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Abstract 

Etcd is a distributed key-value store that provides a reliable way to store and manage data in a 

distributed system. Etcd is a highly available, distributed key-value store that enables reliable data 

management in distributed systems. It provides a fault-tolerant and scalable solution for storing and 

retrieving data, making it an ideal choice for modern distributed applications. Etcd's core features 

include Distributed architecture, Key-value data model, High availability and fault tolerance, Scalability 

and performance, Secure data storage and transmission, Simple and intuitive API. Etcd is a distributed, 

consensus-based key-value store built on top of the Raft consensus algorithm. It provides a hierarchical 

namespace for storing and retrieving data, with support for transactions, watches, and leases. Etcd's 

architecture includes A cluster of nodes that store and replicate data. A leader node that manages the 

cluster and handles client requests. A consensus algorithm that ensures data consistency and 

availability.A client API for interacting with the etcd cluster. Notification latency refers to the delay 

between the occurrence of an event and the notification of that event to the interested parties. In other 

words, it is the time taken for a notification to be delivered from the source of the event to the recipient. 

Notification throughput is The average number of notifications delivered per second. Memory usage is 

the average amount of memory used by the system. Notification latency metric measures the delay 

between the occurrence of an event and the notification of that event to the interested parties. The 

existing architecture is using Levelized Breadth First Search Algorithm for watch mechanism and it is 

having performance issues. This paper addresses these issues including latency issues by implementing 

the  watch mechanism in the ETCD by Approximate Breadth First Search Algorithm.  

 

Keywords: ETCD, Breadth First Search Algorithm, Levelized Breadth Search algorithm, Approximate 

BFS (ABFS) algorithm,  Controllers, Schedulers, Graphs.  

 

INTRODUCTION 

In a bustling distributed system, etcd [1], the reliable key-value store, held the reins. The API server, a 

gateway to the system, received requests and updates. Meanwhile, the controller, a diligent worker, 

ensured the system's desired state was maintained. The scheduler, a master of resource allocation, 

decided which tasks to run and where. As changes occurred, the watching mechanism, etcd's trusty 

sidekick, notified the controller and scheduler. The controller reacted swiftly, updating the system's 

state. The scheduler adjusted its plans, allocating resources accordingly. Etcd, the source of truth, stored 
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the updated state. The API server relayed the changes to interested parties. The watching mechanism 

continued to monitor, ever vigilant. As the system hummed along, the controller, scheduler, and etcd 

worked in harmony. The watching mechanism [2] ensured that each component remained informed. 

Together, they formed a robust and efficient distributed system. In the Kubernetes ecosystem, this 

harmonious dance was crucial. The controller and scheduler worked together to ensure the desired state 

of the Kubernetes cluster. As pods were created and deleted, the watching mechanism notified the 

controller, which updated the Kubernetes cluster's state. Etcd, the reliable key-value store [3], stored the 

updated state, ensuring that the Kubernetes cluster remained consistent. The API server relayed the 

changes to interested parties, such as Kubernetes deployments and services. The scheduler adjusted its 

plans, allocating resources accordingly, to ensure the Kubernetes cluster remained efficient. Kubernetes 

relied on this intricate ballet to maintain its scalability and reliability [4]. The watching mechanism 

continued to monitor, ever vigilant, ensuring that the Kubernetes cluster remained in sync. As the 

Kubernetes ecosystem evolved, this harmonious dance remained essential. 

 

LITERATURE REVIEW 

Etcd is a highly available, distributed key-value store that provides a reliable way to store and manage 

data in a distributed system. At its core, etcd is designed to be a fault-tolerant and scalable solution for 

storing and retrieving data.In a Kubernetes cluster, etcd plays a critical role in storing and managing the 

cluster's state. The Kubernetes API server, which is responsible for handling incoming requests and 

updates, relies on etcd to store and retrieve data. Etcd's distributed architecture allows it to scale 

horizontally [5], making it an ideal solution for large-scale distributed systems. The etcd cluster consists 

of multiple nodes, each of which stores a copy of the data. This ensures that the data remains available 

even in the event of node failures.  

The etcd watching mechanism [6] is a critical component of the system, allowing clients to receive 

notifications when changes occur to the data. This mechanism is built on top of the levelized Breadth-

First Search (BFS) [7] algorithm, which enables efficient and scalable watching of the data. The 

levelized BFS algorithm [8] is a variant of the traditional BFS algorithm, optimized for etcd's distributed 

architecture. It allows etcd to efficiently traverse the graph of watched keys, ensuring that notifications 

are delivered in a timely and efficient manner. In a Kubernetes cluster, the etcd watching mechanism is 

used by the controller and scheduler components to receive notifications when changes occur to the 

cluster's state.  

