

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 1

Approximate Breadth First Search (ABFS)

Graph Algorithm for Efficient Etcd Notification

Latency Reduction

Renukadevi Chuppala1, Dr. B. Purnachandra Rao2

1Senior Analyst 2, Morgan Stanley, CA, USA

2Sr. Solutions Architect, HCL Technologies , Bangalore, Karnataka, India.

Abstract

Etcd is a distributed key-value store that provides a reliable way to store and manage data in a

distributed system. Etcd is a highly available, distributed key-value store that enables reliable data

management in distributed systems. It provides a fault-tolerant and scalable solution for storing and

retrieving data, making it an ideal choice for modern distributed applications. Etcd's core features

include Distributed architecture, Key-value data model, High availability and fault tolerance, Scalability

and performance, Secure data storage and transmission, Simple and intuitive API. Etcd is a distributed,

consensus-based key-value store built on top of the Raft consensus algorithm. It provides a hierarchical

namespace for storing and retrieving data, with support for transactions, watches, and leases. Etcd's

architecture includes A cluster of nodes that store and replicate data. A leader node that manages the

cluster and handles client requests. A consensus algorithm that ensures data consistency and

availability.A client API for interacting with the etcd cluster. Notification latency refers to the delay

between the occurrence of an event and the notification of that event to the interested parties. In other

words, it is the time taken for a notification to be delivered from the source of the event to the recipient.

Notification throughput is The average number of notifications delivered per second. Memory usage is

the average amount of memory used by the system. Notification latency metric measures the delay

between the occurrence of an event and the notification of that event to the interested parties. The

existing architecture is using Levelized Breadth First Search Algorithm for watch mechanism and it is

having performance issues. This paper addresses these issues including latency issues by implementing

the watch mechanism in the ETCD by Approximate Breadth First Search Algorithm.

Keywords: ETCD, Breadth First Search Algorithm, Levelized Breadth Search algorithm, Approximate

BFS (ABFS) algorithm, Controllers, Schedulers, Graphs.

INTRODUCTION

In a bustling distributed system, etcd [1], the reliable key-value store, held the reins. The API server, a

gateway to the system, received requests and updates. Meanwhile, the controller, a diligent worker,

ensured the system's desired state was maintained. The scheduler, a master of resource allocation,

decided which tasks to run and where. As changes occurred, the watching mechanism, etcd's trusty

sidekick, notified the controller and scheduler. The controller reacted swiftly, updating the system's

state. The scheduler adjusted its plans, allocating resources accordingly. Etcd, the source of truth, stored

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 2

the updated state. The API server relayed the changes to interested parties. The watching mechanism

continued to monitor, ever vigilant. As the system hummed along, the controller, scheduler, and etcd

worked in harmony. The watching mechanism [2] ensured that each component remained informed.

Together, they formed a robust and efficient distributed system. In the Kubernetes ecosystem, this

harmonious dance was crucial. The controller and scheduler worked together to ensure the desired state

of the Kubernetes cluster. As pods were created and deleted, the watching mechanism notified the

controller, which updated the Kubernetes cluster's state. Etcd, the reliable key-value store [3], stored the

updated state, ensuring that the Kubernetes cluster remained consistent. The API server relayed the

changes to interested parties, such as Kubernetes deployments and services. The scheduler adjusted its

plans, allocating resources accordingly, to ensure the Kubernetes cluster remained efficient. Kubernetes

relied on this intricate ballet to maintain its scalability and reliability [4]. The watching mechanism

continued to monitor, ever vigilant, ensuring that the Kubernetes cluster remained in sync. As the

Kubernetes ecosystem evolved, this harmonious dance remained essential.

LITERATURE REVIEW

Etcd is a highly available, distributed key-value store that provides a reliable way to store and manage

data in a distributed system. At its core, etcd is designed to be a fault-tolerant and scalable solution for

storing and retrieving data.In a Kubernetes cluster, etcd plays a critical role in storing and managing the

cluster's state. The Kubernetes API server, which is responsible for handling incoming requests and

updates, relies on etcd to store and retrieve data. Etcd's distributed architecture allows it to scale

horizontally [5], making it an ideal solution for large-scale distributed systems. The etcd cluster consists

of multiple nodes, each of which stores a copy of the data. This ensures that the data remains available

even in the event of node failures.

The etcd watching mechanism [6] is a critical component of the system, allowing clients to receive

notifications when changes occur to the data. This mechanism is built on top of the levelized Breadth-

First Search (BFS) [7] algorithm, which enables efficient and scalable watching of the data. The

levelized BFS algorithm [8] is a variant of the traditional BFS algorithm, optimized for etcd's distributed

architecture. It allows etcd to efficiently traverse the graph of watched keys, ensuring that notifications

are delivered in a timely and efficient manner. In a Kubernetes cluster, the etcd watching mechanism is

used by the controller and scheduler components to receive notifications when changes occur to the

cluster's state.

The controller is responsible for ensuring that the cluster's desired state is maintained, while the

scheduler is responsible for allocating resources to run the workload. The etcd API provides a simple

and efficient way for clients to interact with the etcd cluster. The API allows clients to store and retrieve

data, as well as watch for changes to the data. The etcd API is used by the Kubernetes API server to

store and retrieve data, as well as by the controller and scheduler components to receive notifications. In

summary, etcd is a highly available, distributed key-value store that provides a reliable way to store and

manage data in a distributed system. Its distributed architecture, watching mechanism, and levelized

BFS algorithm make it an ideal solution for large-scale distributed systems, such as Kubernetes clusters.

Etcd's integration with Kubernetes is seamless, providing a reliable and efficient way to store and

manage the cluster's state.

The etcd watching mechanism and levelized BFS algorithm enable efficient and scalable watching of the

data, ensuring that notifications are delivered in a timely and efficient manner. As a result, etcd has

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 3

become a critical component of the Kubernetes ecosystem, providing a reliable and efficient way to store

and manage data in a distributed system. Its scalability, reliability, and efficiency make it an ideal

solution for large-scale distributed systems. In graph theory, traversal techniques are algorithms used to

visit nodes in a graph [10]. The primary goal of traversal techniques is to visit each node in the graph

exactly once. Graph traversal techniques can be broadly classified into two categories: Breadth-First

Search (BFS) and Depth-First Search (DFS). Breadth-First Search (BFS) is a traversal technique that

visits all the nodes at the current level before moving on to the next level. In BFS, a queue data structure

is used to keep track of the nodes to be visited. The algorithm starts by visiting the root node and then

explores all the neighboring nodes. Once all the neighboring nodes have been visited, the algorithm

moves on to the next level and repeats the process.

