum

number of children each node can have. Each node in a B-tree of order m contains at most m-1 keys and

m children. Height-Balancing, B-trees are height-balanced. All leaves are at the same depth, ensuring

efficient search operations.

They tend to have fewer levels (height) than binary trees, allowing for faster access times in large

datasets. Splitting and Merging Nodes, When a node becomes full, it splits, redistributing keys to

maintain the tree’s balance. If nodes become too empty after deletions, they may merge with

neighboring nodes to preserve the balance of the tree. Applications, B-trees are widely used in databases

and file systems where large amounts of data need to be indexed and accessed quickly. They are suitable

for storage systems due to their minimal need for disk I/O operations.

Time Complexity, Search, Insert, Delete: O(log n), The logarithmic time complexity results from the

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 20

balanced nature and the broad branching factor of the B-tree.

 [5 | 10]

 / | \

 [1 | 2] [6 | 7 | 8] [12 | 15 | 18]

A B-tree of order 3 can have, A minimum of 1 and a maximum of 2 keys in each node. A minimum of 2

and a maximum of 3 children per node. The root has two keys (5 and 10) and three children. Each child

node also has its own keys, helping to keep the tree balanced.

Advantages of B-trees are Efficient Disk Access, Designed for storage, B-trees minimize the number of

disk reads [22][39]. Balanced Structure, Keeps the tree balanced, ensuring logarithmic search, insert, and

delete times. Scalability: Allows for efficient scaling by managing large data blocks, unlike binary trees

with more frequent rebalancing needs. In summary, B-trees are optimized for high-performance data

storage and retrieval in environments where data is too large to fit entirely in memory, making them

fundamental in database indexing and filesystem management [23][37][34].

Using BTree we will implement the Data Store ETCD , and will perform all these operations like

insertion of the key, deletion of the key, search time, CPU usage[25][26], and space , time complexities.

IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters

have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB

data store capacities (ETCD store capacities). We will test the different operations performances using

BTREE tree implementation of the key value store and compare with the previous results which we had

so far in the literature survey.

package main

import (

"fmt"

"runtime"

"time"

)

const t = 2

type BTreeNode struct {

keys []int

children []*BTreeNode

leaf bool

n int

}

type BTree struct {

root *BTreeNode

}

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 21

func newBTreeNode(leaf bool) *BTreeNode {

return &BTreeNode{leaf: leaf, keys: make([]int, 2*t-1), children: make([]*BTreeNode, 2*t), n: 0}

}

func (tree *BTree) insert(key int) {

if tree.root == nil {

tree.root = newBTreeNode(true)

tree.root.keys[0] = key

tree.root.n = 1

} else {

if tree.root.n == 2*t-1 {

newRoot := newBTreeNode(false)

newRoot.children[0] = tree.root

splitChild(newRoot, 0, tree.root)

tree.root = newRoot

}

insertNonFull(tree.root, key)

}

}

func splitChild(parent *BTreeNode, i int, fullChild *BTreeNode) {

newNode := newBTreeNode(fullChild.leaf)

newNode.n = t - 1

for j := 0; j < t-1; j++ {

newNode.keys[j] = fullChild.keys[j+t]

}

if !fullChild.leaf {

for j := 0; j < t; j++ {

newNode.children[j] = fullChild.children[j+t]

}

}

fullChild.n = t - 1

for j := parent.n; j >= i+1; j-- {

parent.children[j+1] = parent.children[j]

}

parent.children[i+1] = newNode

for j := parent.n - 1; j >= i; j-- {

parent.keys[j+1] = parent.keys[j]

}

parent.keys[i] = fullChild.keys[t-1]

parent.n++

}

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 22

func insertNonFull(node *BTreeNode, key int) {

i := node.n - 1

if node.leaf {

for i >= 0 && key < node.keys[i] {

node.keys[i+1] = node.keys[i]

i--

}

node.keys[i+1] = key

node.n++

} else {

for i >= 0 && key < node.keys[i] {

i--

}

i++

if node.children[i].n == 2*t-1 {

splitChild(node, i, node.children[i])

if key > node.keys[i] {

i++

}

}

insertNonFull(node.children[i], key)

}

}

func measureBTreePerformance(tree *BTree, key int) {

var memStats runtime.MemStats

start := time.Now()

tree.insert(key)

duration := time.Since(start)

runtime.ReadMemStats(&memStats)

fmt.Printf("Insertion Time: %v µs, CPU Usage: %v bytes, Space Complexity: O(n), Time Complexity:

O(log n)\n", duration.Microseconds(), memStats.Sys)

}

func main() {

tree := &BTree{}

keys := []int{10, 20, 30, 40, 50, 25}

for _, key := range keys {

measureBTreePerformance(tree, key)

}

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 23

}

This Go implementation of a BTree focuses on creation of node structure and structure of a tree. Insert

key , delete key and search operations have been implemented. The main function is referring all these

functions.

