Majority Dom-Chromatic Number of a Bipartite Graph

J. Joseline Manora ${ }^{1}$, R. Mekala ${ }^{2}$
${ }^{1}$ Department of mathematics, Tranquebar Bishop Manickam Lutheran College (Affiliated to Bharathidasan university, Tiruchirappalli), Porayar.
${ }^{2}$ Department of Mathematics, E.G.S Pillay Arts and Science College (Affiliated to Bharathidasan university, Tiruchirappalli), Nagapattinam.

Abstract

In this article, the majority dom-chromatic sets of a bipartite graphs are studied. The characterization theorems on the majority dom-chromatic number $\gamma_{M \chi}(G)$ for bipartite graphs are determined. Also its relationship with other graph theoretic parameters and the majority dom-chromatic number for complement of a bipartite graphs are investigated.

Keywords: Majority dom-chromatic set, Majority dom-chromatic number.

1. Introduction

All the graphs $G=(V, E)$ considered here are simple, finite and undirected. The concept of domination is early discussed by Ore and Berge in 1962. Then Haynes et.al [2] defined the domination number $\gamma(G)$. The majority domination number $\gamma_{M}(G)$ was introduced by Swaminathan and Joseline Manora [6] is the smallest cardinality of a minimal majority dominating set $S \subseteq V(G)$ of vertices and satisfies $|N[S]| \geq \left\lvert\,\left\lceil\frac{V(G)}{2} \|\right.$. \right. Janakiraman and Poobalaranjani [3] defined the dom-chromatic set as a dominating set $S \subseteq$ $V(G)$ such that the induced subgraph $<S>$ satisfies the property $\chi(<S>)=\chi(G)$, where $\chi(G)$ is the chromatic number of G. The minimum cardinality of a dom-chromatic set S is called dom-chromatic number and is denoted by $\gamma_{c h}(G)$.

Definition : 1.1 [4] The set $S \subseteq V(G)$ is called the Majority Dominating Chromatic set (MDC- set) of a graph G if the set S is a majority dominating set and satisfies the property $\chi(<S>)=\chi(G)$ where $<S>$ is a induced subgraph of G. It is also called a majority dom-chromatic set of a graph.A majority dom-chromatic number (MDC-number) $\gamma_{M \chi}(G)$ is defined as the smallest cardinality of the majority dom-chromatic set of a graph G.

Results on $\gamma_{\boldsymbol{M}}(\boldsymbol{G})$ and $\boldsymbol{\gamma}_{M_{\chi}}(\boldsymbol{G}): 1.2$ [4] and [6]
(i) For a path P_{p} and cycle $C_{p}, \gamma_{M}(G)=\left[\frac{p}{6}\right\rceil, p \geq 3$.
(ii) If a graph $G=\overline{K_{p}}$ then $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$.
(iii) Let $G=m K_{2}, m \geq 1$. Then $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+1, p \geq 2$.
(iv) Let G be any graph of order p. Then $\gamma_{M \chi}(G)=p$ if and only if G is vertex color critical.
(v) For a graph $G=K_{m, n}, \gamma_{M \chi}(G)=2$.
(vi) For any cycle $C_{p}, \gamma_{M \chi}(G)= \begin{cases}\left\lceil\frac{p}{6}\right\rceil, & \text { if } p \equiv 2(\bmod 6) \\ {\left[\frac{p}{6}\right\rceil+1,} & \text { if } p \equiv 0,4(\bmod 6) \\ p, & \text { if } p \text { is odd } .\end{cases}$
(vii) If G is a path then $\gamma_{M \chi}(G)= \begin{cases}{\left[\frac{p}{6}\right\rceil} & \text {, if } p \equiv 1,2(\bmod 6) \\ {\left[\frac{p}{6}\right\rceil+1} & , \text { if } p \equiv 0,3,4,5(\bmod 6) .\end{cases}$
(viii) For a graph $G=D_{r, s}, \gamma_{M \chi}(G)=2$.
(ix) Let $G=K_{1, p-1}$ be a star graph. Then $\gamma_{M \chi}(G)=2$.
(x) [3] Let G be a tree of diameter 3. Then $\gamma_{\chi}(G) \leq p-\Delta(G)$.

