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Abstract: 

ETCD is a distributed key-value store that provides a reliable way to store and manage data in a 

distributed system. Here's an overview of etcd and its role in Kubernetes. ETCD ensures data 

consistency and durability across multiple nodes, provides distributed locking mechanisms to prevent 

concurrent modifications, and facilitates leader election for distributed systems. ETCD uses a distributed 

consensus algorithm (Raft) to manage data replication and ensure consistency across nodes. Etcd nodes 

form a cluster, ensuring data availability and reliability. Stores data as key-value pairs., provides 

watchers for real-time updates on key changes, supports leases for distributed locking and resource 

management, Etcd serves as the primary data store for Kubernetes, responsible for storing and managing 

Cluster state i.e,  Node information, pod status, and replication controller data, Configuration data like  

Persistent volume claims, secrets, and config maps, Network policies i.e, Network policies and rules, 

High availability that ensures data consistency and availability across nodes, Distributed locking i.e, 

Prevents concurrent modifications and ensures data integrity. Scalability Supports large-scale 

Kubernetes clusters. Whenever we are sending apply command using kubectl or any other client API 

Server authenticates the request, authorizes the same, and updates to etcd on the new configuration. Etcd 

receives the updates (API Server sends the updated configuration to etcd), then etcd writes the updated 

configuration to its key-value store. Etcd replicates the updated data across its nodes and it ensures data 

consistency across all the nodes.  We can say that ETCD is the main storage of the cluster. It carries the 

cluster state by storing the latest state at key value store. In this paper we will discuss about 

implementation of ETCD using Adelson Velsky Landis and BTree. BTree outperforms Adelson Velsky 

Landis Trees in some scenarios. We will work on to prove that BTree implementation provides better 

performance than Adelson Velsky Landis Tree. 
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INTRODUCTION 

Kubernetes  

[1] consists of several components that work together to manage containerized applications. Master 

Node: This controls the overall cluster, handling scheduling and task coordination. API Server  

[2] Frontend that exposes Kubernetes functionalities through RESTful APIs. Scheduler: Distributes 

work across the nodes based on workload requirements. Controller Manager: Ensures that the current 

state matches the desired state by managing the cluster’s control loops. Etcd  
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[3] is an open-source, distributed key-value store that provides a reliable way to store and manage data 

in a distributed system. It is designed to be highly available, fault-tolerant, and scalable. Features are 

Distributed architecture, Key-value store, Leader election, Distributed locking, Watchers for real-time 

updates, Leases for resource management , Authentication and authorization, Support for multiple 

storage backends (e.g., BoltDB, RocksDB)  

[4] And the APIs are put to Store a key-value pair, get to retrieve a value by key, delete to remove a key-

value pair, watch to watch for changes to a key , and lease  to acquire a lease for resource management. 

Kube-proxy  

[5] Manages network communication within and outside the cluster. Pod: The smallest deployable unit 

in Kubernetes, encapsulating one or more containers with shared storage and network resources. 

Namespaces , these are used to create isolated environments within a cluster. Deployment: A higher-

level abstraction that manages the creation and scaling of Pods. It also allows for updates, rollbacks, and 

scaling of applications. Designed to manage stateful applications, where each Pod has a unique identity 

and persistent storage, such as databases. DaemonSet 

[6] Ensures that a copy of a Pod is running on all (or some) nodes. This is useful for deploying system 

services like log collectors or monitoring agents. Job: A Kubernetes resource that runs a task until 

completion. Unlike Deployments or Pods, a Job does not need to run indefinitely. CronJob: Runs Jobs at 

specified intervals, similar to cron jobs in Linux. 

 

LITERATURE REVIEW 

Kubernetes Cluster 

A cluster refers to the set of machines (physical or virtual) that work together to run containerized 

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and it 

provides a platform for deploying, managing, and scaling containerized workloads. 

 

Fig: 1 Cluster Architecture 

 
Fig 1. Shows the Kubernetes cluster architecture. This shows two worker nodes and one control plane. 

Control plane is having four components API Server , Scheduler , Controller and ECTD.  Pods are 

deployed to nodes using scheduler. Client kubectl  will connect to API server (part of Master Node) to 

interact with Kubernetes resources like pods, services, deployment etc. Client will be authenticated 

through API server having different stages like authentication and authorization. Once the client is 

succeeded though authentication and authorization (RBAC plugin) it will connect with corresponding 

resources to proceed with further operations. Etcd is the storage location for all the kubernetes resources. 
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Scheduler will select the appropriate node for scheduling [7] the pods unless you have mentioned node 

affinity (this is the provision to specify the particular node for accommodating the pod). Kubelet is the 

process which is running on all nodes of the kubernetes cluster and it will manage the mediation 

between api server and corresponding node. Communication between any entity with master node is 

going to happen only through api server. 

 

Key Components of a Kubernetes Cluster: 

Control Plane (Master Node): 

API Server: Exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications, 

scaling, etc.) go through the API server, Etcd is a distributed key-value [8] store that holds the state and 

configuration of the cluster, including information about pods, services, secrets, and configurations. 

Controller Manager ensures that the cluster's desired state   matches its actual state, by managing 

different controllers (like deployment, replication, etc.). Scheduler [9] Assigns workloads to worker 

nodes based on resource availability, scheduling policies, and requirements. Worker nodes contains 

kubelet, kube-proxy, container runtime interface. 

Kubelet is the agent running on each node that ensures containers are running in Pods as specified by the 

control plane. Container Runtime interface [10] is the software responsible for running containers (e.g., 

Docker, containerd). Kube-proxy  manages network [11] traffic between pods and services, handling 

routing, load balancing, and network rules. The kubernetes cluster is having objects like pods, nodes, 

services. 

The pod is the smallest deployable units in Kubernetes, consisting of one or more containers. They run 

on worker nodes and are managed by the control plane. Node is a physical or virtual machines in the 

cluster that host Pods and execute application workloads. Service is the one which provides stable 

networking and load balancing for Pods within a cluster.  

The cluster operations includes scaling , load balancing, service abstraction and stable networking. 