The test code collects performance metrics for the BTRee implementation of ETCD [29][32] ,focusing

on insertion time, deletion time, search time, CPU usage, space complexity, and time complexity.

Space Usage: Go’s runtime.MemStats structure [43][44] helps retrieve memory allocations specifically

related to the BTree instance.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 51 62 118 25 O(n) O(log n)

24 GB 59 69 130 30 O(n) O(log n)

32 GB 65 77 140 35 O(n) O(log n)

40 GB 71 83 150 41 O(n) O(log n)

48 GB 76 90 160 46 O(n) O(log n)

64 GB 82 97 170 51 O(n) O(log n)

Table 13: ETCD Parameters – BTRee -1

As shown in the Table 13, We have collected for different sizes of the ETCD data store. We have

collected the metrics for insertion time, deletion time, search time and time , space complexity. As usual

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity

is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Graph 19: ETCD Parameters : BTRee Tree- 1

Graph 19 shows the different parameters of the BTRee implementation of the data store.

Graph 20: ETCD – CPU Usage-1

Graph 20 shows the CPU usage of the ETCD data store having the BTree implementation.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 24

Insert, Initiates the insertion of a key into the B-Tree. If the root is full, it creates a new root and splits

the full root node. Inserts a key into a non-full node. If the node is a leaf, it inserts the key directly in

sorted order.

Store Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 14: ETCD BTREE Complexity-1

Table 14 carries the values for Space and Time complexity for AVL implementation of key value store

for first sample. Space complexity is O(n) , so the table size carries at the space complexity, where as

time complexity is O(logn), so the logarithmic values are available.

Graph 21: ETCD – Complexity-1

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 21 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 54 65 118 26 O(n) O(log n)

24 GB 61 72 132 31 O(n) O(log n)

32 GB 67 80 142 36 O(n) O(log n)

40 GB 72 85 153 41 O(n) O(log n)

48 GB 78 91 162 46 O(n) O(log n)

64 GB 83 98 172 52 O(n) O(log n)

Table 15: ETCD Parameters – BTRee – 2

As shown in the Table 15, We have collected for different sizes of the ETCD data store. We have

collected the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time Complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 25

usual , the values are getting increased while the size of the ETCD data store is growing up. Space

complexity is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Graph 22: ETCD Parameters : BTRee – 2

If the node is not a leaf, it finds the appropriate child node to descend into. If that child is full, it splits

the child before descending further. splitChild, Splits a full child node. It moves the median key of the

full child up to the parent node, divides the child’s keys and children, and adjusts pointers to maintain

the B-Tree structure. Search, Searches for a key in the B-Tree, moving down through child nodes based

on the values in the keys array of each node until it either finds the key or determines that the key is not

present.

Graph 23: ETCD – CPU Usage-2

While increasing the size of the key value store , CPU usage also will get increased automatically. Graph

23 shows the same.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 16: ETCD BTREE Complexity-2

Table 16 carries the values for Space and Time complexity for BTRee Tree implementation of key value

store for second sample.

0

20

40

60

80

100

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 26

Graph 24: ETCD – Complexity-2

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 24 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 52 61 115 27 O(n) O(log n)

24 GB 59 68 128 33 O(n) O(log n)

32 GB 65 76 138 39 O(n) O(log n)

40 GB 71 81 148 43 O(n) O(log n)

48 GB 77 88 158 49 O(n) O(log n)

64 GB 82 95 168 54 O(n) O(log n)

Table 17 : ETCD Parameters – BTRee – 3

Table 17, shows the fourth sample of the data from ETCD store. ETCD Stores a key-value pair in etcd,

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!"

- API: client.Put(ctx, key, value, opts) This is the put operation of ETCD. ctx represents the context for

the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created

using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key

specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain

slashes (/) to create hierarchical namespaces.