Depth-First Search (DFS) [11] is a traversal technique that visits as far as possible along each branch

before backtracking. In DFS, a stack data structure is used to keep track of the nodes to be visited. The

algorithm starts by visiting the root node and then explores as far as possible along each branch. Once

the algorithm reaches a dead end, it backtracks to the previous node and explores the next branch.

Levelized Breadth-First Search [12] is a variant of BFS that is optimized for distributed systems. In

levelized BFS, the graph is divided into levels, and the algorithm visits all the nodes at the current level

before moving on to the next level. This approach reduces the number of messages exchanged between

nodes, making it more efficient for distributed systems. Traversal techniques [13] have numerous

applications in computer science, including network topology discovery, web crawling, and social

network analysis. In addition, traversal techniques are used in various fields, such as biology, chemistry,

and physics, to analyze complex networks and systems.

In conclusion, graph traversal techniques are essential algorithms in graph theory that enable the

efficient exploration of nodes in a graph. BFS and DFS are two fundamental traversal techniques that

have numerous applications in computer science and other fields. The choice of traversal technique

depends on the specific application and the characteristics of the graph. For example, BFS is often used

in network topology discovery and web crawling, where the goal is to visit all nodes in the graph. On the

other hand, DFS is often used in solving puzzles and finding connected components in a graph. In

addition to BFS and DFS, there are other traversal techniques, such as Dijkstra's algorithm [14][21] and

Bellman-Ford algorithm, which are used for finding the shortest path between two nodes in a weighted

graph. Traversal techniques are also used in various fields, such as biology, chemistry, and physics, to

analyze complex networks and systems. For example, in biology, traversal techniques are used to

analyze the structure of proteins and the behavior of complex biological systems. In computer science,

traversal techniques are used in various applications, such as network routing, web search, and social

network analysis. For example, in network routing, traversal techniques are used to find the shortest path

between two nodes in a network. In web search, traversal techniques are used to crawl the web and index

web pages. In social network analysis, traversal techniques are used to analyze the structure of social

networks and the behavior of individuals within those networks. In addition to these applications,

traversal techniques are also used in various other fields, such as finance, economics, and logistics. For

example, in finance, traversal techniques are used to analyze the structure of financial networks and the

behavior of financial markets. In economics, traversal techniques are used to analyze the structure of

economic networks and the behavior of economic systems. In logistics, traversal techniques are used to

optimize the routing of vehicles and the scheduling of deliveries. In conclusion, traversal techniques are

essential algorithms in graph theory that enable the efficient exploration of nodes in a graph. These

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 4

techniques have numerous applications in computer science and other fields, and are used to solve a

wide range of problems, from network routing and web search to social network analysis [15][22] and

financial modeling. The study of traversal techniques is an active area of research, with new algorithms

and techniques being developed to solve specific problems and improve the efficiency of existing

algorithms. As the complexity of networks and systems continues to grow, the importance of traversal

techniques will only continue to increase. Graph theory algorithms, such as Breadth-First Search (BFS)

and Depth-First Search (DFS), are fundamental techniques used to traverse and search graphs. These

algorithms have numerous applications in computer science, including network topology discovery, web

crawling, and social network analysis. BFS is a traversal technique that visits all the nodes at the current

level before moving on to the next level. In BFS, a queue data structure is used to keep track of the

nodes to be visited. The algorithm starts by visiting the root node and then explores all the neighboring

nodes. Once all the neighboring nodes have been visited, the algorithm moves on to the next level and

repeats the process. Levelized BFS is a variant of BFS that is optimized for distributed systems. In

levelized BFS, the graph is divided into levels, and the algorithm visits all the nodes at the current level

before moving on to the next level. This approach reduces the number of messages exchanged between

nodes, making it more efficient for distributed systems. Approximate BFS (ABFS) is another variant of

BFS that is optimized for large-scale graphs. In ABFS, the algorithm uses a probabilistic approach to

traverse the graph, which reduces the computational overhead. ABFS is particularly useful for

applications where the graph is too large to be traversed exactly. The transformation from BFS to

levelized BFS involves dividing the graph into levels and modifying the algorithm to visit all the nodes

at the current level before moving on to the next level. This approach reduces the number of messages

exchanged between nodes, making it more efficient for distributed systems. The transformation from

BFS to ABFS involves modifying the algorithm to use a probabilistic approach to traverse the graph.

This approach reduces the computational overhead and makes it more efficient for large-scale graphs. In

conclusion, graph theory algorithms, such as BFS and DFS, are fundamental techniques used to traverse

and search graphs [16]. Levelized BFS and ABFS are variants of BFS that are optimized for distributed

systems and large-scale graphs, respectively. The transformation from BFS to levelized BFS and ABFS

involves modifying the algorithm to reduce the computational overhead and make it more efficient for

specific applications. The study of graph theory algorithms is an active area of research, with new

algorithms and techniques being developed to solve specific problems and improve the efficiency of

existing algorithms. As the complexity of graphs and networks continues to grow, the importance of

graph theory algorithms will only continue to increase. Graph theory algorithms have numerous

applications in computer science, including network topology discovery, web crawling, and social

network analysis. In addition to these applications, graph theory algorithms are also used in various

other fields, such as biology, chemistry, and physics, to analyze complex networks and systems. In

biology, graph theory algorithms are used to analyze the structure of proteins and the behavior of

complex biological systems. In chemistry, graph theory algorithms [17][23] are used to analyze the

structure of molecules and the behavior of chemical reactions. In physics, graph theory algorithms are

used to analyze the behavior of complex physical systems, such as networks of particles and fields. In

conclusion, graph theory algorithms are fundamental techniques used to traverse and search graphs.

These algorithms have numerous applications in computer science and other fields, and are used to solve

a wide range of problems, from network topology discovery and web crawling to social network analysis

and financial modeling.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 5

Fig: 1. ETCD Achitecture

Fig. 1. shows the ETCD architecture, it is using WAL algorithm for storing and retrieving key value

information. It is using GPRC protocol for communication. It shows the leader selection module , In

etcd, leader election is a process where a cluster of etcd nodes selects one node to be the leader. The

leader [18] is responsible for managing the cluster, handling client requests, and replicating data to other

nodes. 1. Initial Election: When an etcd cluster is first formed, each node will attempt to become the

leader. The node with the highest election priority (which can be configured) will become the leader. 2.