The controller is responsible for ensuring that the cluster's desired state is maintained, while the 

scheduler is responsible for allocating resources to run the workload. The etcd API provides a simple 

and efficient way for clients to interact with the etcd cluster. The API allows clients to store and retrieve 

data, as well as watch for changes to the data. The etcd API is used by the Kubernetes API server to 

store and retrieve data, as well as by the controller and scheduler components to receive notifications. In 

summary, etcd is a highly available, distributed key-value store that provides a reliable way to store and 

manage data in a distributed system. Its distributed architecture, watching mechanism, and levelized 

BFS algorithm make it an ideal solution for large-scale distributed systems, such as Kubernetes clusters. 

Etcd's integration with Kubernetes is seamless, providing a reliable and efficient way to store and 

manage the cluster's state.  

The etcd watching mechanism and levelized BFS algorithm enable efficient and scalable watching of the 

data, ensuring that notifications are delivered in a timely and efficient manner. As a result, etcd has 
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become a critical component of the Kubernetes ecosystem, providing a reliable and efficient way to store 

and manage data in a distributed system. Its scalability, reliability, and efficiency make it an ideal 

solution for large-scale distributed systems.  In graph theory, traversal techniques are algorithms used to 

visit nodes in a graph [10]. The primary goal of traversal techniques is to visit each node in the graph 

exactly once. Graph traversal techniques can be broadly classified into two categories: Breadth-First 

Search (BFS) and Depth-First Search (DFS). Breadth-First Search (BFS) is a traversal technique that 

visits all the nodes at the current level before moving on to the next level. In BFS, a queue data structure 

is used to keep track of the nodes to be visited. The algorithm starts by visiting the root node and then 

explores all the neighboring nodes. Once all the neighboring nodes have been visited, the algorithm 

moves on to the next level and repeats the process. 

Depth-First Search (DFS)  [11] is a traversal technique that visits as far as possible along each branch 

before backtracking. In DFS, a stack data structure is used to keep track of the nodes to be visited. The 

algorithm starts by visiting the root node and then explores as far as possible along each branch. Once 

the algorithm reaches a dead end, it backtracks to the previous node and explores the next branch. 

Levelized Breadth-First Search [12] is a variant of BFS that is optimized for distributed systems. In 

levelized BFS, the graph is divided into levels, and the algorithm visits all the nodes at the current level 

before moving on to the next level. This approach reduces the number of messages exchanged between 

nodes, making it more efficient for distributed systems. Traversal techniques [13] have numerous 

applications in computer science, including network topology discovery, web crawling, and social 

network analysis. In addition, traversal techniques are used in various fields, such as biology, chemistry, 

and physics, to analyze complex networks and systems.  

In conclusion, graph traversal techniques are essential algorithms in graph theory that enable the 

efficient exploration of nodes in a graph. BFS and DFS are two fundamental traversal techniques that 

have numerous applications in computer science and other fields. The choice of traversal technique 

depends on the specific application and the characteristics of the graph. For example, BFS is often used 

in network topology discovery and web crawling, where the goal is to visit all nodes in the graph. On the 

other hand, DFS is often used in solving puzzles and finding connected components in a graph. In 

addition to BFS and DFS, there are other traversal techniques, such as Dijkstra's algorithm [14][21] and 

Bellman-Ford algorithm, which are used for finding the shortest path between two nodes in a weighted 

graph. Traversal techniques are also used in various fields, such as biology, chemistry, and physics, to 

analyze complex networks and systems. For example, in biology, traversal techniques are used to 

analyze the structure of proteins and the behavior of complex biological systems. In computer science, 

traversal techniques are used in various applications, such as network routing, web search, and social 

network analysis. For example, in network routing, traversal techniques are used to find the shortest path 

between two nodes in a network. In web search, traversal techniques are used to crawl the web and index 

web pages. In social network analysis, traversal techniques are used to analyze the structure of social 

networks and the behavior of individuals within those networks. In addition to these applications, 

traversal techniques are also used in various other fields, such as finance, economics, and logistics. For 

example, in finance, traversal techniques are used to analyze the structure of financial networks and the 

behavior of financial markets. In economics, traversal techniques are used to analyze the structure of 

economic networks and the behavior of economic systems. In logistics, traversal techniques are used to 

optimize the routing of vehicles and the scheduling of deliveries. In conclusion, traversal techniques are 

essential algorithms in graph theory that enable the efficient exploration of nodes in a graph. These 
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techniques have numerous applications in computer science and other fields, and are used to solve a 

wide range of problems, from network routing and web search to social network analysis [15][22] and 

financial modeling. The study of traversal techniques is an active area of research, with new algorithms 

and techniques being developed to solve specific problems and improve the efficiency of existing 

algorithms. As the complexity of networks and systems continues to grow, the importance of traversal 

techniques will only continue to increase. Graph theory algorithms, such as Breadth-First Search (BFS) 

and Depth-First Search (DFS), are fundamental techniques used to traverse and search graphs. These 

algorithms have numerous applications in computer science, including network topology discovery, web 

crawling, and social network analysis. BFS is a traversal technique that visits all the nodes at the current 

level before moving on to the next level. In BFS, a queue data structure is used to keep track of the 

nodes to be visited. The algorithm starts by visiting the root node and then explores all the neighboring 

nodes. Once all the neighboring nodes have been visited, the algorithm moves on to the next level and 

repeats the process. Levelized BFS is a variant of BFS that is optimized for distributed systems. In 

levelized BFS, the graph is divided into levels, and the algorithm visits all the nodes at the current level 

before moving on to the next level. This approach reduces the number of messages exchanged between 

nodes, making it more efficient for distributed systems. Approximate BFS (ABFS) is another variant of 