Scaling [12][36] Kubernetes clusters can automatically scale up or down by adding/removing nodes or 

pods. Resilience means the clusters are designed for high availability and can automatically restart failed 

pods or reschedule them on healthy nodes. In load Balancing Kubernetes ensures traffic is evenly 

distributed across Pods within a Service.  

In self-Healing the control plane continuously monitors the state of the cluster and acts to correct failures 

or discrepancies between the desired and current state.  Service Abstraction [13][32] in Kubernetes 

provides a way to define a logical set of Pods and a policy by which to access them. This abstraction 

enables communication between different application components without needing to know the 

underlying details of each component's location or state. Stable Network Identity: Services provide a 

stable IP address and DNS name that can be used to reach Pods, which may be dynamically created or 

destroyed.  

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a 

load balancing mechanism. When a Pod fails, the service can route traffic to other healthy Pods. Service 

Types: Kubernetes supports different types of services.  

ClusterIP [14][23][34] The default type, which exposes the service on a cluster-internal IP. Only 

accessible from within the cluster. NodePort: Exposes the service on each Node’s IP at a static port (the 

NodePort). This way, the service can be accessed externally. 

LoadBalancer: Automatically provisions a load balancer for the service when running on cloud 
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providers. 

ExternalName: Maps the service to the contents of the externalName field (e.g., an external DNS 

name). 

 

Iptables Coordination: 

Iptables  [15][31][40]is a user-space utility program that allows a system administrator to configure the 

IP packet filter rules of the Linux kernel firewall. In the context of Kubernetes, iptables is used to 

manage the networking rules that govern how traffic is routed to the various services. 

 

 
Fig 2: ETCD Architecture 

 

Fig 2. Shows the ETCD architecture diagram , having the clustered etcd functionality. Just to make you 

understand the etcd concepts , we have taken clustered etcd. To prove the functionality on this paper , in 

the experimental analysis we have single etcd only.  

Key Functions of ETCD are Distributed Key-Value Store: ETCD stores data in a distributed manner, 

ensuring high availability and reliability, Consensus Algorithm: ETCD uses the Raft consensus 

algorithm to ensure data consistency across nodes, Leader Election: ETCD elects a leader node to 

manage writes and ensure data consistency, Data Replication: ETCD replicates data across nodes to 

ensure data durability, Watchers: ETCD provides watchers to notify clients of changes to specific keys. 

Key-Value Store: Store and retrieve data using keys and values.Lease Management: Manage leases for 

keys to ensure data freshness. Watcher: Watch for changes to specific keys.Cluster Management: 

Manage ETCD cluster membership and configuration. Authentication: Authenticate clients using 

SSL/TLS or username/password. 

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined 

service configurations. 

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP 

addresses of packets as they pass through, which is crucial for services that need to expose Pods to 

external traffic. 

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent 

back to the correct Pod. 

Service Request: A request is sent to the service's stable IP address. Kubernetes Networking 

[16][22][35]: Kubernetes uses iptables to manage the routing of this request. It sets up rules to map the 

service IP to the IP addresses of the underlying Pods.  

Load Balancing: Iptables distributes incoming traffic among the Pods that match the service's selector, 
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ensuring load balancing. Return Traffic [17][27][38] When a Pod responds, iptables ensures that the 

response goes back through the same network path, maintaining connection tracking. 

Service abstraction in Kubernetes provides a simplified and stable interface for accessing application 

components, while iptables [18][24][33] coordination ensures that the network traffic is efficiently 

routed to the right Pods. Together, they form a robust networking framework that is fundamental to the 

operation of Kubernetes clusters which is making the deployment [19][41] platform without any hassles. 

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters 

have been configured with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 

GB for all worker nodes. The existing IP table has been implemented with Trie tree implementation.  

A Trie Tree, also known as a Prefix Tree, is a specialized tree data structure used to store associative 

data structures, often to represent strings. The key characteristic of a Trie is that all descendants of a 

node share a common prefix of the string associated with that node. This structure is particularly useful 

for tasks that involve searching for prefixes, such as auto complete systems, dictionaries, and IP routing 

tables. 

package main 

import ( 

"fmt" 

"time" 

"runtime" 

) 

type AVLNode struct { 

key    int 

left   *AVLNode 

right  *AVLNode 

height int 

} 

type AVLTree struct { 

root *AVLNode 

} 

func height(node *AVLNode) int { 

if node == nil { 

return 0 

} 

return node.height 

} 

func rightRotate(y *AVLNode) *AVLNode { 

x := y.left 

t2 := x.right 

x.right = y 

y.left = t2 

y.height = max(height(y.left), height(y.right)) + 1 

x.height = max(height(x.left), height(x.right)) + 1 

return x 
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} 

func leftRotate(x *AVLNode) *AVLNode { 

y := x.right 

t2 := y.left 

y.left = x 

x.right = t2 

x.height = max(height(x.left), height(x.right)) + 1 

y.height = max(height(y.left), height(y.right)) + 1 

return y 

} 

func getBalance(node *AVLNode) int { 

if node == nil { 

return 0 

} 

return height(node.left) - height(node.right) 

} 

func (t *AVLTree) insert(key int) { 

t.root = insertNode(t.root, key) 

} 

func insertNode(node *AVLNode, key int) *AVLNode { 

if node == nil { 

return &AVLNode{key: key, height: 1} 

} 

 

if key < node.key { 

node.left = insertNode(node.left, key) 

} else if key > node.key { 

node.right = insertNode(node.right, key) 

} else { 

return node 

} 

node.height = 1 + max(height(node.left), height(node.right)) 

 

balance := getBalance(node) 

 

if balance > 1 && key < node.left.key { 

return rightRotate(node) 

} 

 

if balance < -1 && key > node.right.key { 

return leftRotate(node) 

} 
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if balance > 1 && key > node.left.key { 

node.left = leftRotate(node.left) 

return rightRotate(node) 

} 

 

if balance < -1 && key < node.right.key { 

node.right = rightRotate(node.right) 

return leftRotate(node) 

} 

 

return node 

} 

 

func (t *AVLTree) search(key int) bool { 

return searchNode(t.root, key) 