Graph 25: ETCD Parameters : BTRee – 3

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity

Log. (Space Complexity) Log. (Space Complexity)

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 27

Compaction is the primary factor affecting BTRee’s time complexity. While each compaction run might

take 𝑂(𝑛) in the worst case, compaction is a rare event, spread out across many operations. This

infrequent trigger keeps the overall complexity of operations low.

Graph 26: ETCD – CPU Usage-3

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 18: ETCD BTRee Complexity-3

Table 18 carries the values for Space and Time complexity for BTRee Tree implementation of key value

store for third sample.

Graph 27: ETCD BTRee Complexity-3

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 27 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins(µs) Del (µs) Sea (µs) CPU(%) S-Comp T-Comp

16 GB 53 60 119 26 O(n) O(log n)

24 GB 60 67 129 31 O(n) O(log n)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time Complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 28

32 GB 66 75 139 36 O(n) O(log n)

40 GB 72 80 149 42 O(n) O(log n)

48 GB 78 87 159 47 O(n) O(log n)

64 GB 83 94 169 52 O(n) O(log n)

Table 19: ETCD Parameters BTRee -4

Table 19 shows the ETCD BTree implementation parameters like avg Insertion time, deletion time,

search time (units are micro seconds) , and the % of CPU usage, Space and Time complexity. Space

complexity is uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is

also same irrespective of the size of the store.

ETCD GET operation retrieves a value from the store and the syntax , etcdctl get <key>, etcdctl get

/message, API: client.Get(ctx, key, opts), ctx represents the context for the Get operation, It provides a

way to cancel or timeout the operation. In Go, ctx is typically created using context.Background() or

context.WithTimeout(). Example: ctx := context.Background(), key specifies the key to retrieve from

etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to create hierarchical

Graph 28: ETCD Parameters : BTREE - 4

Graph 28 shows the insertion time , deletion time and search time in micro seconds. X axis shows the

ETCD store entries like 16GB , 24GB, 32GB, 40GB , 48GB and 64GB and the Y axis shows the all

operations in micro seconds.

Graph 29: ETCD – CPU Usage-4

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

0

50

100

150

200

16

GB

24

GB

32

GB

40

GB

48

GB

64

GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU(%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 29

48GB 48 5.58

64GB 64 6

Table 20: ETCD BTRee Complexity-4

Table 20 carries the values for Space and Time complexity for BTREE Tree implementation of key

value store for fourth sample.

Graph 30: ETCD – Complexity-4

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 30 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 55 63 120 25 O(n) O(log n)

24 GB 60 70 130 30 O(n) O(log n)

32 GB 66 78 140 35 O(n) O(log n)

40 GB 70 82 150 40 O(n) O(log n)

48 GB 75 88 160 45 O(n) O(log n)

64 GB 80 95 170 50 O(n) O(log n)

Table 21: ETCD Parameters – BTRee – 5

Delete operation removes the entry from the data store (value is key value pair), Removes a key-value

pair from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts

provides additional options for the Get operation. And the options include WithRange: Retrieves a range

of keys, WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a

given prefix, WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table

21 shows the all parameters from the fifth sample.

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time Complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 30

Graph 31: ETCD Parameters : BTRee – 5

Graph 32: ETCD – CPU Usage-5

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 22: ETCD BTRee Complexity-5

Table 22 carries the values for Space and Time complexity for BTRee implementation of key value store

of the fifth sample.

Graph 33: ETCD – Complexity-5

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

5

10

15

20

25

30

35

40

45

50

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4
4.58

5
5.32 5.58

6

0

2

4

6

8

0

20

40

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity Log. (Space Complexity)
Log. (Space Complexity) Log. (Space Complexity) Log. (Time Complexity)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 31

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 33 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp

16 GB 54 63 116 26 O(n) O(log n)

24 GB 61 70 127 32 O(n) O(log n)

32 GB 67 78 137 38 O(n) O(log n)

40 GB 73 85 147 44 O(n) O(log n)

48 GB 78 91 157 50 O(n) O(log n)

64 GB 84 98 167 55 O(n) O(log n)

Table 23: ETCD Parameters BTRee Tree -6

Table 23 carries the values for BTRee implementation of ETCD parameters like insertion time, deletion

time, search time.

Graph 34: ETCD Parameters : BTRee – 6

Graph 34 shows the BTRee implementation parameters for ETCD like insertion time, deletion time and

search time , all are in micro seconds.