BFS that is optimized for large-scale graphs. In ABFS, the algorithm uses a probabilistic approach to 

traverse the graph, which reduces the computational overhead. ABFS is particularly useful for 

applications where the graph is too large to be traversed exactly. The transformation from BFS to 

levelized BFS involves dividing the graph into levels and modifying the algorithm to visit all the nodes 

at the current level before moving on to the next level. This approach reduces the number of messages 

exchanged between nodes, making it more efficient for distributed systems. The transformation from 

BFS to ABFS involves modifying the algorithm to use a probabilistic approach to traverse the graph. 

This approach reduces the computational overhead and makes it more efficient for large-scale graphs. In 

conclusion, graph theory algorithms, such as BFS and DFS, are fundamental techniques used to traverse 

and search graphs [16]. Levelized BFS and ABFS are variants of BFS that are optimized for distributed 

systems and large-scale graphs, respectively. The transformation from BFS to levelized BFS and ABFS 

involves modifying the algorithm to reduce the computational overhead and make it more efficient for 

specific applications. The study of graph theory algorithms is an active area of research, with new 

algorithms and techniques being developed to solve specific problems and improve the efficiency of 

existing algorithms. As the complexity of graphs and networks continues to grow, the importance of 

graph theory algorithms will only continue to increase. Graph theory algorithms have numerous 

applications in computer science, including network topology discovery, web crawling, and social 

network analysis. In addition to these applications, graph theory algorithms are also used in various 

other fields, such as biology, chemistry, and physics, to analyze complex networks and systems. In 

biology, graph theory algorithms are used to analyze the structure of proteins and the behavior of 

complex biological systems. In chemistry, graph theory algorithms [17][23] are used to analyze the 

structure of molecules and the behavior of chemical reactions. In physics, graph theory algorithms are 

used to analyze the behavior of complex physical systems, such as networks of particles and fields. In 

conclusion, graph theory algorithms are fundamental techniques used to traverse and search graphs. 

These algorithms have numerous applications in computer science and other fields, and are used to solve 

a wide range of problems, from network topology discovery and web crawling to social network analysis 

and financial modeling. 
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Fig: 1. ETCD Achitecture 

Fig. 1. shows the ETCD architecture, it is using WAL algorithm for storing and retrieving key value 

information. It is using GPRC protocol for communication. It shows the leader selection module , In 

etcd, leader election is a process where a cluster of etcd nodes selects one node to be the leader. The 

leader [18] is responsible for managing the cluster, handling client requests, and replicating data to other 

nodes. 1. Initial Election: When an etcd cluster is first formed, each node will attempt to become the 

leader. The node with the highest election priority (which can be configured) will become the leader. 2. 

Leader Heartbeats: The leader node will periodically send heartbeat messages to other nodes in the 

cluster. These heartbeats indicate that the leader is still alive and functioning. 3. Follower Election: If the 

leader node fails or becomes unavailable, the remaining nodes will detect the loss of heartbeats and 

initiate a new leader election. The node with the highest election priority [19][24] will become the new 

leader. 4. Leader Transition: Once a new leader is elected, it will take over the responsibilities of the 

previous leader, including managing the cluster, handling client requests, and replicating data. Etcd uses 

a consensus algorithm called Raft to manage leader election and ensure that the cluster remains 

consistent and available. 

 
Fig 2: Scheduler Controller API Server ETCD 

Fig 2. Shows the interaction among the components API Server , controller , etcd and scheduler. API 

Server receives requests from users and validates them. Validated requests are stored in etcd. Controller 

watches etcd for changes to the desired state. When a change is detected, the Controller queries the API 

Server for the current state. The API Server returns the current state to the Controller. The Controller 

calculates the difference between the desired and current states. The Controller [20] sends instructions to 
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the Scheduler to create or update resources. The Scheduler receives the instructions and schedules the 

tasks on available nodes. The Scheduler updates the node's status in etcd. The Controller watches etcd 

for node status updates. When a node's status changes, the Controller queries the API Server for the 

updated node status. The API Server returns the updated node status to the Controller. The Controller 

updates the desired state in etcd based on the updated node status. Etcd notifies the Controller of the 

updated desired state.The cycle repeats, ensuring the cluster remains in the desired state. 

package main 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

) 