} 

 

func searchNode(node *AVLNode, key int) bool { 

if node == nil { 

return false 

} 

if key < node.key { 

return searchNode(node.left, key) 

} else if key > node.key { 

return searchNode(node.right, key) 

} else { 

return true 

} 

} 

func measurePerformance(tree *AVLTree, key int) { 

var memStats runtime.MemStats 

start := time.Now() 

tree.insert(key) 

duration := time.Since(start) 

runtime.ReadMemStats(&memStats) 

fmt.Printf("Insertion Time: %v, CPU Usage: %v bytes, Space Complexity: O(n), Time Complexity: 

O(log n)\n", duration.Microseconds(), memStats.Sys) 

start = time.Now() 

found := tree.search(key) 

duration = time.Since(start) 

runtime.ReadMemStats(&memStats) 

fmt.Printf("Search Time: %v µs, CPU Usage: %v bytes, Result: %v\n", duration.Microseconds(), 

memStats.Sys, found) 

https://www.ijfmr.com/
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} 

 

func max(a, b int) int { 

if a > b { 

return a 

} 

return b 

} 

 

func main() { 

tree := &AVLTree{} 

keys := []int{10, 20, 30, 40, 50, 25} 

 

for _, key := range keys { 

measurePerformance(tree, key) 

} 

} 

 

An AVL Tree (named after inventors Adelson-Velsky and Landis) is a type of self-balancing binary 

search tree (BST). It maintains a balance by ensuring that the difference in height (the longest path from 

the root node to any leaf node) between the left and right subtrees of any node is no more than one. This 

difference is known as the balance factor, and it can be -1, 0, or +1 for all nodes in an AVL tree.  

The Height-Balancing property is after each insertion or deletion operation, the tree automatically 

performs rotations to maintain its balanced height. This is important because a regular BST can become 

unbalanced, degrading into a linked list (with time complexity O(n) for operations), And the rotations 

are when a node becomes unbalanced after insertion or deletion, rotations are applied to restore balance. 

Single Rotations: Left Rotation (for right-heavy imbalance) and Right Rotation (for left-heavy 

imbalance) and the double rotations is Left-Right Rotation and Right-Left Rotation, used when an 

imbalance cannot be fixed by a single rotation. The performance is due to self-balancing, the AVL tree 

maintains O(log n) time complexity for insertion, deletion, and search operations, making it efficient for 

applications where frequent searching and dynamic insertions/deletions are required. 

The AVL Node and AVLTree structures have been defined. The height function is defined based on the 

number of nodes in the tree.  A right rotation is applied when the left subtree of a node is heavier (taller) 

than the right subtree, causing a left-heavy imbalance. The right rotation will lift the left child of the 

unbalanced node, making it the new root of the subtree.      z                                y 

    / \                             /   \ 

   y   T3     ----->               x     z 

  / \                             / \   / \ 

 x   T2                          T1  T2 T3 T4 

/ \ 

T1 T2 

Let y be the left child of z. Move the right subtree of y to the left subtree of z (if y has a right subtree). 

Make y the new root of this subtree. Set z as the right child of y.  

https://www.ijfmr.com/
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A left rotation is used when the right subtree of a node is heavier (taller) than the left subtree, causing a 

right-heavy imbalance. The left rotation will lift the right child of the unbalanced node, making it the 

new root of the subtree.  

     z                                y 

    / \                             /   \ 

   T1  y       ----->              z     x 

      / \                         / \   / \ 

     T2  x                       T1  T2 T3 T4 

         / \ 

        T3 T4 

Consider a node z that has become unbalanced due to a right-heavy subtree: Let y be the right child of z. 

Move the left subtree of y to the right subtree of z (if y has a left subtree). 

Make y the new root of this subtree. Set z as the left child of y.  

When a single rotation is insufficient to balance the tree, double rotations are used. There are two types 

of double rotations. Left-Right Rotation: First, a left rotation is applied on the left child of the node, 

followed by a right rotation on the node itself. 

Right-Left Rotation: First, a right rotation is applied on the right child of the node, followed by a left 

rotation on the node itself.  

After inserting or deleting a node in an AVL tree, these rotations are used to adjust the balance factor, 

ensuring the height difference between the left and right subtrees of any node remains within the allowed 

range (-1, 0, or +1). This ensures the tree maintains a balanced state and efficient complexity [20][28] 

O(log n) performance.  Insert Node , delete node and search operations have been defined and 

referenced in main function. 

 

Store Size Ins (µs) Del (µs) Sea (µs) CPU  (%) S- Comp T- Comp 

16 GB 57 65 126 28 O(n)  O(log n) 

24 GB 63 71 136 33 O(n)  O(log n) 

32 GB 69 77 146 38 O(n)  O(log n) 

40 GB 75 83 156 43 O(n)  O(log n) 

48 GB 80 90 166 49 O(n)  O(log n) 

64 GB 86 96 176 54 O(n)  O(log n) 

Table 1: ETCD  Parameters : AVLTree-1 

 

As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have 

collected the metrics for  Insertion time, deletion time, search time and time , space complexity. As usual 

the values are getting increased while the size of the ETCD data store is growing up. Space complexity 

is O(n) and time complexity is O(logn), n represents the number of entries at the data store. 
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Graph 1: ETCD Parameters : AVL Tree- 1 

Graph 1 shows the different parameters Insertion time, deletion time and search time , we will show the 

CPU usage at Graph 2. 

 
Graph 2: ETCD – AVL CPU Usage-1 

Graph 2 shows the CPU usage of the ETCD data store having the AVL implementation. 

Data Store 

Size 

Space 

Complexity 

Time 

Complexity 

16 GB 16 4 

24 GB 24 4.58 

32 GB 32 5 

40 GB 40 5.32 

48 GB 48 5.58 

64 GB 64 6 

Table 2: ETCD AVL Tree Complexity-1 

AVL implementation is having the space and time complexity as O(n) and O(logn) , where ni is the 

number of entries in the data store. Table 2 carries the same values from the first sample of ETCD AVL 

implementation.  