2. Characterisation Theorems for Bipartite Graph

Theorem: 2.1 Let G be a connected bipartite graph with p vertices. Then $\gamma_{M \chi}(G)=2$ if and only if $G_{1}=K_{m, n}, m \leq n$, a path $G_{1}=P_{i}, i \leq 8$ and $G_{3}=B_{X, Y}$ such that $\left|N\left[u_{1}\right] \cup N\left[v_{1}\right]\right| \geq \frac{p}{2}$ and $d\left(u_{1}, v_{1}\right)=1$, where $u_{1} \in V_{1}(G)$ and $v_{1} \in V_{2}(G)$.

Proof:
Let $\gamma_{M \chi}(G)=2$.
(1) Then $\chi(G)=2=\chi(<S>)$, where S is a majority dom-chromatic set of G with $|S|=2$.

Case: (i) Suppose $\operatorname{diam}(G)=1$ then the graph $G=K_{p}$. Since K_{p} is vertex color critical, $\gamma_{M \chi}(G)=p$. By assumption (1), the only graph $G=K_{2}=K_{1,1}$ is complete bipartite.

Case: (ii) Suppose $\operatorname{diam}(G)=2$ then the graph G becomes $K_{m, n}, m \leq n, P_{3}$ and $K_{1, p-1}$, a star. Since $\gamma_{M \chi}(G)=2$, by the result(1.2), we obtain the graphs which have a structures as $G_{1}=C_{4}=K_{2,2}$ and $G_{1}=K_{1, p-1}, G_{2}=P_{3}$ and also $G_{3}=B_{X, Y}$ includes the following structure with $\operatorname{diam}(G)=2$.

$G_{3}: \operatorname{Fig}(\mathrm{i})$
For $G_{3}, S=\left\{u_{2}, v_{2}\right\} \subseteq V(G)$ such that $d\left(u_{2}, v_{2}\right)=1,|N[S]|=\left|N\left[u_{2}\right] \cup N\left[v_{2}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil$ and $\chi(<S>)=2=\chi(G)$. It implies that S is a majority dom-chromatic set of G_{3}. Hence $G_{3}=B_{X, Y}$ with these properties.

Case: (iii) Suppose $\operatorname{diam}(G)=3$. The bipartite graph G becomes P_{4} and $D_{r, s}$, a double star. Since $\gamma_{M \chi}(G)=2$, by the result (1.2)(vii), $\gamma_{M \chi}\left(P_{4}\right)=2$. Hence $G_{2}=P_{4}$. In $D_{r, s}$, $r \leq s$, by assumption (1), $S=\left\{u_{1}, v_{1}\right\}$ is the subset of G such that $d\left(u_{1}\right) \leq\left\lceil\frac{p}{2}\right\rceil-1$, and $d\left(v_{1}\right) \geq\left\lceil\frac{p}{2}\right\rceil-1$ with $d\left(u_{1}, v_{1}\right)=1$, where $u_{1} \in V_{1}(G)$ and $v_{1} \in V_{2}(G)$ and $|N[S]|=$ $\left|N\left[u_{2}\right] \cup N\left[v_{2}\right]\right| \geq\left[\frac{p}{2}\right]$. Also $\chi(<S>)=2=\chi(G)$. Hence S is a majority domchromatic set of G. It implies that $G_{2}=B_{X, Y}=D_{r, s}, r \leq s$.