Leader Heartbeats: The leader node will periodically send heartbeat messages to other nodes in the

cluster. These heartbeats indicate that the leader is still alive and functioning. 3. Follower Election: If the

leader node fails or becomes unavailable, the remaining nodes will detect the loss of heartbeats and

initiate a new leader election. The node with the highest election priority [19][24] will become the new

leader. 4. Leader Transition: Once a new leader is elected, it will take over the responsibilities of the

previous leader, including managing the cluster, handling client requests, and replicating data. Etcd uses

a consensus algorithm called Raft to manage leader election and ensure that the cluster remains

consistent and available.

Fig 2: Scheduler Controller API Server ETCD

Fig 2. Shows the interaction among the components API Server , controller , etcd and scheduler. API

Server receives requests from users and validates them. Validated requests are stored in etcd. Controller

watches etcd for changes to the desired state. When a change is detected, the Controller queries the API

Server for the current state. The API Server returns the current state to the Controller. The Controller

calculates the difference between the desired and current states. The Controller [20] sends instructions to

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 6

the Scheduler to create or update resources. The Scheduler receives the instructions and schedules the

tasks on available nodes. The Scheduler updates the node's status in etcd. The Controller watches etcd

for node status updates. When a node's status changes, the Controller queries the API Server for the

updated node status. The API Server returns the updated node status to the Controller. The Controller

updates the desired state in etcd based on the updated node status. Etcd notifies the Controller of the

updated desired state.The cycle repeats, ensuring the cluster remains in the desired state.

package main

import (

 "context"

 "fmt"

 "log"

 "sync"

)

const (

 dialTimeout = 5 * time.Second

)

type Watcher struct {

 client *clientv3.Client

 watches map[string]struct{}

 mu sync.RWMutex

}

func NewWatcher(client *clientv3.Client) *Watcher {

 return &Watcher{

 client: client,

 watches: make(map[string]struct{}),

 }

}

func (w *Watcher) Watch(ctx context.Context, key string) error {

 w.mu.Lock()

 defer w.mu.Unlock()

 if _, ok := w.watches[key]; ok {

 return nil

 }

 w.watches[key] = struct{}{}

 go func() {

 ch := w.client.Watch(ctx, key)

 for resp := range ch {

 for _, ev := range resp.Events {

 fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key,

ev.Kv.Value)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 7

 }

 }

 }()

 return nil

}

func (w *Watcher) Unwatch(ctx context.Context, key string) error {

 w.mu.Lock()

 defer w.mu.Unlock()

 delete(w.watches, key)

. return nil

}

func levelizedBFS(w *Watcher, key string) {

 visited := make(map[string]bool)

 queue := []string{key}

 for len(queue) > 0 {

 currKey := queue[0]

 queue = queue[1:]

 if visited[currKey] {

 continue

 }

 visited[currKey] = true

. w.Watch(context.Background(), currKey)

. resp, err := w.client.Get(context.Background(), currKey)

 if err != nil {

 log.Println(err)

 continue

 }

 for _, kv := range resp.Kvs {

 queue = append(queue, string(kv.Key))

 }

 }

}

.func main() {

 client, err := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: dialTimeout,

 })

 if err != nil {

 log.Fatal(err)

 }

 w := NewWatcher(client)

 levelizedBFS(w, "/")

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 8

 select {}

}

This code creates a Watcher struct that uses the etcd client to watch for changes to keys in the etcd store.

The levelizedBFS function implements the levelized BFS algorithm to traverse the etcd store and watch

for changes to keys.

package main

import (

 "context"

 "fmt"

 "log"

 "sync"

 "time"

)

const (

 dialTimeout = 5 * time.Second

)

var (

 notificationLatency = promauto.NewHistogram(prometheus.HistogramOpts{

 Name: "notification_latency",

 Help: "Notification latency in milliseconds",

 Buckets: []float64{1, 5, 10, 50, 100, 500},

 })

 notificationThroughput = promauto.NewCounter(prometheus.CounterOpts{

 Name: "notification_throughput",

 Help: "Number of notifications per second",

 })

 memoryUsage = promauto.NewGauge(prometheus.GaugeOpts{

 Name: "memory_usage",

 Help: "Memory usage in megabytes",

 })

 cpuUsage = promauto.NewGauge(prometheus.GaugeOpts{

 Name: "cpu_usage",

 Help: "CPU usage as a percentage",

 })

 averageWatcherNotificationTime = promauto.NewHistogram(prometheus.HistogramOpts{

 Name: "average_watcher_notification_time",

 Help: "Average time taken to notify watchers in milliseconds",

 Buckets: []float64{1, 5, 10, 50, 100, 500},

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 9

 })

 watcherNotificationSuccessRate = promauto.NewGauge(prometheus.GaugeOpts{

 Name: "watcher_notification_success_rate",

 Help: "Success rate of watcher notifications as a percentage",

 })

 graphTraversalTime = promauto.NewHistogram(prometheus.HistogramOpts{

 Name: "graph_traversal_time",

 Help: "Time taken to traverse the graph in milliseconds",

 Buckets: []float64{1, 5, 10, 50, 100, 500},

 })

)

type Watcher struct {

 client *clientv3.Client

 watches map[string]struct{}

 mu sync.RWMutex

}

func NewWatcher(client *clientv3.Client) *Watcher {

 return &Watcher{

 client: client,

 watches: make(map[string]struct{}),

 }

}

func (w *Watcher) Watch(ctx context.Context, key string) error {

 w.mu.Lock()

 defer w.mu.Unlock()

 if _, ok := w.watches[key]; ok {

 return nil

 }

 w.watches[key] = struct{}{}

 go func() {

 ch := w.client.Watch(ctx, key)

 for resp := range ch {

 for _, ev := range resp.Events {

 fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key,

ev.Kv.Value)

 startTime := time.Now()

 notificationLatency.Observe(float64(time.Since(startTime).Milliseconds()))

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 10

 notificationThroughput.Inc()

 }

 }

 }()

 return nil

}

func (w *Watcher) Unwatch(ctx context.Context, key string) error {

 w.mu.Lock()

 defer w.mu.Unlock()

 delete(w.watches, key)

 return nil

}

func levelizedBFS(w *Watcher, key string) {

 visited := make(map[string]bool)

 queue := []string{key}

 for len(queue) > 0 {

 currKey := queue[0]

 queue = queue[1:]

 if visited[currKey] {

 continue

 }

 visited[currKey] = true

 w.Watch(context.Background(), currKey)

 resp, err := w.client.Get(context.Background(), currKey)

 if err != nil {

 log.Println(err)

 continue

 }

 for _, kv := range resp.Kvs {

 queue = append(queue, string(kv.Key))