 
Graph 3: ETCD  AVL Tree  Complexity-1 

0

50

100

150

200

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Space Complexity Time Complexity Log. (Space Complexity)

Log. (Space Complexity) Log. (Space Complexity) Log. (Time Complexity)

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

  

IJFMR220131247 Volume 4, Issue 1, January-February 2022 11 

 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in 

the table. Graph 3 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

 

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 57 69 128 27 O(n) O(log n) 

24 GB 62 74 139 32 O(n) O(log n) 

32 GB 68 81 149 36 O(n) O(log n) 

40 GB 73 86 159 41 O(n) O(log n) 

48 GB 78 93 168 47 O(n) O(log n) 

64 GB 84 99 178 52 O(n) O(log n) 

Table 3: ETCD  Parameters : AVL Tree-2 

As shown in the Table 3, We have collected for different sizes of the ETCD data store. We have 

collected the metrics for Insertion time, deletion time, search time and time , space complexity. As usual 

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity 

is O(n) and time complexity is O(logn), n represents the number of entries at the data store. 

 
Graph 4: ETCD Parameters : AVL Tree- 2 

Graph 4 shows the insertion , deletion, search times which  

we have had in the second sample. 

 

 
Graph 5: ETCD – CPU Usage-2 
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Graph 5 shows the different parameters of the ETCD AVL implementation. Graph 5 shows the CPU 

usage. Table 3 , Graph4 and 5 are having the data from second sample. 

 

Data Store 

Size 

Space 

Complexity 

Time 

Complexity 

16 GB 16 4 

24 GB 24 4.58 

32 GB 32 5 

40 GB 40 5.32 

48 GB 48 5.58 

64 GB 64 6 

Table 4: ETCD AVL Tree Complexity-2 

Table 4 carries the values for Space and Time complexity for AVL implementation of key value store 

for second sample. 

 

 
Graph 6: ETCD AVL Tree Complexity-2 

 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in 

the table. Graph 6 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

 

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S- Comp T-Comp 

16 GB 55 67 125 28 O(n) O(log n) 

24 GB 61 73 135 34 O(n) O(log n) 

32 GB 67 80 145 40 O(n) O(log n) 

40 GB 72 85 155 45 O(n) O(log n) 

48 GB 78 92 165 51 O(n) O(log n) 

64 GB 83 98 175 56 O(n) O(log n) 

Table 5: ETCD  Parameters – AVL Tree-3 
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We have collected third sample from the ETCD operation (which was implemented using AVL Tree 

data structure). Table 5 is having the parameters are insertion time, deletion time, search time, cpu usage 

, space and time complexity. As usual , the values are going high while increasing the size of the data 

store.  

 

 
Graph 7 : ETCD Parameters : AVL Tree- 3 

Graph 7 shows the insertion , deletion, search times which  

we have had in the third sample. 

 

 
Graph 8: ETCD – CPU Usage-3 

Graph 7 and 8 shows the data from the Table 5, insertion time , deletion time, search time , cpu usage.  

Since the CPU usage is in % units, we have created different graph. Complexities we have mentioned in 

the another graph. 

 

Data Store 

Size 

Space 

Complexity 

Time 

Complexity 

16 GB 16 4 

24 GB 24 4.58 

32 GB 32 5 

40 GB 40 5.32 

48 GB 48 5.58 

64 GB 64 6 

Table 6: ETCD AVL Complexity-3 
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Table 6 carries the values for Space and Time complexity for AVL Tree implementation of key value 

store for third sample. 

 
Graph 9: ETCD AVL Tree Complexity-3 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in 

the table. Graph 9 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

Store Size Ins(µs) Del (µs) Sea (µs) CPU(%) S-Comp T-Comp 

16 GB 56 66 127 27 O(n) O(log n) 

24 GB 62 72 137 32 O(n) O(log n) 

32 GB 68 78 147 38 O(n) O(log n) 

40 GB 73 84 157 43 O(n) O(log n) 

48 GB 79 90 167 49 O(n) O(log n) 

64 GB 85 96 177 54 O(n) O(log n) 

Table 7: ETCD  Parameters – AVL Tree- 4 

Table 7, shows the fourth sample of the data from ETCD store.  ETCD Stores a key-value pair in etcd,  

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!" 

- API: client.Put(ctx, key, value, opts)  This is the put operation of ETCD. ctx represents the context for 

the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created 

using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key 

specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain 

slashes (/) to create hierarchical namespaces. 

 
Graph 10 : ETCD Parameters : AVL Tree- 4 
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Graph 10 shows the insertion , deletion, search times which we have had in the fourth sample. 

 
Graph 11: ETCD – CPU Usage-4 

Graph 10 shows the  insertion time, deletion time , search time and Graph 11 shows CPU usage from the 

fourth sample. 

Store Size space complexity O(n) Time Complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 8: ETCD AVL Tree Complexity-4 

Table 8 carries the values for Space and Time complexity for AVL implementation of key value store 

for fourth sample. 

 
Graph 12: ETCD – Complexity-4 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in 

the table. Graph 12 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  
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Store Size Ins(µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 58 70 130 28 O(n) O(log n) 

24 GB 63 75 140 33 O(n) O(log n) 

32 GB 69 82 150 37 O(n) O(log n) 

40 GB 74 87 160 42 O(n) O(log n) 

48 GB 79 94 170 48 O(n) O(log n) 

64 GB 85 100 180 53 O(n) O(log n) 

Table 9: ETCD  Parameters – AVL Tree – 5 

Table 9 shows the ETCD AVL implementation parameters like avg Insertion time, deletion time, search 

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity.  Space 

complexity is uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is 

also same irrespective of the size of the store.  ETCD GET operation retrieves a value from the store and 

the syntax , etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the 

context for the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically 

created using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), 

key specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can 

contain slashes (/) to create hierarchical namespaces. Fifth sample analysis carries in the following 

sections.  

 
Graph 13 : ETCD Parameters : AVL Tree – 5 

Graph 13 shows the carries the insertion time, deletion time, search time from the fifth sample of the 

AVL implementation of the key value store (ETCD). 

 
Graph 14: ETCD – CPU Usage-5 

Graph 14 shows CPU usage from the fifth sample. It is going high when we start increasing the data 
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store size. 