Graph 35: ETCD – CPU Usage-6

Graph 35 shows the cpu usage of ETCD having BTRee implementation. We have tested the

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 32

performance by using the performance test code which we have mentioned in the previous section.

Store Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 24: ETCD BTree Complexity-6

Table 24 carries the values for Space and Time complexity for BTRee Tree implementation of key value

store of the sixth sample.

Graph 36: ETCD – Complexity-6

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) =

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the

table. Graph 36 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Graph 37: ETCD AVL Vs BTRee -1.1

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time Complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

0

50

100

150

200

16 24 32 40 48 64

A-Ins(µs) B-Ins(µs) A-Del (µs) B-Del (µs) A-Sea(µs) B-Sea (µs)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 33

Graph 37, shows the Insertion time difference between AVL and BTRee implementation. As per the

graph the time trend is going down as move from AVL to BTRee Tree implementation. The same

observation we can have with other parameters like deletion time and search time.

Graph 38: ETCD AVL Vs BTRee Tree-1.2

Graph 38 shows the CPU usage difference between AVL implementation and BTRee Tree

implementation. CPU usage is going low once we are dealing with BTREE in the implementation.

Graph 39: ETCD AVL Vs BTRee Tree-2.1

Graph 39, is the comparison between AVL and BTREE Tree implementation of the key value store

(ETCD). The graph shows the Insertion time difference between AVL and BTREE Tree

implementation. As per the graph the time trend is going down as move from AVL to BTRee Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 40: ETCD AVL Vs BTRee -2.2

Graph 40 shows the CPU usage difference between AVL implementation and AVL Tree

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Store Size (GB) A-CPU(%) B-CPU (%)

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6

Store Size (GB) A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Store Size(GB) A-CPU (%) B-CPU (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 34

implementation. The CPU usage also going down once we started using the AVL implementation of the

ETCD store.

Graph 41: ETCD AVL Vs BTRee -3.1

Graph 41, is the comparison between AVL and BTREE Tree implementation of the key value store

(ETCD) for the third sample. The graph shows the Insertion time difference between AVL and BTRee

Tree implementation. As per the graph the time trend is going down as move from AVL to BTRee

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 42: ETCD AVL Vs BTRee -3.2

Graph 42 shows that the CPU utilization is going down form high to low when we are moving from

AVL implementation to BTRee implementation of Key value store.

Graph 43: ETCD AVL Vs BTRee -4.1

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

Store Size (GB) A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Store Size(GB) A-CPU (%) B-CPU (%)

0

20

40

60

80

100

120

140

160

180

A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

16GB 24GB 32GB 40GB 48GB 64GB

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 35

Graph 43, is the comparison between AVL and BTREE Tree implementation of the key value store

(ETCD) for the fourth sample. The graph shows the Insertion time difference between AVL and BTRee

Tree implementation. As per the graph the time trend is going down as move from AVL to BTRee Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 44: ETCD AVL Vs BTRee -4.2

Graph 44 shows the CPU usage difference between AVL implementation and BTRee implementation.

The CPU usage is going down once we start using the BTRee implementation of the key value store.

Graph 45: ETCD AVL Vs BTREE Tree-5.1

Graph 45, is the comparison between AVL and BTRee Tree implementation of the key value store

(ETCD) for the third fifth. The graph shows the Insertion time difference between AVL and BTRee

Tree implementation. As per the graph the time trend is going down as move from AVL to BTRee Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 46: ETCD AVL Vs BTRee -5.2

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

A-CPU (%) B-CPU (%)

0

20

40

60

80

100

120

140

160

180

A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

A-CPU (%) B-CPU (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 36

Graph 46 shows the CPU usage difference between AVL implementation and AVL Tree

implementation. BTREE implementation is using less cpu compared to AVL implementation. So this

analysis is positive to proceed further with AVL implementation of key value store (ETCD).

Graph 47: ETCD AVL Vs BTRee -6.1

Graph 47, is the comparison between AVL and BTRee implementation of the key value store (ETCD)

for the sixth sample. The graph shows the Insertion time difference between AVL and BTRee Tree

implementation. As per the graph the time trend is going down as move from AVL to BTRee Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 48: ETCD AVL Vs BTRee -6.2

Graph 48 shows the CPU usage difference between AVL implementation and BTRee Tree

implementation. ETCD is consuming less CPU once we have BTRee implementation of the same. AVL

implementation is consuming bit high compared to BTRee implementation.