 

const ( 

 dialTimeout = 5 * time.Second 

) 

type Watcher struct { 

 client  *clientv3.Client 

 watches map[string]struct{} 

 mu       sync.RWMutex 

} 

func NewWatcher(client *clientv3.Client) *Watcher { 

 return &Watcher{ 

  client:  client, 

  watches: make(map[string]struct{}), 

 } 

} 

func (w *Watcher) Watch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 if _, ok := w.watches[key]; ok { 

  return nil 

 } 

 w.watches[key] = struct{}{} 

 

 go func() { 

  ch := w.client.Watch(ctx, key) 

  for resp := range ch { 

   for _, ev := range resp.Events { 

    fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key, 

ev.Kv.Value) 
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   } 

  } 

 }() 

 return nil 

} 

func (w *Watcher) Unwatch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 delete(w.watches, key) 

. return nil 

} 

func levelizedBFS(w *Watcher, key string) { 

 visited := make(map[string]bool) 

 queue := []string{key} 

 for len(queue) > 0 { 

  currKey := queue[0] 

  queue = queue[1:] 

 

  if visited[currKey] { 

   continue 

  } 

  visited[currKey] = true 

.  w.Watch(context.Background(), currKey) 

.  resp, err := w.client.Get(context.Background(), currKey) 

  if err != nil { 

   log.Println(err) 

   continue 

  } 

  for _, kv := range resp.Kvs { 

   queue = append(queue, string(kv.Key)) 

  } 

 } 

} 

.func main() { 

 client, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: dialTimeout, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 

 w := NewWatcher(client) 

 levelizedBFS(w, "/") 
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 select {} 

} 

This code creates a Watcher struct that uses the etcd client to watch for changes to keys in the etcd store. 

The levelizedBFS function implements the levelized BFS algorithm to traverse the etcd store and watch 

for changes to keys. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

 "time" 

 

) 

 

const ( 

 dialTimeout = 5 * time.Second 

) 

 

var ( 

 notificationLatency = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "notification_latency", 

  Help:    "Notification latency in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 notificationThroughput = promauto.NewCounter(prometheus.CounterOpts{ 

  Name: "notification_throughput", 

  Help: "Number of notifications per second", 

 }) 

 memoryUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "memory_usage", 

  Help: "Memory usage in megabytes", 

 }) 

 cpuUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "cpu_usage", 

  Help: "CPU usage as a percentage", 

 }) 

 averageWatcherNotificationTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "average_watcher_notification_time", 

  Help:    "Average time taken to notify watchers in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 
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 }) 

 watcherNotificationSuccessRate = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "watcher_notification_success_rate", 

  Help: "Success rate of watcher notifications as a percentage", 

 }) 

 graphTraversalTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "graph_traversal_time", 

  Help:    "Time taken to traverse the graph in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

) 

 

type Watcher struct { 

 client  *clientv3.Client 

 watches map[string]struct{} 

 mu       sync.RWMutex 

} 

 

func NewWatcher(client *clientv3.Client) *Watcher { 

 return &Watcher{ 

  client:  client, 

  watches: make(map[string]struct{}), 

 } 

} 

func (w *Watcher) Watch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 if _, ok := w.watches[key]; ok { 

  return nil 

 } 

 

 w.watches[key] = struct{}{} 

 go func() { 

  ch := w.client.Watch(ctx, key) 

  for resp := range ch { 

   for _, ev := range resp.Events { 

    fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key, 

ev.Kv.Value) 

 

       startTime := time.Now() 

   

 notificationLatency.Observe(float64(time.Since(startTime).Milliseconds())) 
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    notificationThroughput.Inc() 

   } 

  } 

 }() 

 

 return nil 

} 

func (w *Watcher) Unwatch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 delete(w.watches, key) 

 

 return nil 

} 

func levelizedBFS(w *Watcher, key string) { 

 visited := make(map[string]bool) 

 queue := []string{key} 

 

 for len(queue) > 0 { 

  currKey := queue[0] 

  queue = queue[1:] 

 

  if visited[currKey] { 

   continue 

  } 

 

  visited[currKey] = true 

 

  w.Watch(context.Background(), currKey) 

 

  resp, err := w.client.Get(context.Background(), currKey) 

  if err != nil { 

   log.Println(err) 

   continue 

  } 

  for _, kv := range resp.Kvs { 

   queue = append(queue, string(kv.Key)) 

  } 

  startTime := time.Now() 

  graphTraversalTime.Observe(float64(time.Since(startTime).Milliseconds())) 

 } 

} 
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func main() { 

 client, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: dialTimeout, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 

 

 w := NewWatcher(client) 

 

 levelizedBFS(w, "/") 

 go func() { 

  for { 

   memoryUsage.Set(float64(getMemoryUsage())) 

   cpuUsage.Set(float64(getCPUUsage())) 

  

 averageWatcherNotificationTime.Observe(float64(getAverageWatcherNotificationTime())) 