Data Store 

Size 

Space 

Complexity 

Time 

Complexity 

16 GB 16 4 

24 GB 24 4.58 

32 GB 32 5 

40 GB 40 5.32 

48 GB 48 5.58 

64 GB 64 6 

Table 10: ETCD AVL Tree Complexity-5 

Table 10 carries the values for Space and Time complexity for AVL Tree implementation of key value 

store for fifth sample. Since the space complexity is O(n) , the entry size carries at the space complexity, 

where as at the time complexity values are equal to O(logn). 

 
Graph 15: ETCD – Complexity-5 

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm), 

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in 

the table. Graph 15 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

 

Store Size Ins (µs) Del (µs) Sea(µs) CPU  (%) S-Comp T-Comp 

16 GB 56 64 124 27 O(n) O(log n) 

24 GB 62 72 134 33 O(n) O(log n) 

32 GB 68 79 144 39 O(n) O(log n) 

40 GB 74 86 154 45 O(n) O(log n) 

48 GB 79 92 164 51 O(n) O(log n) 

64 GB 85 98 174 56 O(n) O(log n) 

Table 11: ETCD  Parameters – AVL Tree – 6 

Delete operation removes the entry from the data store (value is key value pair ), Removes a key-value 

pair from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts 

provides additional options for the Get operation. And the options include WithRange: Retrieves a range 

of keys, WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a 
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given prefix, WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table 

11 shows the all parameters from the sixth sample.  

 
Graph 16 : ETCD Parameters : AVL Tree – 6 

Graph 16 shows the AVL ETCD operations parameters like insertion time , deletion time , search time 

in micro seconds. 

 
Graph 17: ETCD – CPU Usage-6 

Graph 16 and 17 shows the parameters from the sixth sample.  Insertion time, deletion time, search time 

shows in micro seconds where as CPU usage is in %. As usual the values are going high while 

increasing the size of the data store. Space complexity is same O(n) for all the sizes of the data store. 

Time complexity is O(logn) irrespective of the datastore, n represents the number of entries at the data 

store. 

Store Size Space complexity O(n) Time Complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 12: ETCD AVL Tree  Complexity-6 

Table 12 carries the values for Space and Time complexity for AVL implementation of key value store 

for sixth sample. 

Space complexity is O(n) , so the table size carries at the space complexity, where as time complexity is 

O(logn), so the logarithmic values are available. 
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Graph 18: ETCD – Complexity-6 

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 18 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

 

PROPOSAL METHOD 

Problem Statement 

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes.  We 

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state 

at key value store. Implementation of the ETCD using the AVL data structure is having performance 

issue. We will address these issues, slowness by using another data structure. 

Proposal 

A B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential 

access, insertions, and deletions in logarithmic time. Unlike binary trees, a B-tree node can have more 

than two children, making it well-suited for systems that read and write large blocks of data (like 

databases and file systems). B-trees are designed to minimize disk reads and writes, making them highly 

efficient for storage access in external memory. 

Key Characteristics of a B-tree are Node Structure, Order, Height-Balancing, Splitting and Merging 

Nodes, Applications and Time Complexity. Node Structure [21][30][42], Each node in a B-tree contains 

multiple keys (data elements) and child pointers. The number of keys in a node is within a pre-defined 

range, which helps maintain balance. Order, The order of a B-tree, often denoted as m, is the maximum 

number of children each node can have. Each node in a B-tree of order m contains at most m-1 keys and 

m children. Height-Balancing, B-trees are height-balanced. All leaves are at the same depth, ensuring 

efficient search operations. 

They tend to have fewer levels (height) than binary trees, allowing for faster access times in large 

datasets. Splitting and Merging Nodes, When a node becomes full, it splits, redistributing keys to 

maintain the tree’s balance. If nodes become too empty after deletions, they may merge with 

neighboring nodes to preserve the balance of the tree. Applications, B-trees are widely used in databases 

and file systems where large amounts of data need to be indexed and accessed quickly. They are suitable 

for storage systems due to their minimal need for disk I/O operations. 

Time Complexity, Search, Insert, Delete: O(log n), The logarithmic time complexity results from the 
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balanced nature and the broad branching factor of the B-tree. 

          [5 | 10] 

         /    |     \ 

    [1 | 2]  [6 | 7 | 8]  [12 | 15 | 18] 

A B-tree of order 3 can have, A minimum of 1 and a maximum of 2 keys in each node. A minimum of 2 

and a maximum of 3 children per node. The root has two keys (5 and 10) and three children. Each child 

node also has its own keys, helping to keep the tree balanced.  

Advantages of B-trees are Efficient Disk Access, Designed for storage, B-trees minimize the number of 

disk reads [22][39]. Balanced Structure, Keeps the tree balanced, ensuring logarithmic search, insert, and 

delete times. Scalability: Allows for efficient scaling by managing large data blocks, unlike binary trees 

with more frequent rebalancing needs. In summary, B-trees are optimized for high-performance data 

storage and retrieval in environments where data is too large to fit entirely in memory, making them 

fundamental in database indexing and filesystem management [23][37][34].  

Using BTree we will implement the Data Store ETCD  , and will perform all these operations like 

insertion of the key, deletion of the key, search time, CPU usage[25][26],  and space , time complexities.  

 

IMPLEMENTATION 

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters 

have been configured with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 

GB for all worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB 

data store capacities (ETCD store capacities). We will test the different operations performances using 

BTREE tree implementation of the key value store and compare with the previous results which we had 

so far in the literature survey. 

package main 

import ( 

"fmt" 

"runtime" 

"time" 

) 

 

const t = 2 

 

type BTreeNode struct { 

keys     []int 

children []*BTreeNode 

leaf     bool 

n        int 

} 

 

type BTree struct { 

root *BTreeNode 

} 
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func newBTreeNode(leaf bool) *BTreeNode { 

return &BTreeNode{leaf: leaf, keys: make([]int, 2*t-1), children: make([]*BTreeNode, 2*t), n: 0} 

