

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220537539 Volume 4, Issue 5, September - October 2022 1

Scalable approach for Distributed File

Processing using Spring, Zookeeper, and Docker

Arjun Reddy Lingala

arjunreddy.lingala@gmail.com

Abstract

In modern distributed systems, handling large-scale data efficiently is a key challenge,

especially when dealing with structured and unstructured files stored in the Hadoop Distributed

File System (HDFS) [1]. This paper presents an API- based solution using the Spring framework

to process files in distributed file system, transforming them based on specific busi- ness

requirements and storing the results back into distributed storage. The proposed architecture

ensures high availability, fault tolerance, and efficient workload distribution through the

integration of Apache Zookeeper [2] for consensus management and Docker [6] for containerized

execution. We have distributed processing frameworks like Spark [8], which cannot be used in

some cases where a certain process requires installing a software which cannot be done in

distributed file system for security reasons. Approach discussed in this paper leverages the

parallel execution of multiple Spring-based microservices, each deployed as independent Docker

[6] containers, allowing for scalable and efficient processing. More instances of the Spring

application can run simultaneously, ensuring that files are processed in a distributed manner to

maximize throughput. The API facilitates seamless interaction with the HDFS [1] cluster,

enabling efficient read, transformation, and write operations. To ensure coordination among

instances, Apache Zookeeper [2] is used to manage leader election, task allocation, and

synchronization, preventing conflicts and ensuring load balancing across nodes. The parallel

processing workflow significantly improves the performance and resilience of the system. By

running multiple instances in a containerized environment, our solution dynamically scales based

on workload demands. Additionally, Zookeeper [2] ensures that processing tasks are distributed

optimally, preventing redundant operations and maintaining system consistency. The paper

provides a solution that demonstrates reduced processing time and improved fault tolerance

compared to traditional single- instance processing methods. Through this paper, we highlight the

benefits of combining Spring Boot [3], HDFS [1], Docker [6], and Zookeeper [2] for scalable

and efficient distributed file processing.

Keywords: Spring, Docker, Distributed processing, distributed storage, HDFS, Zookeeper,

Consensus, Coordination, Containerization, REST API, Monitoring, Logging

I. INTRODUCTION

With the rapid expansion of data in modern distributed systems, efficiently processing large-scale

https://www.ijfmr.com/
mailto:arjunreddy.lingala@gmail.com

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220537539 Volume 4, Issue 5, September - October 2022 2

datasets with mini- mal latency has become a challenge. The HDFS [1] provides a reliable and scalable

storage solution for vast amounts of structured and unstructured data, but efficiently processing these

files while ensuring high availability, fault tolerance, and scalability is key to any successful application

and remains complex. Traditional single system architectures often face performance bottlenecks, not

using resources effectively, and can cause single points of failure. To overcome these challenges, this

paper proposes a distributed API-based solution using the Spring framework to read, transform, and

write files in HDFS [1] while leveraging containerization and consensus mechanisms for efficient

parallel execution.

The system discussed in this paper utilizes Spring Boot [3] to develop a RESTful [9] API that enables

interaction with HDFS [1], facilitating data retrieval, transformation, and stor- age. To gain scalability

and performance, multiple instances of the Spring Boot microservices run in parallel as Docker [6]

containers, ensuring dynamic scaling, and fault isolation. This containerized deployment strategy

enables high availability and resilience, preventing failures from impacting the overall processing

workflow. A critical component of this architecture is Apache Zookeeper [2], which manages

distributed consensus, coordination, and synchronization among multiple Spring Boot [3] instances. In

a highly distributed environment, maintaining consistency and preventing redundant file processing is

essential. Zookeeper [2] ensures leader election, task allocation, and workload balancing, preventing

duplicate operations and improving fault tolerance. By distributing processing tasks dynamically across

instances, the system optimizes resource utilization and ensures uninterrupted execution. Parallel ex-

ecution using multiple instances is the main theme of this approach, significantly improving throughput

and reducing execution time. Running multiple Spring Boot instances in Docker [6] containers allows

for distributed task execution, maximizing efficiency compared to traditional single-instance

application, which lack scalability and resource utilization. Docker enhances system adaptability by

providing isolated environments, rapid deployment, and streamlined microservice management, making

the system highly flexible in handling variable workloads.

II. SYSTEM ARCHITECTURE

The proposed system is designed to enable efficient, scalable, and fault-tolerant file processing within

the HDFS [1] using microservices based approach. The architecture leverages a Spring Boot [3]-based

API that facilitates file reading, trans- formation, and writing operations in HDFS [1]. Additionally, it

employs Docker [6] for containerized execution and Apache Zookeeper [2] for consensus management,

ensuring seamless parallel execution of multiple Spring Boot instances.

A. Components

The architecture consists of multiple key components that work together:

1) Spring based API: A RESTful API [9] developed using Spring Boot [3] serves as the core

interface for handling file processing requests providing endpoints for initiating file processing,

retrieving status, and monitoring execution. Spring boot applicaiton manages interactions with HDFS

[1], including file retrieval, processing, and storage by supporting sync and async API calls optimizing

request handling.