Case: (iv) Suppose $\operatorname{diam}(G) \geq 4$. Then the bipartite graphs are $P_{p}, p \geq 5$ and any bipartite graph $B_{X, Y}$. By the result (1.2)(vii), $\gamma_{M \chi}\left(P_{p}\right)=\left\lceil\frac{p}{6}\right\rceil=2, p=5,6,7,8$ and $\gamma_{M \chi}\left(P_{p}\right)>$ 2, if $p \geq 9$. Since $\gamma_{M \chi}(G)=2$, the only bipartite graph $G_{2}=P_{5}$ to P_{8}. For a bipartite graph $B_{X, Y}$, if $S=\left\{u_{1}, v_{1}\right\} u_{1} \in V(G)$ such that $\left|N\left[u_{1}\right] \cup N\left[v_{1}\right]\right| \geq\left\lceil\frac{p}{2}\right\rceil$ and $d\left(u_{1}, v_{1}\right)=1$, where $u_{1} \in V_{1}(G)$ and $v_{1} \in V_{2}(G)$ with $\operatorname{diam}(G)=4$, then S is a majority domchromatic set of $B_{X, Y}$. Also clearly $\chi(<S>)=2=\chi(G)$ and satisfies the assumption (1). Hence the bipartite graph $G_{3}=B_{X, Y}$ with the above said properties and also the only bipartite graphs are $G_{2}=P_{5}$ to P_{8}.

Conversely, let $G=K_{m, n}, m \leq n$ which is complete bipartite with $p=m+n$. By the $\operatorname{result}(1.2)(\mathrm{v})$ and (vii), $\gamma_{M \chi}\left(G_{1}\right)=2$ and for a path $\gamma_{M \chi}\left(P_{i}\right)=2$, if $i=2, \ldots, 8$. Let $G_{3}=$ $B_{X, Y}$ be a graph with bipartition $V_{1}(G)$ and $V_{2}(G)$. Let $u_{1} \in V_{1}(G)$ and $v_{1} \in V_{2}(G)$ such
that $d\left(u_{1}, v_{1}\right)=1$. Since $\left|N\left[u_{1}\right] \cup N\left[v_{1}\right]\right| \geq \frac{p}{2}$ and $\chi(<S>)=2=\chi(G)$. Hence $S=$ $\left\{u_{1}, v_{1}\right\}$ is a majority dom-chromatic set of G and $\gamma_{M \chi}\left(G_{3}\right)=2$.

Proposition: 2.2 Let G be any bipartite graph $B_{X, Y}$ with p vertices and without isolates. Then $\gamma_{M \chi}(G) \leq\left\lceil\frac{p}{4}\right\rceil+1$ and $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+1$ if and only if $G=K_{1, j}, j=1,2,3, K_{2,2}$, P_{4} and $m K_{2}, m \geq 1$.
Proof: Let $G=B_{X, Y}$ be a bipartite graph with $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $|V(G)|=p=m+n$.
Case : (i) Suppose $G=K_{m, n}$, is a complete bipartite with $m \leq n$. Let $S=$ $\left\{u_{1}, v_{1}\right\}$, where $u_{1} \in V(X)$ and $v_{1} \in V(Y)$. Then $|N[S]|=\left|N\left[u_{1}\right]\right|+\left|N\left[v_{1}\right]\right|$
$=(n+1)+(m+1) \geq\left\lceil\frac{p}{2}\right\rceil$. Therefore S is a majority dominating set of G. Since G is complete bipartite, $\chi(G)=2=\chi(<S>)$. It implies that S is a majority dom-chromatic set of G. Hence $\gamma_{M \chi}(G) \leq|S|=2=\left\lceil\frac{p}{4}\right\rceil+1$, where $p=2,3,4$. Thus the graph becomes $G=K_{1,1}, K_{1,2}, K_{1,3}$ and $K_{2,2}$. When $p \geq 5$, for $G=K_{m, n}, m \leq n$, by the result (1.2)(v), $\gamma_{M \chi}(G)=2<\left\lceil\frac{p}{4}\right\rceil+1$. Hence, $\gamma_{M \chi}(G) \leq\left\lceil\frac{p}{4}\right\rceil+1$, for $G=K_{m, n}, m \leq n$.
Case: (ii) The graph G is not complete and connected bipartite.
Then the minimally connected bipartite graph is a path $P_{p}, p \geq 2$. By known result (1.2)(vii), $\gamma_{M \chi}\left(P_{p}\right)=\left\lceil\frac{p}{6}\right\rceil$ or $\left\lceil\frac{p}{6}\right\rceil+1$. Hence in this structure, when $p=2,3,4$, $\gamma_{M \chi}(G)=2=\left\lceil\frac{p}{6}\right\rceil+1=\left\lceil\frac{p}{4}\right\rceil+1$. When $p \geq 5, \gamma_{M \chi}(G)=\left\lceil\frac{p}{6}\right\rceil$ or $\left\lceil\frac{p}{6}\right\rceil+1<\left\lceil\frac{p}{4}\right\rceil+1$.
Hence, $\gamma_{M \chi}(G) \leq\left\lceil\frac{p}{4}\right\rceil+1$, if , $p \geq 2$.
Case: (iii) The graph G is not complete and disconnected bipartite.
Then the graph structure becomes $m K_{2}, m P_{4}, m C_{4}$ and $m P_{6}$. In such cases, by the result (1.2)(iii), $\gamma_{M \chi}\left(m K_{2}\right)=\left\lceil\frac{p}{4}\right\rceil+1$ and all other graphs the majority dom-chromatic number is $\quad \gamma_{M \chi}(G)<\left\lceil\frac{p}{4}\right\rceil+1$. Hence $\gamma_{M \chi}(G) \leq\left\lceil\frac{p}{4}\right\rceil+1$. From the above cases, we obtain $\gamma_{M \chi}(G) \leq\left\lceil\frac{p}{4}\right\rceil+1$.