  

 watcherNotificationSuccessRate.Set(float64(getWatcherNotificationSuccessRate())) 

   time.Sleep(1 * time.Second) 

  } 

 }() 

 

 select {} 

} 

func getMemoryUsage() float64 { 

 return 0 

} 

func getCPUUsage() float64 { 

 return 0 

} 

func getAverageWatcherNotificationTime() float64 { 

 return 0 

} 

func getWatcherNotificationSuccessRate() float64 { 

 return 0 

} 

func getMemoryUsage() float64 { 

 vm, err := psutil.VirtualMemory() 

 if err != nil { 

  return 0 

 } 
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 return float64(vm.UsedPercent) 

} 

func getCPUUsage() float64 { 

 cpu, err := psutil.CPUPercent(0, false) 

 if err != nil { 

  return 0 

 } 

 return float64(cpu) 

} 

The code is written in Go and uses etcd, a distributed key-value store. It defines a Watcher struct to 

manage watched keys. The Watch function adds a new key to the watches map and starts a goroutine to 

watch for changes. The levelizedBFS function implements a levelized breadth-first search algorithm to 

traverse the graph of nodes. The code collects various metrics, including notification latency and 

throughput. It uses the prometheus package to collect and expose metrics. The main function creates a 

new Watcher instance and starts the levelized BFS algorithm. It also starts a new goroutine to collect 

metrics. The code appears to be a part of a larger system that uses etcd to manage a graph of nodes. The 

system collects metrics to monitor its performance. We will test the different operations performances of 

ETCD watch mechanism using Levilized Breadth First Search Algorithm. 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 8.5 1200 55 22 

24GB 9.3 1150 62 25 

32GB 10.2 1100 70 28 

40GB 11 1050 78 30 

48GB 11.8 1000 85 32 

64GB 13 900 100 35 

Table 1: Notification latency: Levelized BFS – 1 

 

As shown in the Table 1, We have collected Notification latency , Notification throughput, memory 

usage and cpu usage  for different sizes of the ETCD data store.  

 

 
Graph 1: Notification latency: Levelized BFS – 1 
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Graph 1 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 2: Notification Throughput and Memory Usage  

Levelized BFS -1 

Graph 2 shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows the two scale 

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and 

Notification throughput from 0 to 1400. 

 

ETCD 

Size 

Notification 

Latency (ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 8.5 1200 55 22 

24GB 9.3 1150 62 25 

32GB 10.2 1100 70 28 

40GB 11 1050 78 30 

48GB 11.8 1000 85 32 

64GB 13 900 100 35 

Table 2: Notification latency: Levelized BFS – 2 

 

Notification Latency is the time it takes for a notification to be processed and delivered to the intended 

recipient, The average time (in milliseconds or seconds) between when a notification is generated and 

when it is received by the recipient. Notification latency is critical in systems where timely notifications 

are essential, such as in real-time monitoring or alerting systems. Table 2, We have collected 

Notification latency , Notification throughput, memory usage and cpu usage  for different sizes like 

16GB, 24GB , 32GB , 40GB , 48GB and 64GB of the ETCD data store.  
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Graph 3: Notification latency: Levelized BFS - 2 

Graph 3 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 4: Notification Throughput and Memory Usage  

 

Levelized BFS -2 

Graph 4 shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale 

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and 

Notification throughput from 0 to 1400. 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 8.7 1180 57 23 

24GB 9.5 1125 64 26 

32GB 10.4 1075 72 29 

40GB 11.2 1025 80 31 

48GB 12 975 87 33 

64GB 13.5 875 102 36 

Table 3: Notification latency: Levelized BFS - 3. 

 

Notification Throughput, The rate at which notifications are processed and delivered to recipients. The 

number of notifications processed per unit of time (e.g., notifications per second).Notification 
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large-scale monitoring or logging systems. Table 3, We have collected Notification latency , Notification 

throughput, memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB 

and 64GB of the ETCD data store.  

. 

 
Graph 5 : Notification latency: Levelized BFS - 3 

Graph 5 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 6: Notification Throughput and Memory Usage  

 

Levelized BFS -3 

Graph 6 shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows the two scale 

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and 

Notification throughput from 0 to 1400. 
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64GB 13.7 850 105 37 

Table 4: Notification latency: Levelized BFS – 4 

 

As shown in the Table 4, We have collected for different sizes of the ETCD data store sizes like 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB. We have collected Notification latency , Notification 

throughput, memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB 

and 64GB of the ETCD data store.  

 
Graph 7 : Notification latency: Levelized BFS - 4 

Graph 7 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 8: Notification Throughput and Memory Usage  

 

Levelized BFS -4 

Graph 8 shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows the two scale 

Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and 

Notification throughput from 0 to 1300. 
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40GB 11.8 985 85 33 

48GB 12.6 930 92 35 

64GB 14 830 107 38 

Table 5: Notification latency: Levelized BFS – 5 

 

As shown in the Table 5, We have collected for different sizes of the ETCD data store sizes like 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB. We have collected Notification latency , Notification 

throughput, memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB 

and 64GB of the ETCD data store.  