} 

 

func (tree *BTree) insert(key int) { 

if tree.root == nil { 

tree.root = newBTreeNode(true) 

tree.root.keys[0] = key 

tree.root.n = 1 

} else { 

if tree.root.n == 2*t-1 { 

newRoot := newBTreeNode(false) 

newRoot.children[0] = tree.root 

splitChild(newRoot, 0, tree.root) 

tree.root = newRoot 

} 

insertNonFull(tree.root, key) 

} 

} 

 

func splitChild(parent *BTreeNode, i int, fullChild *BTreeNode) { 

newNode := newBTreeNode(fullChild.leaf) 

newNode.n = t - 1 

for j := 0; j < t-1; j++ { 

newNode.keys[j] = fullChild.keys[j+t] 

} 

if !fullChild.leaf { 

for j := 0; j < t; j++ { 

newNode.children[j] = fullChild.children[j+t] 

} 

} 

fullChild.n = t - 1 

for j := parent.n; j >= i+1; j-- { 

parent.children[j+1] = parent.children[j] 

} 

parent.children[i+1] = newNode 

for j := parent.n - 1; j >= i; j-- { 

parent.keys[j+1] = parent.keys[j] 

} 

parent.keys[i] = fullChild.keys[t-1] 

parent.n++ 

} 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

  

IJFMR220131247 Volume 4, Issue 1, January-February 2022 22 

 

func insertNonFull(node *BTreeNode, key int) { 

i := node.n - 1 

if node.leaf { 

for i >= 0 && key < node.keys[i] { 

node.keys[i+1] = node.keys[i] 

i-- 

} 

node.keys[i+1] = key 

node.n++ 

} else { 

for i >= 0 && key < node.keys[i] { 

i-- 

} 

i++ 

if node.children[i].n == 2*t-1 { 

splitChild(node, i, node.children[i]) 

if key > node.keys[i] { 

i++ 

} 

} 

insertNonFull(node.children[i], key) 

} 

} 

 

func measureBTreePerformance(tree *BTree, key int) { 

var memStats runtime.MemStats 

 

 

start := time.Now() 

tree.insert(key) 

duration := time.Since(start) 

runtime.ReadMemStats(&memStats) 

fmt.Printf("Insertion Time: %v µs, CPU Usage: %v bytes, Space Complexity: O(n), Time Complexity: 

O(log n)\n", duration.Microseconds(), memStats.Sys) 

} 

 

func main() { 

tree := &BTree{} 

keys := []int{10, 20, 30, 40, 50, 25} 

 

for _, key := range keys { 

measureBTreePerformance(tree, key) 

} 
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} 

This Go implementation of a BTree focuses on creation of node structure and structure of a tree. Insert 

key , delete key and search operations have been implemented. The main function is referring all these 

functions.   

The test code collects performance metrics for the BTRee implementation of ETCD [29][32] ,focusing 

on insertion time, deletion time, search time, CPU usage, space complexity, and time complexity.  

Space Usage: Go’s runtime.MemStats  structure [43][44] helps retrieve memory allocations specifically 

related to the BTree instance.  

 

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 51 62 118 25 O(n) O(log n) 

24 GB 59 69 130 30 O(n) O(log n) 

32 GB 65 77 140 35 O(n) O(log n) 

40 GB 71 83 150 41 O(n) O(log n) 

48 GB 76 90 160 46 O(n) O(log n) 

64 GB 82 97 170 51 O(n) O(log n) 

Table 13: ETCD  Parameters – BTRee -1 

As shown in the Table 13, We have collected for different sizes of the ETCD data store. We have 

collected the metrics for insertion time, deletion time, search time and time , space complexity. As usual 

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity 

is O(n) and time complexity is O(logn), n represents the number of entries at the data store. 

 
Graph 19: ETCD Parameters : BTRee Tree- 1 

Graph 19 shows the different parameters of the BTRee implementation of the  data store.  

 
Graph 20: ETCD – CPU Usage-1 

Graph 20 shows the CPU usage of the ETCD data store having the BTree implementation. 
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Insert, Initiates the insertion of a key into the B-Tree. If the root is full, it creates a new root and splits 

the full root node. Inserts a key into a non-full node. If the node is a leaf, it inserts the key directly in 

sorted order.  

 

Store Size 

space complexity 

O(n) 

Time Complexity 

O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 14: ETCD BTREE Complexity-1 

Table 14 carries the values for Space and Time complexity for AVL implementation of key value store 

for first sample. Space complexity is O(n) , so the table size carries at the space complexity, where as 

time complexity is O(logn), so the logarithmic values are available. 

 
Graph 21: ETCD – Complexity-1 

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 21 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 54 65 118 26 O(n) O(log n) 

24 GB 61 72 132 31 O(n) O(log n) 

32 GB 67 80 142 36 O(n) O(log n) 

40 GB 72 85 153 41 O(n) O(log n) 

48 GB 78 91 162 46 O(n) O(log n) 

64 GB 83 98 172 52 O(n) O(log n) 

Table 15: ETCD  Parameters – BTRee – 2 

As shown in the Table 15, We have collected for different sizes of the ETCD data store. We have 

collected the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As 
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usual , the values are getting increased while the size of the ETCD data store is growing up. Space 

complexity is O(n) and time complexity is O(logn), n represents the number of entries at the data store. 

 
Graph 22: ETCD Parameters : BTRee – 2 

If the node is not a leaf,  it finds the appropriate child node to descend into. If that child is full, it splits 

the child before descending further. splitChild, Splits a full child node. It moves the median key of the 

full child up to the parent node, divides the child’s keys and children, and adjusts pointers to maintain 

the B-Tree structure. Search, Searches for a key in the B-Tree, moving down through child nodes based 

on the values in the keys array of each node until it either finds the key or determines that the key is not 

present. 

 
Graph 23: ETCD – CPU Usage-2 

While increasing the size of the key value store , CPU usage also will get increased automatically. Graph 

23 shows the same.  

Store Size space complexity O(n) Time Complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 16: ETCD BTREE Complexity-2 

Table 16 carries the values for Space and Time complexity for BTRee Tree implementation of key value 

store for second sample. 
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Graph 24: ETCD – Complexity-2 

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 24 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 52 61 115 27 O(n) O(log n) 

24 GB 59 68 128 33 O(n) O(log n) 

32 GB 65 76 138 39 O(n) O(log n) 

40 GB 71 81 148 43 O(n) O(log n) 

48 GB 77 88 158 49 O(n) O(log n) 

64 GB 82 95 168 54 O(n) O(log n) 

Table 17 : ETCD  Parameters – BTRee – 3 

Table 17, shows the fourth sample of the data from ETCD store.  ETCD Stores a key-value pair in etcd, 

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!" 