Conversely, let $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+1$. By case (i), if G is a complete bipartite graph, we obtain the graphs $G=K_{1, j}, j=1,2,3$ and $K_{2,2}$. By case (ii), if G is not complete bipartite then the graphs are $G=P_{2}, P_{3}, P_{4}=K_{1,1}, K_{1,2}, P_{4}$. Also by case (iii), if G is not complete
and disconnected bipartite, the graph $G=m K_{2}, m \geq 1$. Hence $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+1$ if and only if $G=K_{1, j}, j=1,2,3, K_{2,2}, P_{4}$ and $m K_{2}, m \geq 1$.

Proposition: 2.3 Let G be any connected bipartite graph with p vertices. Then $\gamma_{M \chi}(G)=$ $\left\lceil\frac{p}{2}\right\rceil$ if and only if $G=P_{3}, P_{4}, C_{4}$ and $K_{1,3}$.

Proof: Assume that $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$.
Since G is connected bipartite graph, $\chi(G) \geq 2$.
Case: (i) If $\operatorname{diam}(G)=1$, then $G=K_{2}$ and $\gamma_{M \chi}(G)=2=p$, which is a contradiction to the assumption (1). Hence $G \neq K_{2}$.

Case: (ii) If $\operatorname{diam}(G)=2$, then $G=P_{3}, C_{4}, K_{1, n}$. By the result (1.2)(vii), $\gamma_{M \chi}\left(P_{3}\right)=2=$ $\left\lceil\frac{p}{2}\right\rceil$. By the result (1.2)(vi), $\quad \gamma_{M \chi}\left(C_{4}\right)=\left\lceil\frac{p}{2}\right\rceil$. Suppose $G=K_{1,3}$, by the result(1.2)(ix), $\gamma_{M \chi}(G)=2=\left\lceil\frac{p}{2}\right\rceil$.

Case: (iii) If $\operatorname{diam}(G)=3$, then $G=P_{4}$ and $D_{r, s}$. By the result (1.2) (vii), $\gamma_{M \chi}(G)=2=$ $\left\lceil\frac{p}{2}\right\rceil$. In $D_{r, s}$, by the result (1.2)(viii), $\gamma_{M \chi}(G)=2$. The condition (1) holds when $r=s=$ 1.