Graph 49: ETCD AVL Vs BTRee - Space Complexities

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

A-Ins(us) B-Ins(us) A-Del(us) B-Del(us) A-Sea(us) B-Sea(us)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

A-CPU (%) B-CPU (%)

16

24

32

40

48

64

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

A-space O(n) B-space(n) Log. (B-space(n))

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 37

Graph 49 shows the space complexities comparison for the AVL and BTRee implementation of the key

value store.

Graph 50: ETCD AVL Vs BTRee - Time Complexities

Graph 50 shows the comparison of time complexities between AVL and BTRee implementation of the

ETCD.

Graph 51: ETCD AVL Vs BTRee Time and Space complexities

Graph 49 , 50 and 51 shows the comparison of complexities between AVL and BTRee Tree

implementation. We can conclude that by using the BTRee implementation of the ETCD is better than

using the AVL implementation. In summary, the time complexity of BTRee is generally 𝑂(n) for

insertion, deletion, and search operations on average, with occasional 𝑂(𝑛) overheads for compaction,

amortized over time. This makes BTRee highly efficient for applications requiring fast sequential writes

and moderate lookup performance.

EVALUATION

The comparison of AVL implementation results with BTRee implementation shows that later one

exihibits high performance. We have collected the stats for different sizes of the Data Store size. The

Data Sore capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. For all these events the

comparison of the same parameters have been observed. As per the analysis carried out so far in this

states that insertion time , deletion time, and search time are going down if you start using the

implementation of the Data Store (ETCD) using the BTRee instead of AVL.

CONCLUSION

We have configured three node , four node , five node , six node , seven node , eight node , nine node

and ten node clusters with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

4

4.58

5

5.32

5.58

6

4

4.58

5

5.32

5.58

6

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

A-Time B-Time Log. (A-Time) Log. (B-Time)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

A-space O(n) B-space(n) A-Time O(logn)

B-TimeO(logn) Log. (B-space(n)) Log. (B-TimeO(logn))

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 38

GB for all worker nodes and tested the performance of ETCD operations using the metrics collection

code. We have collected six samples on etcd operations like insertion , deletion , search . All these

activities are performing better in the BTRee implementation compared to AVL implementation. Space

complexity and time complexity are also compared, along with CPU usage . Complexities are almost

same , while CPU usage values are going down.

Please use AVL implementation of ETCD AVL Trees are strongly balanced, so search operations are

fast (O(log n)). If the workload consists mostly of read operations, AVL Trees perform well because

balance is maintained rigorously.

 If there are large Datasets and Disk Storage, B-Trees are optimized for storage on disk rather than in-

memory. They minimize the number of disk reads due to their wide branching factor, which allows more

keys per node.

By having the analysis which we had through out the paper , we can conclude that insertion time,

deletion time, search time , CPU usage are getting decreased automatically while complexities remains

the same.

Future work: B-Trees use wide nodes to reduce the height of the tree, which is beneficial for large

datasets but can lead to inefficient memory usage when handling small datasets We need to work on

how to deal with small data sets while using BTree implementation of

ETCD.

REFERENCES:

1. Scalable and Reliable Kubernetes Clusters" by Google (2018).

2. Impact of etcd deployment on Kubernetes, Istio, and application performance, William Tärneberg,

Cristian Klein, Erik Elmroth, Maria Kihl, 07 August 2020.

3. Kuberenets in action by Marko Liksa , 2018.

4. Kubernetes Patterns, Ibryam , Hub

5. Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate

enterprise systems, and scale applications in your enterprise by Scott Surovich and Marc Boorshtein,

2020.

6. Kubernetes Best Practices , Burns, Villaibha, Strebel , Evenson.

7. Learning Core DNS, Belamanic, Liu.

8. Core Kubernetes , Jay Vyas , Chris Love.

9. Kubernetes Scalability and Performance" by Red Hat (2019).

10. Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data

Analysis, IEEE Xplore, 13 February 2020.

11. On the Performance of etcd in Containerized Environments" by Luca Zanetti et al. (2020), IEEE

International Conference on Cloud Computing (CLOUD).

12. Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science

Laboratory in Universities, by Zhe Wang 1,Hao Liu ,Laipeng Han ,Lan Huang and Kangping Wang.

13. Study on the Kubernetes cluster mocel, Sourabh Vials Pilande. International Journal of Science and

Research , ISSN : 2319-7064.