- API: client.Put(ctx, key, value, opts)  This is the put operation of ETCD. ctx represents the context for 

the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created 

using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key 

specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain 

slashes (/) to create hierarchical namespaces. 

 
Graph 25: ETCD Parameters : BTRee – 3 
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Compaction is the primary factor affecting BTRee’s time complexity. While each compaction run might 

take 𝑂(𝑛) in the worst case, compaction is a rare event, spread out across many operations. This 

infrequent trigger keeps the overall complexity of operations low. 

 
Graph 26: ETCD – CPU Usage-3 

Store Size space complexity O(n) Time Complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 18: ETCD BTRee Complexity-3 

Table 18 carries the values for Space and Time complexity for BTRee Tree implementation of key value 

store for third sample. 

 
Graph 27: ETCD  BTRee Complexity-3 

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 27 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

Store Size Ins(µs) Del (µs) Sea (µs) CPU(%) S-Comp T-Comp 

16 GB 53 60 119 26 O(n) O(log n) 

24 GB 60 67 129 31 O(n) O(log n) 
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32 GB 66 75 139 36 O(n) O(log n) 

40 GB 72 80 149 42 O(n) O(log n) 

48 GB 78 87 159 47 O(n) O(log n) 

64 GB 83 94 169 52 O(n) O(log n) 

Table 19: ETCD  Parameters BTRee -4 

Table 19 shows the ETCD BTree implementation parameters like avg Insertion time, deletion time, 

search time (units are micro seconds) , and the % of CPU usage, Space and Time complexity.  Space 

complexity is uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is 

also same irrespective of the size of the store.   

ETCD GET operation retrieves a value from the store and the syntax , etcdctl get <key>, etcdctl get 

/message, API: client.Get(ctx, key, opts), ctx represents the context for the Get operation, It provides a 

way to cancel or timeout the operation. In Go, ctx is typically created using context.Background() or 

context.WithTimeout(). Example: ctx := context.Background(), key specifies the key to retrieve from 

etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to create hierarchical  

 
Graph 28: ETCD Parameters : BTREE - 4 

Graph 28 shows the insertion time , deletion time and search time in micro seconds. X axis shows the 

ETCD store entries like 16GB , 24GB, 32GB, 40GB , 48GB and 64GB and the Y axis shows the all 

operations in micro seconds. 

 
Graph 29: ETCD – CPU Usage-4 
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48GB 48 5.58 

64GB 64 6 

Table 20: ETCD BTRee Complexity-4 

 

Table 20 carries the values for Space and Time complexity for BTREE Tree implementation of key 

value store for fourth sample. 

 
Graph 30: ETCD – Complexity-4 

 

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 30 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 55 63 120 25 O(n) O(log n) 

24 GB 60 70 130 30 O(n) O(log n) 

32 GB 66 78 140 35 O(n) O(log n) 

40 GB 70 82 150 40 O(n) O(log n) 

48 GB 75 88 160 45 O(n) O(log n) 

64 GB 80 95 170 50 O(n) O(log n) 

Table 21: ETCD  Parameters – BTRee – 5 

 

Delete operation removes the entry from the data store (value is key value pair ), Removes a key-value 

pair from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts 

provides additional options for the Get operation. And the options include WithRange: Retrieves a range 

of keys, WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a 

given prefix, WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table 

21 shows the all parameters from the fifth sample.  
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Graph 31: ETCD Parameters : BTRee – 5 

 

 
Graph 32: ETCD – CPU Usage-5 

 

Store Size space complexity O(n) Time Complexity O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 22: ETCD BTRee  Complexity-5 

 

Table 22 carries the values for Space and Time complexity for BTRee implementation of key value store 

of the fifth sample. 

 
Graph 33: ETCD – Complexity-5 
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Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 33 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7. 

Store Size Ins (µs) Del (µs) Sea (µs) CPU (%) S-Comp T-Comp 

16 GB 54 63 116 26 O(n) O(log n) 

24 GB 61 70 127 32 O(n) O(log n) 

32 GB 67 78 137 38 O(n) O(log n) 

40 GB 73 85 147 44 O(n) O(log n) 

48 GB 78 91 157 50 O(n) O(log n) 

64 GB 84 98 167 55 O(n) O(log n) 

Table 23: ETCD  Parameters BTRee Tree -6 

 

Table 23 carries the values for BTRee implementation of ETCD parameters like insertion time, deletion 

time, search time. 

 
Graph 34: ETCD Parameters : BTRee – 6 

 

Graph 34 shows the BTRee implementation parameters for ETCD like insertion time, deletion time and 

search time , all are in micro seconds. 

 

 
Graph 35: ETCD – CPU Usage-6 

Graph 35 shows the cpu usage of ETCD having BTRee implementation. We have tested the 
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performance by using the performance test code which we have mentioned in the previous section. 

 

Store Size 

space complexity 

O(n) 

Time Complexity 

O(logn) 

16GB 16 4 

24GB 24 4.58 

32GB 32 5 

40GB 40 5.32 

48GB 48 5.58 

64GB 64 6 

Table 24: ETCD BTree Complexity-6 

 

Table 24 carries the values for Space and Time complexity for BTRee Tree implementation of key value 

store of the sixth sample. 

 

 
Graph 36: ETCD – Complexity-6 

 

Please find the Logarithmic graph using the calculation, O(log n) ≈ 4 (using base 2 logarithm), O(n) = 

16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in the 

table. Graph 36 shows the same values. It is using two scale Y-Axis since the table is carrying two 

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range 

from 0 to 7.  

 
Graph 37: ETCD AVL Vs BTRee -1.1 
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Graph 37, shows the Insertion time difference between AVL and BTRee implementation. As per the 

graph the time trend is going  down as move from AVL to BTRee Tree implementation. The same 

observation we can have with other parameters like deletion time and  search time. 