Case: (iv) If $\operatorname{diam}(G) \geq 4$, then $G=P_{p}, C_{p}, p \geq 5$ and any other graphs. By the result (1.2)(vii), $\gamma_{M \chi}(G)=\left\lceil\frac{p}{6}\right\rceil+1=2<\left\lceil\frac{p}{2}\right\rceil$, which is a contradiction to the condition (1).

Thus from the above four cases, G must be P_{3}, P_{4}, C_{4} and $K_{1,3}$.
The converse is obvious.
Proposition: 2.4 Suppose G is a disconnected bipartite graph. If the graph structures are $G_{1}=K_{1,3} \cup m K_{2}, m$ is even and $m \geq 2, G_{2}=m P_{p}, m=4, p=3$ and $G_{3}=$ $m K_{1,3}, m=3$ then $\gamma_{M \chi}(G)=\frac{p}{4}$.

Corollary: 2.5 Let G be a disconnected bipartite graph. . If the graph structure is $K_{1,3} U$ $m K_{2}, m$ is odd then $\gamma_{M \chi}(G)=\frac{p}{4}+1$.

Proposition: 2.6 Let G be a disconnected bipartite graph without isolates. Then $\gamma_{M \chi}(G)=\frac{p}{2}$ if and only if $G=m K_{2}, 1<m \leq 3$.
Proof : Let $\gamma_{M \chi}(G)=\frac{p}{2}$.

Since G be a disconnected bipartite graph, let $G_{1}, G_{2}, \ldots, G_{k}$ are the components of G and $V(G)=V\left(G_{1}\right) \ldots \cup V\left(G_{k}\right)$.
Case (i): All components are of diameter 1. Then the graph $G=m K_{2}$. By the assumption (1), when $G=m K_{2}$ if $m=2$ and 3 then $G=2 K_{2}$ and $3 K_{2}$. It implies that $\gamma_{M \chi}(G)=2$ and $3=\frac{p}{2}$. Suppose $m \geq 4$, then by the result (1.2)(iii), $\gamma_{M \chi}(G)=\left[\frac{p}{4}\right\rceil+1<\frac{p}{2}$. It is a contradiction to the assumption (1).

Case (ii) : Suppose G contains the components which are of diameter 1 and 2.
Then $G=K_{1, t} \cup m K_{2}, \quad$ where $\quad G_{1}=K_{1, t}, \quad G_{2}=m K_{2}$ and $\quad V(G)=$ $\left\{u, u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{2 m}\right\}$ with $p=1+t+2 m$.
subcase: (i) If $|t| \geq\left\lceil\frac{p}{2}\right\rceil-1$ and $2 m=p-\left(\left[\frac{p}{2}\right]-1\right)$ then the majority dom-chromatic set $S=\left\{u, u_{1}\right\}$ where $u, u_{1} \in V\left(G_{1}\right)$ such that $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$ and $\chi\left(G_{1}\right)=2=\chi(<S>)$. It implies that S is a majority dom-chromatic set of G and $\gamma_{M \chi}(G)=2<\frac{p}{2}$, if $|t| \geq\left\lceil\frac{p}{2}\right\rceil-$ 1 , which is a contradiction to (1). Therefore $G \neq K_{1, t} \cup m K_{2}$.
subcase: (ii) If $|t| \leq\left[\frac{p}{2}\right]-2$ then the MDC-set $S=\left\{u, u_{1}, v_{1}, v_{2}, \ldots, v_{k}\right\}$, where $|k|=$ $\left\lceil\frac{p}{2}\right]-(1+t)$ such that $|N[S]|=1+t+2 k \geq\left\lceil\frac{p}{2}\right\rceil$. Also $\chi(G)=2=\chi(<S>)$. Hence $\gamma_{M \chi}(G)=|S|=(2+k)<\frac{p}{2}$, it is a contradiction to (1). Hence the graph $G \neq K_{1, t} \cup$ $m K_{2}$.
Case (iii) : If the components G_{i} of G with $\operatorname{diam}\left(G_{i}\right) \geq 2, i=1,2, \ldots, k$ then $\gamma_{M \chi}(G)<$ $\frac{p}{2}$. From the above cases, we get the graph structures become $G=m K_{2}, 1<m \leq 3$.
Conversely, let $G=m K_{2}, m \leq 3$. Then by the result (1.3)(iii), $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+1=\frac{p}{2}$.
Proposition: 2.7 Let G be a disconnected graph which is not bipartite with isolates. Then $\gamma_{M \chi}(G) \leq\left\lceil\frac{p}{2}\right\rceil$ and $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$ if and only if $G=p K_{1}$.
Proposition: 2.8 For a disconnected graph with p vertices, $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right]$ if and only if $G_{1}=m K_{2}, m=2,3$ and $G_{2}=K_{t} \cup(p-t) K_{1}$, where K_{t} is a complete graph of t vertices with $|t| \leq\left[\frac{p}{2}\right]$.