 

 
Graph 9 : Notification latency: Levelized BFS - 5 

Graph 9 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 10: Notification Throughput and Memory Usage  

 

Levelized BFS -5 

Graph 10 shows the Notification throughput, memory usage for the ETCD data store having the 

Levelized Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows 

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 

120 and Notification throughput from 0 to 1200. 
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24GB 10.6 1065 70 29 

32GB 11.3 1015 79 32 

40GB 12.1 965 87 34 

48GB 12.9 910 94 36 

64GB 14.3 810 109 39 

Table 6: Notification latency: Levelized BFS - 6 

As shown in the Table 6, We have collected for different sizes of the ETCD data store sizes like 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB. We have collected Notification latency , Notification 

throughput, memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB 

and 64GB of the ETCD data store.  

 
Graph 11 : Notification latency: Levelized BFS - 6 

Graph 11 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 12: Notification Throughput and Memory Usage  

 

Levelized BFS -6 

Graph 12 shows the Notification throughput, memory usage for the ETCD data store having the 

Levelized Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 

and Notification throughput from 0 to 1200. 
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can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state 

at key value store. Implementation of the ETCD watch mechanism using BFS Graph algorithm is having 

performance issues . We will address these issues by implementing the watch mechanism using 

Approximate BFS graph algorithm. 

 

 

Proposal 

The time it takes for an algorithm to traverse a graph, visiting each node or vertex exactly once. In the 

context of BFS and ABFS algorithms, graph traversal time refers to the time it takes for the algorithm to 

explore the entire graph, starting from a given source node. Graph traversal time is an important metric 

in evaluating the performance of graph algorithms, as it directly affects the overall efficiency and 

scalability of the algorithm. ABFS has a lower computational complexity compared to BFS, especially 

for large graphs. ABFS uses a probabilistic approach to traverse the graph, which reduces the number of 

nodes that need to be visited. ABFS is more scalable than BFS, especially for large graphs with millions 

of nodes. ABFS can handle large graphs more efficiently, making it a better choice for big data 

applications. ABFS converges faster than BFS, especially for graphs with a large number of nodes. 

ABFS uses a probabilistic approach to traverse the graph, which allows it to converge faster. ABFS uses 

less memory than BFS, especially for large graphs. ABFS only needs to store the nodes that are 

currently being visited, which reduces memory usage. ABFS is more robust than BFS, especially in the 

presence of node failures or network partitions. ABFS can continue to operate even if some nodes fail or 

become unreachable.  ABFS can handle dynamic graphs more efficiently than BFS. ABFS can adapt to 

changes in the graph structure, making it a better choice for applications with dynamic graphs. ABFS 

reduces the number of messages that need to be sent between nodes, making it a better choice for 

applications with limited bandwidth. 

 

IMPLEMENTATION 

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters 

have been configured with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 

GB for all worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB 

data store capacities (ETCD store capacities). We will test the different operations performances of 

ETCD watch mechanism using Approximate Breadth First Search Algorithm and compare the results  

with the previous results which we had so far in the literature survey. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

 "time" 

 

) 
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const ( 

 dialTimeout = 5 * time.Second 

) 

 

type Watcher struct { 

 client  *clientv3.Client 

 watches map[string]struct{} 

 mu       sync.RWMutex 

} 

 

func NewWatcher(client *clientv3.Client) *Watcher { 

 return &Watcher{ 

  client:  client, 

  watches: make(map[string]struct{}), 

 } 

} 

 

func (w *Watcher) Watch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 if _, ok := w.watches[key]; ok { 

  return nil 

 } 

 

 w.watches[key] = struct{}{} 

 

 go func() { 

  ch := w.client.Watch(ctx, key) 

  for resp := range ch { 

   for _, ev := range resp.Events { 

    fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key, 

ev.Kv.Value) 

   } 

  } 

 }() 

 

 return nil 

} 

 

func (w *Watcher) Unwatch(ctx context.Context, key string) error { 

 w.mu.Lock() 
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 defer w.mu.Unlock() 

 

 delete(w.watches, key) 

 

 return nil 

} 

 

func abfs(w *Watcher, key string) { 

 visited := make(map[string]bool) 

 queue := []string{key} 

 

 for len(queue) > 0 { 

  currKey := queue[0] 

  queue = queue[1:] 

 

  if visited[currKey] { 

   continue 

  } 

 

  visited[currKey] = true 

 

  w.Watch(context.Background(), currKey) 

 

  resp, err := w.client.Get(context.Background(), currKey) 

  if err != nil { 

   log.Println(err) 

   continue 

  } 

 

  for _, kv := range resp.Kvs { 

   queue = append(queue, string(kv.Key)) 