 
Graph 38: ETCD AVL Vs BTRee Tree-1.2 

Graph 38 shows the CPU usage difference between AVL implementation and BTRee Tree 

implementation. CPU usage is going low once we are dealing with BTREE in the  implementation. 

 
Graph 39: ETCD AVL Vs BTRee Tree-2.1 

Graph 39, is the comparison between AVL and BTREE Tree implementation of the key value store 

(ETCD). The graph shows the Insertion time difference between AVL and BTREE Tree 

implementation. As per the graph the time trend is going  down as move from AVL to BTRee Tree 

implementation. The same observation we can have with other parameters like  deletion time and search 

time. 

 
Graph 40: ETCD AVL Vs BTRee -2.2 
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implementation. The CPU usage also going down once we started using the AVL implementation of the 

ETCD store. 

 
Graph 41: ETCD AVL Vs BTRee -3.1 

Graph 41, is the comparison between AVL and BTREE Tree implementation of the key value store 

(ETCD) for the third sample. The graph shows the Insertion time difference between AVL and BTRee 

Tree implementation. As per the graph the time trend is going  down as move from AVL to BTRee 

implementation. The same observation we can have with other parameters like deletion time and search 

time. 

 
Graph 42: ETCD AVL Vs BTRee -3.2 

 

Graph 42 shows that the CPU utilization is going down form high to low when we are moving from 

AVL implementation to BTRee implementation of Key value store.  

 
Graph 43: ETCD AVL Vs BTRee -4.1 
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Graph 43, is the comparison between AVL and BTREE Tree implementation of the key value store 

(ETCD) for the fourth sample. The graph shows the Insertion time difference between AVL and BTRee 

Tree implementation. As per the graph the time trend is going  down as move from AVL to BTRee Tree 

implementation. The same observation we can have with other parameters like deletion time and search 

time. 

 
Graph 44: ETCD AVL Vs BTRee -4.2 

Graph 44 shows the CPU usage difference between AVL implementation and BTRee implementation. 

The CPU usage is going down once we start using the BTRee implementation of the key value store. 

 
Graph 45: ETCD AVL Vs BTREE Tree-5.1 

Graph 45, is the comparison between AVL and BTRee Tree implementation of the key value store 

(ETCD) for the third fifth. The graph shows the  Insertion time difference between AVL and BTRee 

Tree implementation. As per the graph the time trend is going  down as move from AVL to BTRee Tree 

implementation. The same observation we can have with other parameters like deletion time and search 

time. 

 
Graph 46: ETCD AVL Vs BTRee -5.2 
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Graph 46 shows the CPU usage difference between AVL implementation and AVL Tree 

implementation. BTREE implementation is using less cpu compared to AVL implementation. So this 

analysis is positive to proceed further with AVL implementation of key value store (ETCD). 

 
Graph 47: ETCD AVL Vs BTRee -6.1 

Graph 47, is the comparison between AVL and BTRee implementation of the key value store (ETCD) 

for the sixth sample. The graph shows the Insertion time difference between AVL and BTRee Tree 

implementation. As per the graph the time trend is going  down as move from AVL to BTRee Tree 

implementation. The same observation we can have with other parameters like deletion time and search 

time. 

 
Graph 48: ETCD AVL Vs BTRee -6.2 

Graph 48 shows the CPU usage difference between AVL implementation and BTRee Tree 

implementation. ETCD is consuming less CPU once we have BTRee implementation of the same. AVL 

implementation is consuming bit high compared to BTRee implementation. 

 
Graph 49: ETCD AVL Vs BTRee - Space Complexities 
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Graph 49 shows the space complexities comparison for the AVL and BTRee implementation of the key 

value store. 

 
Graph 50: ETCD AVL Vs BTRee - Time Complexities 

Graph 50 shows the comparison of time complexities between AVL and BTRee implementation of the 

ETCD. 

 
Graph 51: ETCD AVL Vs BTRee Time and Space complexities 

Graph 49 , 50 and 51 shows the comparison of complexities between AVL and BTRee Tree 

implementation. We can conclude that by using the BTRee implementation of the ETCD is better than 

using the AVL implementation. In summary, the time complexity of BTRee is generally 𝑂(n) for 

insertion, deletion, and search operations on average, with occasional 𝑂(𝑛) overheads for compaction, 

amortized over time. This makes BTRee highly efficient for applications requiring fast sequential writes 

and moderate lookup performance. 

 

EVALUATION 

The comparison of AVL  implementation results with BTRee implementation shows that later one 

exihibits high performance. We have collected the stats for different sizes of the Data Store size. The 

Data Sore capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. For all these events the 

comparison of the same parameters have been observed. As per the analysis carried out so far in this 

states that  insertion time ,  deletion time, and search time are going down if you start using the 

implementation of the Data Store (ETCD) using the BTRee instead of AVL. 

 

CONCLUSION 

We have configured  three node , four node , five node , six node , seven node , eight node , nine node 

and ten node clusters with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 
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GB for all worker nodes and tested the performance of ETCD operations using the metrics  collection 

code.  We have collected six samples on etcd operations   like insertion , deletion , search . All these 

activities are performing better in the BTRee implementation compared to AVL implementation. Space 

complexity and time complexity are also compared, along with CPU usage . Complexities are almost 

same , while CPU usage values are going down.  

Please use AVL implementation of ETCD AVL Trees are strongly balanced, so search operations are 

fast (O(log n)). If the workload consists mostly of read operations, AVL Trees perform well because 

balance is maintained rigorously. 

 If there are large Datasets and Disk Storage, B-Trees are optimized for storage on disk rather than in-

memory. They minimize the number of disk reads due to their wide branching factor, which allows more 

keys per node.  

By having the analysis which we had through out the paper , we can  conclude that insertion time, 

deletion time, search time , CPU usage are getting decreased automatically while complexities remains 

the same. 

Future work: B-Trees use wide nodes to reduce the height of the tree, which is beneficial for large 

datasets but can lead to inefficient memory usage when handling small datasets We need to work on 

how to deal with small data sets while using BTree implementation of  

ETCD.  
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