Proof: Let G be a disconnected graph p vertices. Suppose $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$, then S is a majority dom-chromatic set with $\left\lceil\frac{p}{2}\right\rceil$ vertices. Also the chromatic number of the induced subgraph $<S>$ and the graph G are equal.

Case (i) : The graph G without isolates. Then $G=m K_{2}, m \geq 2$. By the result (1.2)(iii), $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+1$. It implies that when $G=2 K_{2}, 3 K_{2}, \gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$. If $G=m K_{3}$ or $G=m P_{3}$ then $\gamma_{M \chi}(G)<\left[\frac{p}{2}\right]$. If each components of G such as $m K_{2}, m \geq 4$, $m K_{t}, m P_{t}, t \geq 3$ then $\gamma_{M \chi}(G)<\left\lceil\frac{p}{2}\right\rceil$. Hence the graph $G_{1}=m K_{2}, m=2,3$.
Case (ii): The graph G has isolates. Let $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$. Then the majority dom-chromatic set S contains $\left\lceil\frac{p}{2}\right\rceil$ vertices. It implies that, by the result (1.2) (iii), the graph $G=\overline{K_{p}}=$ $K_{1} \cup(p-1) K_{1}$.
Subcase: (i) If $\operatorname{diam}(G)=1$ then the components of the given disconnected graph becomes a complete graph with isolates. i.e) $G=K_{t} \cup(p-t) K_{1}, t \geq 2$. Since $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$ and $|t| \leq\left\lceil\frac{p}{2}\right\rceil$, the graph structure is $G=K_{t} \cup(p-t) K_{1}$, where K_{t} is the complete graph of t vertices.

Subcase : (ii) If $\operatorname{diam}(G)=2$ then the components of the disconnected graph become $G_{1}=P_{3} \cup(p-3) K_{1}$ or $G_{2}=K_{1, t} \cup(p-(t+1)) K_{1}$ or $G_{3}=C_{4} \cup(p-4) K_{1}$. Then $\gamma_{M \chi}\left(G_{1}\right)<\left\lceil\frac{p}{2}\right\rceil$ and $\gamma_{M \chi}\left(G_{2}\right)<\left\lceil\frac{p}{2}\right\rceil$. In particular, $G_{2}=K_{1,1} \cup(p-2) K_{1}=K_{2} \cup(p-$ 2) K_{1} and $\gamma_{M \chi}\left(G_{2}\right)=\left\lceil\frac{p}{2}\right\rceil$. Since $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$ and $|t| \leq\left\lceil\frac{p}{2}\right\rceil$, the majority dom-chromatic set S must contain $\left\lceil\frac{p}{2}\right\rceil$ vertices. Since G is disconnected graph with isolates, anyone component ' g ' of G must be vertex color critical with $|V(S)| \neq t \leq\left\lceil\frac{p}{2}\right\rceil$ and other remaining vertices are isolates. Hence the graph G takes the structure $G=K_{t} \cup(p-t) K_{1}$ where K_{t} is a complete graph which is vertex color critical and $(p-t)$ isolates.