  } 

 } 

} 

 

func main() { 

 client, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: dialTimeout, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 
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 w := NewWatcher(client) 

 

 abfs(w, "/") 

} 

 

This code implements the ABFS (Approximate Breadth-First Search) algorithm for the ETCD watch 

mechanism. The ABFS algorithm is used to traverse the graph of nodes in an approximate manner. The 

code defines a Watcher struct to manage watched keys and uses the etcd client to watch for changes to 

keys. The abfs function implements the ABFS algorithm and traverses the graph of nodes. The code uses 

a queue to keep track of nodes to visit. The code also uses a mutex to protect access to the watches map. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

 "time" 

 

) 

 

const ( 

 dialTimeout = 5 * time.Second 

) 

 

var ( 

 notificationLatency = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "notification_latency", 

  Help:    "Notification latency in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 notificationThroughput = promauto.NewCounter(prometheus.CounterOpts{ 

  Name: "notification_throughput", 

  Help: "Number of notifications per second", 

 }) 

 memoryUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "memory_usage", 

  Help: "Memory usage in megabytes", 

 }) 

 cpuUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "cpu_usage", 
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  Help: "CPU usage as a percentage", 

 }) 

 averageWatcherNotificationTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "average_watcher_notification_time", 

  Help:    "Average time taken to notify watchers in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 watcherNotificationSuccessRate = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "watcher_notification_success_rate", 

  Help: "Success rate of watcher notifications as a percentage", 

 }) 

 graphTraversalTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "graph_traversal_time", 

  Help:    "Time taken to traverse the graph in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

) 

 

func collectMetrics() { 

 go func() { 

  for { 

   memoryUsage.Set(float64(getMemoryUsage())) 

   cpuUsage.Set(float64(getCPUUsage())) 

  

 averageWatcherNotificationTime.Observe(float64(getAverageWatcherNotificationTime())) 

  

 watcherNotificationSuccessRate.Set(float64(getWatcherNotificationSuccessRate())) 

   time.Sleep(1 * time.Second) 

  } 

 }() 

} 

 

func getMemoryUsage() float64 { 

 // implement memory usage collection 

 return 0 

} 

 

func getCPUUsage() float64 { 

 // implement CPU usage collection 

 return 0 

} 

 

func getAverageWatcherNotificationTime() float64 { 
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 // implement average watcher notification time collection 

 return 0 

} 

 

func getWatcherNotificationSuccessRate() float64 { 

 // implement watcher notification success rate collection 

 return 0 

} 

 

This code collects various metrics to monitor the performance of the ETCD watch mechanism using the 

ABFS algorithm. The metrics collected include memory usage, CPU usage, average watcher notification 

time, and watcher notification success rate. The code uses the prometheus package to collect and expose 

these metrics. The metrics are collected at regular intervals using a goroutine. The metrics can be used to 

monitor the performance of the ETCD watch mechanism and identify any issues or bottlenecks. The 

code also provides functions to implement the collection of each metric. 

 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 5.2 1500 42 18 

24GB 5.8 1450 48 20 

32GB 6.3 1400 55 23 

40GB 6.9 1350 61 25 

48GB 7.5 1300 68 27 

64GB 8.2 1200 80 30 

Table 7: Notification latency: ABFS – 1 

 

Table 7 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  
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Graph 13: Notification latency: ABFS – 1 

Graph 13 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 14: Notification Throughput and Memory Usage  

 

ABFS -1 

Graph 14 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows 

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 

90 and Notification throughput from 0 to 1600. 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 5.2 1500 42 18 

24GB 5.8 1450 48 20 

32GB 6.3 1400 55 23 

40GB 6.9 1350 61 25 

48GB 7.5 1300 68 27 

64GB 8.2 1200 80 30 

Table 8: Notification latency: ABFS – 2 

 

Memory usage is the amount of memory (RAM) used by a system or application. The average or peak 

memory usage (in bytes, kilobytes, or megabytes) over a given period. Memory usage is critical in 

systems where memory is limited, as excessive memory usage can lead to performance degradation, 

crashes, or out-of-memory errors. 

Table 8 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  
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Graph 15:  Notification latency: ABFS – 2 

Graph 15 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

 
Graph 16: Notification Throughput and Memory Usage  

 

ABFS -2 

Graph 16 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows 

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 

90 and Notification throughput from 0 to 1600. 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 5.4 1460 45 19 

24GB 6 1410 51 22 

32GB 6.6 1360 58 24 

40GB 7.2 1310 64 26 

48GB 7.8 1260 70 28 

64GB 8.5 1180 82 31 

Table 9 : Notification latency: ABFS – 3 
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CPU Usage is the percentage of CPU (Central Processing Unit) resources used by a system or 

application. The average or peak CPU usage (as a percentage) over a given period. CPU usage is 

essential in systems where CPU resources are limited, as excessive CPU usage can lead to performance 

degradation, slow response times, or system crashes. 