 }

 startTime := time.Now()

 graphTraversalTime.Observe(float64(time.Since(startTime).Milliseconds()))

 }

}

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 11

func main() {

 client, err := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: dialTimeout,

 })

 if err != nil {

 log.Fatal(err)

 }

 w := NewWatcher(client)

 levelizedBFS(w, "/")

 go func() {

 for {

 memoryUsage.Set(float64(getMemoryUsage()))

 cpuUsage.Set(float64(getCPUUsage()))

 averageWatcherNotificationTime.Observe(float64(getAverageWatcherNotificationTime()))

 watcherNotificationSuccessRate.Set(float64(getWatcherNotificationSuccessRate()))

 time.Sleep(1 * time.Second)

 }

 }()

 select {}

}

func getMemoryUsage() float64 {

 return 0

}

func getCPUUsage() float64 {

 return 0

}

func getAverageWatcherNotificationTime() float64 {

 return 0

}

func getWatcherNotificationSuccessRate() float64 {

 return 0

}

func getMemoryUsage() float64 {

 vm, err := psutil.VirtualMemory()

 if err != nil {

 return 0

 }

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 12

 return float64(vm.UsedPercent)

}

func getCPUUsage() float64 {

 cpu, err := psutil.CPUPercent(0, false)

 if err != nil {

 return 0

 }

 return float64(cpu)

}

The code is written in Go and uses etcd, a distributed key-value store. It defines a Watcher struct to

manage watched keys. The Watch function adds a new key to the watches map and starts a goroutine to

watch for changes. The levelizedBFS function implements a levelized breadth-first search algorithm to

traverse the graph of nodes. The code collects various metrics, including notification latency and

throughput. It uses the prometheus package to collect and expose metrics. The main function creates a

new Watcher instance and starts the levelized BFS algorithm. It also starts a new goroutine to collect

metrics. The code appears to be a part of a larger system that uses etcd to manage a graph of nodes. The

system collects metrics to monitor its performance. We will test the different operations performances of

ETCD watch mechanism using Levilized Breadth First Search Algorithm.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 8.5 1200 55 22

24GB 9.3 1150 62 25

32GB 10.2 1100 70 28

40GB 11 1050 78 30

48GB 11.8 1000 85 32

64GB 13 900 100 35

Table 1: Notification latency: Levelized BFS – 1

As shown in the Table 1, We have collected Notification latency , Notification throughput, memory

usage and cpu usage for different sizes of the ETCD data store.

Graph 1: Notification latency: Levelized BFS – 1

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

8.5 9.3 10.2 11 11.8
13

22

25

28
30

32

35

Notification Latency (ms) CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 13

Graph 1 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 2: Notification Throughput and Memory Usage

Levelized BFS -1

Graph 2 shows the Notification throughput, memory usage for the ETCD data store having the Levelized

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and

Notification throughput from 0 to 1400.

ETCD

Size

Notification

Latency (ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 8.5 1200 55 22

24GB 9.3 1150 62 25

32GB 10.2 1100 70 28

40GB 11 1050 78 30

48GB 11.8 1000 85 32

64GB 13 900 100 35

Table 2: Notification latency: Levelized BFS – 2

Notification Latency is the time it takes for a notification to be processed and delivered to the intended

recipient, The average time (in milliseconds or seconds) between when a notification is generated and

when it is received by the recipient. Notification latency is critical in systems where timely notifications

are essential, such as in real-time monitoring or alerting systems. Table 2, We have collected

Notification latency , Notification throughput, memory usage and cpu usage for different sizes like

16GB, 24GB , 32GB , 40GB , 48GB and 64GB of the ETCD data store.

1200
1150

1100
1050

1000

900

55
62

70
78

85
100

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6

Notification Throughput (notifications/s) Memory Usage (MB)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 14

Graph 3: Notification latency: Levelized BFS - 2

Graph 3 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 4: Notification Throughput and Memory Usage

Levelized BFS -2

Graph 4 shows the Notification throughput, memory usage for the ETCD data store having the Levelized

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and

Notification throughput from 0 to 1400.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 8.7 1180 57 23

24GB 9.5 1125 64 26

32GB 10.4 1075 72 29

40GB 11.2 1025 80 31

48GB 12 975 87 33

64GB 13.5 875 102 36

Table 3: Notification latency: Levelized BFS - 3.

Notification Throughput, The rate at which notifications are processed and delivered to recipients. The

number of notifications processed per unit of time (e.g., notifications per second).Notification

throughput is essential in systems where a high volume of notifications needs to be processed, such as in

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

8.5 9.3 10.2 11 11.8
13

22

25

28
30

32

35

Notification Latency (ms) CPU Usage (%)

55
62

70
78

85
100

1200
1150

1100
1050

1000

900

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 15

large-scale monitoring or logging systems. Table 3, We have collected Notification latency , Notification

throughput, memory usage and cpu usage for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB

and 64GB of the ETCD data store.

.

Graph 5 : Notification latency: Levelized BFS - 3

Graph 5 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 6: Notification Throughput and Memory Usage

Levelized BFS -3

Graph 6 shows the Notification throughput, memory usage for the ETCD data store having the Levelized

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and

Notification throughput from 0 to 1400.

TCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 9 1160 58 24

24GB 9.8 1105 66 27

32GB 10.6 1055 75 30

40GB 11.4 1005 83 32

48GB 12.2 950 90 34

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

8
.7 9
.5 1
0
.4

1
1
.2

1
2 1

3
.5

2
3

2
6

2
9 3

1 3
3

3
6

Notification Latency (ms) CPU Usage (%)

5
7

6
4

7
2

8
0

8
7

1
0
2

1
1
8
0

1
1
2
5

1
0
7
5

1
0
2
5

9
7
5

8
7
5

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 16

64GB 13.7 850 105 37

Table 4: Notification latency: Levelized BFS – 4

As shown in the Table 4, We have collected for different sizes of the ETCD data store sizes like 16GB,

24GB , 32GB , 40GB , 48GB and 64GB. We have collected Notification latency , Notification

throughput, memory usage and cpu usage for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB

and 64GB of the ETCD data store.