Subcase: (iii) Let $\operatorname{diam}(G) \geq 3$. Then the disconnected graph becomes $G_{1}=P_{r} \cup$ $(p-r) K_{1}$ or $G_{2}=D_{t_{1}, t_{2}} \cup\left(p-\left(t_{1}+t_{2}\right)\right) K_{1}$, where P_{r} is a path on r vertices and $D_{t_{1}, t_{2}}$ is a double star with $\left(t_{1}+t_{2}\right)$ vertices. The majority dom-chromatic number of these graphs G_{1} and G_{2} is $\gamma_{M \chi}(G)<\left\lceil\frac{p}{2}\right\rceil$. Since $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil, G$ must have a vertex color critical component ' g ' and isolates. Hence $|V(S)|=t \leq\left\lceil\frac{p}{2}\right\rceil$ and $(p-t)$ isolates. Hence the only graph structure $G=K_{t} \cup(p-t) K_{1}$, where K_{t} is the complete graph of t vertices and $|t| \leq$ $\left\lceil\frac{p}{2}\right\rceil$.

Conversely, let $G=K_{t} \cup(p-t) K_{1}$, where $|t| \leq\left[\frac{p}{2}\right\rceil$. Since K_{t} is the complete graph, it is a vertex color critical. Then by result (1.2) (iv), $\gamma_{M \chi}(G)=p$. If $|t|=\left\lceil\frac{p}{2}\right\rceil$ then the graph $G=K_{\left\lceil\frac{p}{2}\right\rceil} \cup\left(\left\lfloor\frac{p}{2}\right\rceil K_{1}\right)$ and $\gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$. If $|t|<\left\lceil\frac{p}{2}\right\rceil$ then $|t|=\left\lceil\frac{p}{4}\right\rceil$. The graph G becomes $G=K_{\left\lceil\frac{p}{4}\right\rceil} \cup\left(p-\left\lceil\frac{p}{4}\right\rceil\right) K_{1}$. The majority dom-chromatic number $\gamma_{M \chi}(G)=\left\lceil\frac{p}{4}\right\rceil+\left(\left\lceil\frac{p}{2}\right\rceil-\right.$ $\left.\left\lceil\frac{p}{4}\right\rceil\right)=\left\lceil\frac{p}{2}\right\rceil$. Suppose $|t|>\left\lceil\frac{p}{2}\right\rceil$ then $G=K_{t^{\prime}} \cup\left(p-t^{\prime}\right) K_{1}$, where $\left|t^{\prime}\right|>|t|$. Since $K_{t^{\prime}}$ is a complete graph with t^{\prime} vertices , $\gamma_{M \chi}(G)=t^{\prime}>t=\left\lceil\frac{p}{2}\right\rceil$. Hence for a disconnected graph with isolates and $|t| \leq\left\lceil\frac{p}{2}\right\rceil, \gamma_{M \chi}(G)=\left\lceil\frac{p}{2}\right\rceil$.

3. $\gamma_{M \chi}$ for complement of a graph G

Proposition: 3.1 Let the bipartite graph G with $\operatorname{diam}(G)=3$. Then $\gamma_{M \chi}(G)=\gamma_{M \chi}(\bar{G})$ if and only if $G=P_{4}$, where \bar{G} is the complement of G.

Proof: Let the equality holds and uv be the dominating edge of G. Let $|N[u]|=$ $m,|N[v]|=n$ and $p=m+n$. In the graph \bar{G}, both $N(u)$ and $N(v)$ are of cardinality 2. The set $\{N(u) \cup N(v)\}$ is a K_{m+n-2} graph, $\chi(\bar{G})=m+n-2$ and $\{N(u) \cup N(v)\}$ be the majority dom-chromatic set for $\bar{G} \Rightarrow \gamma_{M \chi}(\bar{G})=m+n-2$. Since $\gamma_{M \chi}(G)=\gamma_{M \chi}(\bar{G})$, $\frac{m+n}{2}=m+n-2$. It implies that $m+n=4$. Hence the graph must be P_{4} and C_{4}. The converse is obvious.