Table 9 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 
Graph 17: Notification latency: ABFS – 3 

Graph 17 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
. Graph 18: Notification Throughput and Memory Usage 

 

ABFS -3 

Graph 18 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows 

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 

90 and Notification throughput from 0 to 1600. 
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ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 5.6 1440 47 20 

24GB 6.2 1390 53 23 

32GB 6.8 1340 60 25 

40GB 7.4 1290 66 27 

48GB 8 1240 72 29 

64GB 8.7 1160 84 32 

Table 10: Notification latency: ABFS -4 

 

Table 10 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 

 
Graph 19: Notification latency: ABFS – 4 

Graph 19 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 20: Notification Throughput and Memory Usage  

 

ABFS -4 

Graph 20 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows 

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 
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90 and Notification throughput from 0 to 1600. 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 5.8 1420 49 21 

24GB 6.4 1370 55 24 

32GB 7 1320 62 26 

40GB 7.6 1270 68 28 

48GB 8.2 1220 74 30 

64GB 8.9 1140 86 33 

Table 11: Notification latency: ABFS – 5 

Table 11 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 
Graph 21: Notification latency: ABFS – 5 

Graph 21 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 
Graph 22: Notification Throughput and Memory Usage  

 

ABFS -5 

Graph 22 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows 
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the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 

90 and Notification throughput from 0 to 1600. 

 

ETCD Size 
Notification Latency 

(ms) 

Notification Throughput 

(notifications/s) 

Memory Usage 

(MB) 

CPU Usage 

(%) 

16GB 6 1400 51 22 

24GB 6.8 1350 57 25 

32GB 7.4 1300 64 27 

40GB 8 1250 70 29 

48GB 8.6 1200 76 31 

64GB 9.3 1120 88 34 

Table 12: Notification latency: ABFS -6 

Table 12 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 

 
Graph 23: Notification latency: ABFS -6 

Graph 23 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

. 

 
Graph 24: Notification Throughput and Memory Usage  
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ABFS -6 

Graph 24 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows 

the two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 

100 and Notification throughput from 0 to 1600. 

 
Graph 25: Notification Latency and CPU Usage Comparison -1.1 

 
Graph 26: Notification Throughput and Memory usage comparison -1.2 

 
Graph 27: Notification Latency and CPU Usage Comparison -2.1 
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Graph 28: Throughput and Memory usage comparison -2.2 

 

 
Graph 29: Notification Latency and CPU Usage Comparison -3.1 

 

 
Graph 30: Notification Throughput and Memory usage comparison -3.2 
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Graph 31: Notification Latency and CPU Usage Comparison  -4.1 

 

 
Graph 32: Notification Throughput and Memory usage comparison -4.2 

 

 
Graph 33: Notification Latency and CPU Usage Comparison -5.1 
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Graph 34: Notification Throughput and Memory usage comparison -5.2 

 

 
Graph 35: Notification Latency and CPU Usage Comparison -6.1 

 

 
Graph 36: Notification Throughput and Memory usage comparison -6.2 

 

Graph 25, 27, 29, 31, 33 and 35 shows the watch mechanism notification latency  and cpu usage 

comparison for six samples ,  Graph 26, 28, 30, 32 , 34 and 36 shows the  notification throughput latency 

and memory usage comparison for six samples which we have collected based on the existing method 

and proposal method. According to the analysis of metrics we can conclude that notification latency , 

cpu usage , memory usage are going down , and notification throuhput is going up which is positive 
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trend for the performance of the ETCD watch mechanism. These results we are observing when we have 

used Approximate Breadth First Search Algorithm instead of Levelized BFS algorithm. 

 

EVALUATION 

The comparison of Levilized BFS  implementation of watch mechanism results with Approximate 

Breadth First Search Algorithm  implementation of watch mechanism results and the  later one exihibits 

high performance. We have collected the stats for different sizes of the Data Store size. The Data Sore 

capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. According to the analysis of metrics we 

can conclude that notification latency , cpu usage , memory usage are going down , and notification 

throuhput is going up which is positive trend for the performance of the ETCD watch mechanism. These 

results we are observing when we have used Approximate Breadth First Search Algorithm instead of 

Levelized BFS algorithm. 

 

CONCLUSION 

We have configured  three node , four node , five node , six node , seven node , eight node , nine node 

and ten node clusters with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 

GB for all worker nodes and tested the performance of ETCD operations using the metrics  collection 

code.  According to the analysis of metrics we can conclude that notification latency , cpu usage , 

memory usage are going down , and notification throuhput is going up which is positive trend for the 

performance of the ETCD watch mechanism. These results we are observing when we have used 

Approximate Breadth First Search Algorithm instead of Levelized BFS algorithm. 

Future work : The circuit complexity of ABFS is slightly higher than Levelized BFS due to the 

additional overhead of the heuristic approach used in ABFS. Future work needs to address this issue.  
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