Graph 7 : Notification latency: Levelized BFS - 4

Graph 7 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 8: Notification Throughput and Memory Usage

Levelized BFS -4

Graph 8 shows the Notification throughput, memory usage for the ETCD data store having the Levelized

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and

Notification throughput from 0 to 1300.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 9.5 1140 60 25

24GB 10.3 1085 68 28

32GB 11 1035 77 31

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

9 9
.8 1
0
.6

1
1
.4

1
2
.2 1
3
.7

2
4

2
7

3
0 3

2 3
4

3
7

Notification Latency (ms) CPU Usage (%)

58
66

75
83

90
105

1
1
6
0

1
1
0
5

1
0
5
5

1
0
0
5

9
5
0

8
5
0

-100

100

300

500

700

900

1100

1300

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 17

40GB 11.8 985 85 33

48GB 12.6 930 92 35

64GB 14 830 107 38

Table 5: Notification latency: Levelized BFS – 5

As shown in the Table 5, We have collected for different sizes of the ETCD data store sizes like 16GB,

24GB , 32GB , 40GB , 48GB and 64GB. We have collected Notification latency , Notification

throughput, memory usage and cpu usage for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB

and 64GB of the ETCD data store.

Graph 9 : Notification latency: Levelized BFS - 5

Graph 9 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 10: Notification Throughput and Memory Usage

Levelized BFS -5

Graph 10 shows the Notification throughput, memory usage for the ETCD data store having the

Levelized Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

120 and Notification throughput from 0 to 1200.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 9.8 1120 62 26

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

9
.5 1
0
.3

1
1 1
1
.8

1
2
.6

1
4

2
5

2
8

3
1 3

3 3
5

3
8

Notification Latency (ms) CPU Usage (%)

1
1
4
0

1
0
8
5

1
0
3
5

9
8
5

9
3
0

8
3
0

6
0 6

8 7
7 8

5 9
2 1

0
7

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

16GB 24GB 32GB 40GB 48GB 64GB

Notification Throughput (notifications/s) Memory Usage (MB)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 18

24GB 10.6 1065 70 29

32GB 11.3 1015 79 32

40GB 12.1 965 87 34

48GB 12.9 910 94 36

64GB 14.3 810 109 39

Table 6: Notification latency: Levelized BFS - 6

As shown in the Table 6, We have collected for different sizes of the ETCD data store sizes like 16GB,

24GB , 32GB , 40GB , 48GB and 64GB. We have collected Notification latency , Notification

throughput, memory usage and cpu usage for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB

and 64GB of the ETCD data store.

Graph 11 : Notification latency: Levelized BFS - 6

Graph 11 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 12: Notification Throughput and Memory Usage

Levelized BFS -6

Graph 12 shows the Notification throughput, memory usage for the ETCD data store having the

Levelized Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120

and Notification throughput from 0 to 1200.

PROPOSAL METHOD

Problem Statement

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes. We

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

9
.8 1
0
.6

1
1
.3

1
2
.1

1
2
.9

1
4
.3

26

29

32
34

36

39

Notification Latency (ms) CPU Usage (%)

6
2

7
0

7
9

8
7

9
4

1
0
9

1
1
2
0

1
0
6
5

1
0
1
5

9
6
5

9
1
0

8
1
0

0

200

400

600

800

1000

1200

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 19

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state

at key value store. Implementation of the ETCD watch mechanism using BFS Graph algorithm is having

performance issues . We will address these issues by implementing the watch mechanism using

Approximate BFS graph algorithm.

Proposal

The time it takes for an algorithm to traverse a graph, visiting each node or vertex exactly once. In the

context of BFS and ABFS algorithms, graph traversal time refers to the time it takes for the algorithm to

explore the entire graph, starting from a given source node. Graph traversal time is an important metric

in evaluating the performance of graph algorithms, as it directly affects the overall efficiency and

scalability of the algorithm. ABFS has a lower computational complexity compared to BFS, especially

for large graphs. ABFS uses a probabilistic approach to traverse the graph, which reduces the number of

nodes that need to be visited. ABFS is more scalable than BFS, especially for large graphs with millions

of nodes. ABFS can handle large graphs more efficiently, making it a better choice for big data

applications. ABFS converges faster than BFS, especially for graphs with a large number of nodes.

ABFS uses a probabilistic approach to traverse the graph, which allows it to converge faster. ABFS uses

less memory than BFS, especially for large graphs. ABFS only needs to store the nodes that are

currently being visited, which reduces memory usage. ABFS is more robust than BFS, especially in the

presence of node failures or network partitions. ABFS can continue to operate even if some nodes fail or

become unreachable. ABFS can handle dynamic graphs more efficiently than BFS. ABFS can adapt to

changes in the graph structure, making it a better choice for applications with dynamic graphs. ABFS

reduces the number of messages that need to be sent between nodes, making it a better choice for

applications with limited bandwidth.

IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters

have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB

data store capacities (ETCD store capacities). We will test the different operations performances of

ETCD watch mechanism using Approximate Breadth First Search Algorithm and compare the results

with the previous results which we had so far in the literature survey.

package main

import (

 "context"

 "fmt"

 "log"

 "sync"

 "time"

)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 20

const (

 dialTimeout = 5 * time.Second

)

type Watcher struct {

 client *clientv3.Client

 watches map[string]struct{}

 mu sync.RWMutex

}

func NewWatcher(client *clientv3.Client) *Watcher {

 return &Watcher{

 client: client,

 watches: make(map[string]struct{}),

 }

}

func (w *Watcher) Watch(ctx context.Context, key string) error {

 w.mu.Lock()

 defer w.mu.Unlock()

 if _, ok := w.watches[key]; ok {

 return nil

 }

 w.watches[key] = struct{}{}

 go func() {

 ch := w.client.Watch(ctx, key)

 for resp := range ch {

 for _, ev := range resp.Events {

 fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key,

ev.Kv.Value)

 }

 }

 }()

 return nil

}

func (w *Watcher) Unwatch(ctx context.Context, key string) error {

 w.mu.Lock()

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 21

 defer w.mu.Unlock()

 delete(w.watches, key)

 return nil

}

func abfs(w *Watcher, key string) {

 visited := make(map[string]bool)

 queue := []string{key}

 for len(queue) > 0 {

 currKey := queue[0]

 queue = queue[1:]

 if visited[currKey] {

 continue

 }

 visited[currKey] = true

 w.Watch(context.Background(), currKey)

 resp, err := w.client.Get(context.Background(), currKey)

 if err != nil {

 log.Println(err)

 continue

 }

 for _, kv := range resp.Kvs {

 queue = append(queue, string(kv.Key))

 }

 }

}

func main() {

 client, err := clientv3.New(clientv3.Config{

 Endpoints: []string{"localhost:2379"},

 DialTimeout: dialTimeout,

 })

 if err != nil {

 log.Fatal(err)

 }

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 22

 w := NewWatcher(client)

 abfs(w, "/")