2) File System: Hadoop distributed file system or any object oriented storage like Amazon S3 can be

used to store raw input files, and final output files from the API providing high throughput data access

across all distributed nodes. The system reads files from distributed storage, processes them, and writes

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220537539 Volume 4, Issue 5, September - October 2022 3

the results back to distributed storage HDFS [1] or S3 or any similar distributed system.

3) Containerization: Multiple Spring Boot [3] instances run in separate docker containers enabling

parallel processing and each instance is responsible for handling a subset of file processing

requests. The containerized approach ensures portability, fault isolation, and efficient resource

utilization and containers can be dynamically scaled based on workload demand.

4) Consensus: Consensus is very important in any distributed application which ensures proper

coordination among multiple Spring Boot [3] instances and manages leader election to designate a

primary instance for task distribution. Apache Zookeeper [2] is most commonly used consensus tool

which synchronizes task execution to prevent duplicate processing and ensures fault tolerance by

detecting failures and redistributing tasks as needed.

5) Load Balancing: Load Balancer dynamically assigns tasks across multiple Spring Boot instances

to ensure balanced processing and tracks instance workloads and optimally distributes file-processing

jobs. It also prevents overloading of individual instances, ensuring consistent system performance.

B. Execution Workflow

The system follows a structured workflow to ensure efficient and parallelized file processing in HDFS

[1] and it is important to have these steps execute in order for file processing. Few examples of scalable

file processing include converting Word documents to PDFs or appending summary content to the files

etc.

1) File Retrieval: The Spring Boot [3] API exposes REST

[9] endpoints for users or automated services to initiate file processing requests. When a request is

received, an API instance connects to HDFS [1], retrieves the specified file, and temporarily stores it

in memory or local cache for further processing.

2) Task Allocation: To avoid redundant processing and ensure an even workload distribution,

Apache Zookeeper [2] handles task coordination. Few key aspects involved in task allocation and

coordination process are Leader Election – one Spring Boot instance is designated as the primary

task manager, Task Distribution – the leader assigns file processing tasks to available instances based

on workload and resource capacity, Failure Handling – If an instance crashes, Zookeeper[2]

automatically redistributes the task to another active in- stance. Instances communicate through API

calls to fetch tasks from the leader.

3) Parallel Processing: Once tasks are assigned, multiple Spring Boot instances running as Docker

[6] containers execute processing in parallel where each instance reads its assigned file from

distributed storage, and the file undergoes appropriate transformations and changes (converting Word

to PDF, appending Summary of the document etc.) and the file is written to temporary storage before

writing back to distributed storage. After the file is written to temporary storage it is copied over to

destination path on HDFS [1]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220537539 Volume 4, Issue 5, September - October 2022 4

Fig. 1. File Processing Workflow

III. IMPLEMENTATION

The implementation of the proposed system is structured to achieve efficient, scalable, and fault-

tolerant file processing within a distributed environment. It leverages Spring Boot [3] to develop a

RESTful API [9] for interacting with Hadoop Distributed File System (HDFS), ensuring seamless read,

trans- formation, and write operations. To manage task coordination and consensus across multiple

parallel processing instances, Apache Zookeeper [2] is utilized, enabling synchronization and failure

recovery. The deployment of the system is facilitated through Docker [6], which encapsulates each

processing instance, allowing dynamic scaling and load balancing. The system architecture ensures

high availability and efficiency by executing multiple processing tasks concurrently across more than

ten Spring Boot instances, with API-driven interactions governing workflow execution.

The system exposes a RESTful API [9] developed using Spring Boot to initiate file processing tasks.

These API end- points facilitate the reception of client requests, parameter validation, and the

delegation of tasks to the processing layer. Apache Zookeeper [2] is employed to manage leader

election and task distribution among processing instances. One instance is dynamically selected as a

leader, which assigns tasks to worker instances based on availability and load conditions. Zookeeper

[2] watches are configured to detect instance fail- ures, ensuring automatic task reassignment and fault

tolerance. To achieve parallel execution, multiple Spring Boot instances operate as independent

processing nodes, each executing a subset of the file transformation workflow. Each instance retrieves

a designated file segment from HDFS [1], applies the necessary transformations, and writes the

processed data back to HDFS. The use of dockerized instances ensures efficient workload distribution

and fault isolation. Once processing is complete, the transformed data is stored back into HDFS. The

system ensures that each processed file is properly indexed and versioned to maintain data integrity.

Concurrent write operations are managed through Zookeeper [2] coordination, preventing conflicts and

ensuring consistency.

Each instance of the Spring Boot [3] application is deployed as a Docker container, encapsulating

dependencies and run- time configurations. The application can be deployed across different

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220537539 Volume 4, Issue 5, September - October 2022 5

environments without compatibility issues achieving portability. Any instance failure does not affect the

overall system, as failed containers can be restarted independently achieving fault tolerance. The system

utilizes Docker Compose or Kubernetes [7] to manage multiple Spring Boot instances. Additional

containers can be instantiated dynamically based on processing demand, ensuring optimal resource

utilization. New containers are deployed when processing demand increases achieving automatic

scaling, tasks are evenly distributed across instances to prevent bottlenecks achieving load balancing.