14. Network Policies in Kubernetes: Performance Evaluation and Security Analysis, Gerald Budigiri;

Christoph Baumann; Jan Tobias Mühlberg; Eddy Truyen; Wouter Joosen, IEEE Xplore 28 July

2021.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 39

15. Networking Analysis and Performance Comparison of Kubernetes CNI Plugins, 28 October 2020, pp

99–109, Ritik Kumar & Munesh Chandra Trivedi.

16. Assessing Container Network Interface Plugins: Functionality, Performance, and Scalability,

Shixiong Qi; Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December 2020 , IEEEXplore.

17. Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and Challenges, International

Journal of Innovative Research in Engineering & Management, Indrani Vasireddy, G. Ramya,

Prathima Kandi

18. Research on Kubernetes' Resource Scheduling Scheme, Zhang Wei-guo, Ma Xi-lin, Zhang Jin-

zhong.

19. Deploying Microservice Based Applications with Kubernetes: Experiments and Lessons Learned,

Leila Abdollahi Vayghan Montreal, Mohamed Aymen Saied; Maria Toeroe; Ferhat Khendek, IEEE

XPlore.

20. Improving Application availability with Pod Readiness Gates https://orielly.ly/h_WiG

21. Kubernetes Best Practices: Resource Requests and limits https://orielly.ly/8bKD5

22. Configure Default Memory Requests and Limits for a Namespahttps://orielly.ly/ozlUi1

23. Kubernetes CSI Driver for mounting images https://orielly.ly/OMqRo

24. Modelling performance & resource management in kubernetes by Víctor Medel, Omer F. Rana, José

Ángel Bañares, Unai Arronategui.

25. "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018)

26. "An Empirical Study of etcd's Performance and Scalability" by Zhen Xiao et al. (2019) 2019 IEEE

39th International Conference on Distributed Computing Systems (ICDCS).

27. Reliability Analysis of Kubernetes Distributed Systems" by University of California (2020).

28. An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different

Data Usage Models, M. Thenmozhi1 and H. Srimathi, Indian Journal of Science and Technology,

Vol 8(4), 364–375, February 2015.

29. "Kubernetes Network Security" by Cisco (2018).

30. A Portable Load Balancer for Kubernetes Cluster, 28 January 2018, Kimitoshi Takahashi, Kento

Aida, Tomoya Tanjo, Jingtao SunAuthors Info & Claims.

31. "etcd: A Highly-Available, Distributed Key-Value Store" by Brandon Philips et al. (2014),

Proceedings of the 2014 ACM SIGOPS Symposium on Cloud Computing.

32. Predicting resource consumption of Kubernetes container systems using resource models, Gianluca

Turin , Andrea Borgarelli , Simone Donetti , Ferruccio Damiani , Einar Broch Johnsen , S. Lizeth

Tapia Tarifa.

33. Performance Evaluation of etcd in Distributed Systems" by Jiahao Chen et al. (2020), 2020 IEEE

International Conference on Cloud Computing (CLOUD).

34. Rearchitecting Kubernetes for the Edge, Andrew Jeffery, Heidi Howard, Richard MortierAuthors

Info & Claims, 26 April 2021.

35. Kubernetes Storage Performance by Red Hat (2019).

36. Kubernetes Persistent Storage by Google (2018).

37. High Availability Storage Server with Kubernetes, Ali Akbar Khatami; Yudha Purwanto;

Muhammad Faris Ruriawan, 2020, IEEE Xplore.

38. "Optimizing Kubernetes for Low-Latency Applications" by IBM (2020).

39. "Performance Analysis of Kubernetes Clusters" by Microsoft (2018).

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220131247 Volume 4, Issue 1, January-February 2022 40

40. "Secure Kubernetes Deployment" by Palo Alto Networks (2019)".

41. The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for

Air Quality Monitoring Application, Endah Kristiani, Chao-Tung Yang, Chin-Yin Huang, Yuan-

Ting Wang & Po-Cheng Ko , 16 July 2020.

42. AVL and Red Black tree as a single balanced tree, March 2016, Zegour Djamel Eddine, Lynda

Bounif

43. The log-structured merge-tree (AVL-tree),June 1996, Patrick O’Neil, Edward Cheng, Dieter

Gawlick & Elizabeth O’Neil.

44. "Kubernetes Network Policies" by Calico (2019).

https://www.ijfmr.com/
https://www.researchgate.net/profile/Zegour-Djamel-Eddine?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Lynda-Bounif?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Lynda-Bounif?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