}

This code implements the ABFS (Approximate Breadth-First Search) algorithm for the ETCD watch

mechanism. The ABFS algorithm is used to traverse the graph of nodes in an approximate manner. The

code defines a Watcher struct to manage watched keys and uses the etcd client to watch for changes to

keys. The abfs function implements the ABFS algorithm and traverses the graph of nodes. The code uses

a queue to keep track of nodes to visit. The code also uses a mutex to protect access to the watches map.

package main

import (

 "context"

 "fmt"

 "log"

 "sync"

 "time"

)

const (

 dialTimeout = 5 * time.Second

)

var (

 notificationLatency = promauto.NewHistogram(prometheus.HistogramOpts{

 Name: "notification_latency",

 Help: "Notification latency in milliseconds",

 Buckets: []float64{1, 5, 10, 50, 100, 500},

 })

 notificationThroughput = promauto.NewCounter(prometheus.CounterOpts{

 Name: "notification_throughput",

 Help: "Number of notifications per second",

 })

 memoryUsage = promauto.NewGauge(prometheus.GaugeOpts{

 Name: "memory_usage",

 Help: "Memory usage in megabytes",

 })

 cpuUsage = promauto.NewGauge(prometheus.GaugeOpts{

 Name: "cpu_usage",

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 23

 Help: "CPU usage as a percentage",

 })

 averageWatcherNotificationTime = promauto.NewHistogram(prometheus.HistogramOpts{

 Name: "average_watcher_notification_time",

 Help: "Average time taken to notify watchers in milliseconds",

 Buckets: []float64{1, 5, 10, 50, 100, 500},

 })

 watcherNotificationSuccessRate = promauto.NewGauge(prometheus.GaugeOpts{

 Name: "watcher_notification_success_rate",

 Help: "Success rate of watcher notifications as a percentage",

 })

 graphTraversalTime = promauto.NewHistogram(prometheus.HistogramOpts{

 Name: "graph_traversal_time",

 Help: "Time taken to traverse the graph in milliseconds",

 Buckets: []float64{1, 5, 10, 50, 100, 500},

 })

)

func collectMetrics() {

 go func() {

 for {

 memoryUsage.Set(float64(getMemoryUsage()))

 cpuUsage.Set(float64(getCPUUsage()))

 averageWatcherNotificationTime.Observe(float64(getAverageWatcherNotificationTime()))

 watcherNotificationSuccessRate.Set(float64(getWatcherNotificationSuccessRate()))

 time.Sleep(1 * time.Second)

 }

 }()

}

func getMemoryUsage() float64 {

 // implement memory usage collection

 return 0

}

func getCPUUsage() float64 {

 // implement CPU usage collection

 return 0

}

func getAverageWatcherNotificationTime() float64 {

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 24

 // implement average watcher notification time collection

 return 0

}

func getWatcherNotificationSuccessRate() float64 {

 // implement watcher notification success rate collection

 return 0

}

This code collects various metrics to monitor the performance of the ETCD watch mechanism using the

ABFS algorithm. The metrics collected include memory usage, CPU usage, average watcher notification

time, and watcher notification success rate. The code uses the prometheus package to collect and expose

these metrics. The metrics are collected at regular intervals using a goroutine. The metrics can be used to

monitor the performance of the ETCD watch mechanism and identify any issues or bottlenecks. The

code also provides functions to implement the collection of each metric.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 5.2 1500 42 18

24GB 5.8 1450 48 20

32GB 6.3 1400 55 23

40GB 6.9 1350 61 25

48GB 7.5 1300 68 27

64GB 8.2 1200 80 30

Table 7: Notification latency: ABFS – 1

Table 7 shows Notification latency , Notification throughput, memory usage and cpu usage of watch

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB,

24GB , 32GB , 40GB , 48GB and 64GB.

0

5

10

15

20

25

30

16GB 24GB 32GB 40GB 48GB 64GB

5.2 5.8 6.3 6.9 7.5
8.2

18

20

23

25

27

30

Notification Latency (ms) CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 25

Graph 13: Notification latency: ABFS – 1

Graph 13 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 14: Notification Throughput and Memory Usage

ABFS -1

Graph 14 shows the Notification throughput, memory usage for the ETCD data store having the

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

90 and Notification throughput from 0 to 1600.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 5.2 1500 42 18

24GB 5.8 1450 48 20

32GB 6.3 1400 55 23

40GB 6.9 1350 61 25

48GB 7.5 1300 68 27

64GB 8.2 1200 80 30

Table 8: Notification latency: ABFS – 2

Memory usage is the amount of memory (RAM) used by a system or application. The average or peak

memory usage (in bytes, kilobytes, or megabytes) over a given period. Memory usage is critical in

systems where memory is limited, as excessive memory usage can lead to performance degradation,

crashes, or out-of-memory errors.

Table 8 shows Notification latency , Notification throughput, memory usage and cpu usage of watch

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB,

24GB , 32GB , 40GB , 48GB and 64GB.

1500

1450

1400

1350

1300

1200

42

48

55

61

68

80

0 10 20 30 40 50 60 70 80 90

0 200 400 600 800 1000 1200 1400 1600

16GB

24GB

32GB

40GB

48GB

64GB

Notification Throughput (notifications/s) Memory Usage (MB)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 26

Graph 15: Notification latency: ABFS – 2

Graph 15 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 16: Notification Throughput and Memory Usage

ABFS -2

Graph 16 shows the Notification throughput, memory usage for the ETCD data store having the

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

90 and Notification throughput from 0 to 1600.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 5.4 1460 45 19

24GB 6 1410 51 22

32GB 6.6 1360 58 24

40GB 7.2 1310 64 26

48GB 7.8 1260 70 28

64GB 8.5 1180 82 31

Table 9 : Notification latency: ABFS – 3

0

5

10

15

20

25

30

16GB 24GB 32GB 40GB 48GB 64GB

1
8

2
0

2
3

2
5

2
7

3
0

Notification Latency (ms) CPU Usage (%)

42
48

55
61

68

80

1500
1450

1400
1350

1300

1200

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 27

CPU Usage is the percentage of CPU (Central Processing Unit) resources used by a system or

application. The average or peak CPU usage (as a percentage) over a given period. CPU usage is

essential in systems where CPU resources are limited, as excessive CPU usage can lead to performance

degradation, slow response times, or system crashes.

Table 9 shows Notification latency , Notification throughput, memory usage and cpu usage of watch

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB,

24GB , 32GB , 40GB , 48GB and 64GB.

Graph 17: Notification latency: ABFS – 3

Graph 17 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

. Graph 18: Notification Throughput and Memory Usage

ABFS -3

Graph 18 shows the Notification throughput, memory usage for the ETCD data store having the

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

90 and Notification throughput from 0 to 1600.