IV. MONITORING AND LOGGING

To maintain operational efficiency, Prometheus and Grafana[5] are integrated for continuous monitoring

of system performance metrics. These tools enable the collection and visualization of data related to API

request throughput and latency, instance health and availability, resource computation that includes

CPU, memory etc. The system employs the ELK Stack (Elasticsearch, Logstash, Kibana) [4] to

aggregate and analyze logs from multiple processing instances which ensures provides visibility into the

execution of file processing tasks for real time log retrieval use cases, facilitates rapid debugging of

failures and anomalies for error detection and analyzing historical data.

Task allocation among worker instances is dynamically managed to ensure even distribution of

workload. Apache Zookeeper [2] monitors instance health and redistributes tasks accordingly to prevent

overloading any single node. Concur- rent data access can be implemented to reduce file retrieval time

and frequently accessed files can be cached to reduce redundant disk I/O operations. System ensures

automatic failure detection and recovery by leveraging Zookeeper [2] for failure detection and

Kubernetes [7] for containerized self healing.

V. CONCLUSION

The proposed system presents a scalable, efficient, and fault- tolerant approach for distributed file

processing in large-scale computing environments. By integrating a Spring Boot [3]- based API with

Hadoop Distributed File System (HDFS), the system ensures seamless read, transformation, and write

operations on distributed data. This type of system is helpful in cases where transformations require

installation of software which cannot be done in distributed environments like HDFS or S3 for security

and licesing reasons. Few examples of such transformations include converting Word documents into

PDFs, adding summary based on the file content etc. The parallel execution of file processing tasks is

achieved through Dockerized Spring Boot instances, enabling dynamic scaling based on workload

demands. The usage of Apache Zookeeper [2] plays a pivotal role in ensuring task coordination, leader

election, and fault tolerance, effectively preventing resource contention and guaranteeing high

availability of processing nodes. The system architecture is designed to efficiently handle large datasets

by executing multiple file-processing tasks concurrently across more than ten Spring Boot instances.

The RESTful API framework enables seamless integration with external applications, allowing on-

demand file processing through API calls. Each instance functions as a worker node that independently

executes processing steps while remaining synchronized through Zookeeper [2] watches. The use of

container orchestration tools such as Docker Compose or Kubernetes [7] further improves load

balancing, automatic scaling, and instance recovery mechanisms, ensuring uninterrupted system

operation.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR220537539 Volume 4, Issue 5, September - October 2022 6

REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia and R. Chansler, ”The Hadoop Distributed File System,” 2010

IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Incline Village,

NV, USA, 2010, pp. 1-10, doi: 10.1109/MSST.2010.5496972.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ”ZooKeeper: Wait- free coordination for

Internet-scale systems,” 2010 USENIX Annual Technical Conference (USENIX ATC), Boston,

MA, USA, 2010, pp. 145-158

[3] Pivotal Software, Inc., ”Spring Boot Reference Documentation,” Spring, 2020. [Online].

Available: https://docs.spring.io/spring- boot/docs/current/reference/html/.

[4] Elastic, ”The Elastic Stack: Elasticsearch, Kibana, Beats, and Logstash,” Elastic,

2020. [Online]. Available: https://www.elastic.co/guide/index.html.

[5] M. S. Aslan, M. A. Salahuddin, and R. H. Glitho, ”Towards a Framework for Monitoring and

Analyzing High Performance Computing Environ- ments Using Kubernetes and Prometheus,”

2019 IEEE International Conference on Cloud Computing Technology and Science

(CloudCom), Sydney, NSW, Australia, 2019, pp. 1-6

[6] S. Singh and N. Singh, ”Containers and Docker: Emerging roles and future of Cloud

technology,” 2016 2nd International Conference on Applied and Theoretical Computing and

Communication Technology (iCATccT), Bangalore, India, 2016, pp. 804-807.

[7] P. J. Koopman and A. Chakravarty, ”Kubernetes Architecture, Best Practices, and Patterns,”

2022 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA,

2022, pp. 1-10.

[8] M. Zaharia et al., ”Spark: Cluster Computing with Working Sets,” Proceedings of the 2nd

USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’10), Boston, MA, USA,

2010, pp. 10-10.

[9] M. Baez et al., ”REST APIs: A Large-Scale Analysis of Compliance with Principles and Best

Practices,” Proceedings of the 2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE), Austin, TX, USA, 2016, pp. 778-789

[10] Amazon Web Services, Inc., ”Amazon Simple Storage Service Documentation,” Spring,

2021. [Online]. Available: https://docs.aws.amazon.com/s3/.

[11] S. C. Cahng and C. K. Lo, ”A Consensus-Based Leader Election Algorithm for Wireless Ad

Hoc Networks,” 2012 IEEE International Conference on Communications (ICC), Ottawa, ON,

Canada, 2012, pp. 1-5.

https://www.ijfmr.com/
http://www.elastic.co/guide/index.html