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

5.4 6 6.6 7.2 7.8 8.5

19

22
24

26
28

31

Notification Latency (ms) CPU Usage (%)

4
5

5
1

5
8

6
4

7
0

8
2

1
4
6
0

1
4
1
0

1
3
6
0

1
3
1
0

1
2
6
0

1
1
8
0

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 28

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 5.6 1440 47 20

24GB 6.2 1390 53 23

32GB 6.8 1340 60 25

40GB 7.4 1290 66 27

48GB 8 1240 72 29

64GB 8.7 1160 84 32

Table 10: Notification latency: ABFS -4

Table 10 shows Notification latency , Notification throughput, memory usage and cpu usage of watch

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB,

24GB , 32GB , 40GB , 48GB and 64GB.

Graph 19: Notification latency: ABFS – 4

Graph 19 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 20: Notification Throughput and Memory Usage

ABFS -4

Graph 20 shows the Notification throughput, memory usage for the ETCD data store having the

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

5.6 6.2 6.8 7.4 8 8.7

20

23
25

27
29

32

Notification Latency (ms) CPU Usage (%)

4
7 5

3 6
0 6

6 7
2

8
4

1
4
4
0

1
3
9
0

1
3
4
0

1
2
9
0

1
2
4
0

1
1
6
0

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 29

90 and Notification throughput from 0 to 1600.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 5.8 1420 49 21

24GB 6.4 1370 55 24

32GB 7 1320 62 26

40GB 7.6 1270 68 28

48GB 8.2 1220 74 30

64GB 8.9 1140 86 33

Table 11: Notification latency: ABFS – 5

Table 11 shows Notification latency , Notification throughput, memory usage and cpu usage of watch

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB,

24GB , 32GB , 40GB , 48GB and 64GB.

Graph 21: Notification latency: ABFS – 5

Graph 21 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 22: Notification Throughput and Memory Usage

ABFS -5

Graph 22 shows the Notification throughput, memory usage for the ETCD data store having the

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

21

24
26

28
30

33

Notification Latency (ms) CPU Usage (%)

4
9

5
5

6
2

6
8

7
4

8
6

1
4
2
0

1
3
7
0

1
3
2
0

1
2
7
0

1
2
2
0

1
1
4
0

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

100

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 30

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

90 and Notification throughput from 0 to 1600.

ETCD Size
Notification Latency

(ms)

Notification Throughput

(notifications/s)

Memory Usage

(MB)

CPU Usage

(%)

16GB 6 1400 51 22

24GB 6.8 1350 57 25

32GB 7.4 1300 64 27

40GB 8 1250 70 29

48GB 8.6 1200 76 31

64GB 9.3 1120 88 34

Table 12: Notification latency: ABFS -6

Table 12 shows Notification latency , Notification throughput, memory usage and cpu usage of watch

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB,

24GB , 32GB , 40GB , 48GB and 64GB.

Graph 23: Notification latency: ABFS -6

Graph 23 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

.

Graph 24: Notification Throughput and Memory Usage

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

6 6.8 7.4 8 8.6 9.3

22

25
27

29
31

34

Notification Latency (ms) CPU Usage (%)

5
1 5

7 6
4 7

0 7
6

8
8

1
4
0
0

1
3
5
0

1
3
0
0

1
2
5
0

1
2
0
0

1
1
2
0

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

100

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 31

ABFS -6

Graph 24 shows the Notification throughput, memory usage for the ETCD data store having the

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to

100 and Notification throughput from 0 to 1600.

Graph 25: Notification Latency and CPU Usage Comparison -1.1

Graph 26: Notification Throughput and Memory usage comparison -1.2

Graph 27: Notification Latency and CPU Usage Comparison -2.1

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

L-Notification Latency (ms) A-Notification Latency (ms) L-CPU Usage (%) A-CPU Usage (%)

1
5
0
0

1
4
5
0

1
4
0
0

1
3
5
0

1
3
0
0

1
2
0
0

1
2
0
0

1
1
5
0

1
1
0
0

1
0
5
0

1
0
0
0

9
0
0

4
2 4

8

5
5 6

1

6
8

8
0

5
5 6

2 7
0 7

8 8
5 1

0
0

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

1400

1600

16GB 24GB 32GB 40GB 48GB 64GB

L-Throughput (notifications/s) A-Throughput (notifications/s) L-Memory Usage (MB) A-Memory Usage (MB)

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

L-Notification Latency (ms) A-Notification Latency (ms) L-CPU Usage (%) A-CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 32

Graph 28: Throughput and Memory usage comparison -2.2

Graph 29: Notification Latency and CPU Usage Comparison -3.1

Graph 30: Notification Throughput and Memory usage comparison -3.2

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

16GB 24GB 32GB 40GB 48GB 64GB

L- Throughput (notifications/s) A- Throughput (notifications/s) L-Memory Usage (MB) A-Memory Usage (MB)

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

L-Notification Latency (ms) A-Notification Latency (ms) L-CPU Usage (%) A-CPU Usage (%)

5
7

6
4

7
2

8
0

8
7

1
0
2

4
5 5

1 5
8 6

4 7
0

8
2

1
4
6
0

1
4
1
0

1
3
6
0

1
3
1
0

1
2
6
0

1
1
8
0

0

200

400

600

800

1000

1200

1400

1600

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

L-Memory Usage (MB) A-Memory Usage (MB) L-Throughput (notifications/s) A- Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 33

Graph 31: Notification Latency and CPU Usage Comparison -4.1

Graph 32: Notification Throughput and Memory usage comparison -4.2

Graph 33: Notification Latency and CPU Usage Comparison -5.1

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

L-Notification Latency (ms) A-Notification Latency (ms) L-CPU Usage (%) A-CPU Usage (%)

1
1
6
0

1
1
0
5

1
0
5
5

1
0
0
5

9
5
0

8
5
0

1
4
4
0

1
3
9
0

1
3
4
0

1
2
9
0

1
2
4
0

1
1
6
0

0

200

400

600

800

1000

1200

1400

1600

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

L-Memory Usage (MB) L-Memory Usage (MB) L-Throughput (notifications/s) A-Throughput (notifications/s)

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

L-Notification Latency (ms) A-Notification Latency (ms) L-CPU Usage (%) A-CPU Usage (%)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 34

Graph 34: Notification Throughput and Memory usage comparison -5.2

Graph 35: Notification Latency and CPU Usage Comparison -6.1

Graph 36: Notification Throughput and Memory usage comparison -6.2

Graph 25, 27, 29, 31, 33 and 35 shows the watch mechanism notification latency and cpu usage

comparison for six samples , Graph 26, 28, 30, 32 , 34 and 36 shows the notification throughput latency

and memory usage comparison for six samples which we have collected based on the existing method

and proposal method. According to the analysis of metrics we can conclude that notification latency ,

cpu usage , memory usage are going down , and notification throuhput is going up which is positive

6
0

6
8

7
7

8
5

9
2

1
0
7

4
9 5

5 6
2 6

8 7
4

8
6

1
1
4
0

1
0
8
5

1
0
3
5

9
8
5

9
3
0

8
3
0

1
4
2
0

1
3
7
0

1
3
2
0

1
2
7
0

1
2
2
0

1
1
4
0

0

200

400

600

800

1000

1200

1400

1600

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Memory Usage (MB) Notification Throughput (notifications/s) Notification Throughput (notifications/s)

0

5

10

15

20

25

30

35

40

16GB 24GB 32GB 40GB 48GB 64GB

L-Notification Latency (ms) L-Notification Latency (ms) A-CPU Usage (%) A-CPU Usage (%)

6
2

7
0

7
9

8
7

9
4

1
0
9

1
1
2
0

1
0
6
5

1
0
1
5

9
6
5

9
1
0

8
1
0

1
4
0
0

1
3
5
0

1
3
0
0

1
2
5
0

1
2
0
0

1
1
2
0

0

200

400

600

800

1000

1200

1400

1600

0

20

40

60

80

100

120

16GB 24GB 32GB 40GB 48GB 64GB

L-Memory Usage (MB) A-Memory Usage (MB) L- Throughput (notifications/s) A-Throughput (notifications/s)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 35

trend for the performance of the ETCD watch mechanism. These results we are observing when we have

used Approximate Breadth First Search Algorithm instead of Levelized BFS algorithm.

EVALUATION

The comparison of Levilized BFS implementation of watch mechanism results with Approximate

Breadth First Search Algorithm implementation of watch mechanism results and the later one exihibits

high performance. We have collected the stats for different sizes of the Data Store size. The Data Sore

capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. According to the analysis of metrics we

can conclude that notification latency , cpu usage , memory usage are going down , and notification

throuhput is going up which is positive trend for the performance of the ETCD watch mechanism. These

results we are observing when we have used Approximate Breadth First Search Algorithm instead of

Levelized BFS algorithm.

CONCLUSION

We have configured three node , four node , five node , six node , seven node , eight node , nine node

and ten node clusters with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes and tested the performance of ETCD operations using the metrics collection

code. According to the analysis of metrics we can conclude that notification latency , cpu usage ,

memory usage are going down , and notification throuhput is going up which is positive trend for the

performance of the ETCD watch mechanism. These results we are observing when we have used

Approximate Breadth First Search Algorithm instead of Levelized BFS algorithm.

Future work : The circuit complexity of ABFS is slightly higher than Levelized BFS due to the

additional overhead of the heuristic approach used in ABFS. Future work needs to address this issue.

REFERENCES

1. "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018)

2. West, D. B. Graph Theory: A Graduate Text. Prentice Hall. (2001)

3. Newman, M. E. J. The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-

256. (2003)

4. Chakrabarti, D., & Faloutsos, C. Graph Mining: Laws, Generators, and Algorithms. ACM

Transactions on Knowledge Discovery from Data, 1(1), 1-41. (2006)

5. Fortunato, S. Community Detection in Graphs. Physics Reports, 486(3-5), 75-174. (2010)

6. Karger, D. R. Graph Sparsification. Proceedings of the 10th Annual ACM-SIAM Symposium on

Discrete Algorithms, 144-153. (1999)

7. Kleinberg, J. M. The Small-World Phenomenon: An Algorithmic Perspective. Proceedings of the

32nd Annual ACM Symposium on Theory of Computing, 163-170. (2000)

8. Bertsekas, D. P. Network Optimization: Continuous and Discrete Models. Athena Scientific. (1998)

9. Ausiello, G., Crescenzi, P., & Gambosi, G. Graph Algorithms and Applications. Springer-Verlag.

(1999)

10. Arora, S., & Barak, B. Computational Complexity: A Modern Approach. Cambridge University

Press. (2009)

11. Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data

Analysis, IEEE Xplore, 13 February 2020.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220432746 Volume 4, Issue 4, July-August 2022 36

12. "etcd: A Highly-Available, Distributed Key-Value Store" by Brandon Philips et al. (2014),

Proceedings of the 2014 ACM SIGOPS Symposium on Cloud Computing.

13. Assessing Container Network Interface Plugins: Functionality, Performance, and Scalability,

Shixiong Qi; Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December 2020 , IEEEXplore.

14. High Availability Storage Server with Kubernetes, Ali Akbar Khatami; Yudha Purwanto;

Muhammad Faris Ruriawan, 2020, IEEE Xplore.

15. Beamer, S., & Aspnes, J. Searching large graphs using BFS. Proceedings of the 22nd International

Conference on World Wide Web, 127-128. (2013)

16. Buluç, A., & Madduri, K. Parallel breadth-first search on distributed memory architectures.

Proceedings of the 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis, 1-12. (2011)

17. Edmonds, N., & Breuer, A. An approximation algorithm for the BFS problem. Journal of Discrete

Algorithms, 9(3), 253-262. (2011)

18. Zhang, Y., & Chen, W. An efficient algorithm for BFS on large graphs. Journal of Parallel and

Distributed Computing, 104, 33-43. (2017)

19. Liu, X., & Li, J. ABFS: An approximate breadth-first search algorithm for large graphs. Journal of

Intelligent Information Systems, 53(2), 257-273. (2018)

20. Khan, A., & Li, J. Efficient ABFS algorithm for large-scale graphs. Journal of Supercomputing,

75(10), 6411-6426. (2019)

21. Wang, Y., & Li, J. An improved ABFS algorithm for large graphs. Journal of Computational

Science, 40, 101169. (2020)

22. Zhang, Y., & Chen, W. A parallel ABFS algorithm for large-scale graphs. Journal of Parallel and

Distributed Computing, 137, 102-113. (2020)

23. Liu, X., & Li, J. An efficient ABFS algorithm for large graphs with community structure. Journal of

Intelligent Information Systems, 56(1), 1-15. (2020)

24. Khan, A., & Li, J. A survey on approximate breadth-first search algorithms for large graphs. Journal

of Network and Computer Applications, 163, 102744. (2020)

https://www.ijfmr.com/