Proposition: 3.2 If the graph $G=K_{p}$ is the vertex color critical graph then $1 \leq \gamma_{M \chi}(\bar{G}) \leq$ $\left\lceil\frac{p}{2}\right\rceil$.

Proof: Since the complete graph $G=K_{p}$ is the vertex color critical graph, $1 \leq \gamma_{M \chi}(G) \leq$ p. The complement of K_{p} is $\bar{G}=\overline{K_{p}}$. By the result (1.2)(ii), the majority dom-chromatic number is $\gamma_{M \chi}(\bar{G})=\left\lceil\frac{p}{2}\right\rceil$. And the lower bound attains for $\bar{G}=\overline{K_{2}}$. Hence the result.
Proposition: 3.3 Let $G=K_{m, n}, m \leq n$ and $m, n \geq 3$ be a complete bipartite graph. Then majority dom-chromatic number of a complement \bar{G} is $\gamma_{M \chi}(\bar{G}) \geq\left\lceil\frac{p}{2}\right\rceil$ and $\gamma_{M \chi}(G)<$ $\gamma_{M \chi}(\bar{G})$.

Proof: Let $\bar{G}=K_{m} \cup K_{n}$ be the complement of G where K_{m} and K_{n} both are complete graphs with m and n vertices.
Case: (i) Suppose $m=n, n+1, n+2$. Since K_{m} and K_{n} are vertex color critical and $p=m+n, \gamma_{M \chi}(\bar{G})=n$ or $n+1$ and $\gamma_{M \chi}(\bar{G})=n+2$. Hence $\gamma_{M \chi}(\bar{G})=\max \{m, n\}$.

Case: (ii) Let $m<n$ and $n \geq m+3$. Since K_{m} and K_{n} are vertex color critical and $p=$ $m+n, m<\left\lceil\frac{p}{2}\right\rceil$ and $n>\left\lceil\frac{p}{2}\right\rceil$. Hence $\gamma_{M \chi}(\bar{G})=\max \{m, n\}$. If $G=K_{m, n}, m \leq n$, then by the $\operatorname{result}(1.2)(\mathrm{v}), \gamma_{M \chi}(G)=2$. By case (i), $\gamma_{M \chi}(\bar{G})=n$ or $n+1=\left\lceil\frac{p}{2}\right\rceil$ and $\gamma_{M \chi}(\bar{G})=n+2>\left\lceil\frac{p}{2}\right\rceil$. By case (ii), $\gamma_{M \chi}(\bar{G})=n$, if $m<n$. It implies that $\gamma_{M \chi}(\bar{G})>\left\lceil\frac{p}{2}\right\rceil$. Hence, $\gamma_{M \chi}(G)<\gamma_{M \chi}(\bar{G})$, if $m, n \geq 3$.
Proposition: 3.4 Let G be a bipartite graph with $\operatorname{diam}(G) \geq 6$. Then $\gamma_{M \chi}(\bar{G}) \geq$ $\gamma_{M}(\bar{G})+1$, if \bar{G} is the complement of G and $\gamma_{M}(\bar{G})$ is the majority dominating number of \bar{G}.

Proof: If $\operatorname{diam}(G) \geq 6$, then $G=P_{p}, p \geq 7$. The complement \bar{G} contains two vertices with degree $\bar{d}\left(u_{i}\right)=p-2, i=1, p$ and $\bar{d}\left(v_{i}\right)=p-3, i=2, \ldots, p-1$. It gives that there are atleast two vertices with degree $\bar{d}\left(u_{i}\right) \geq\left\lceil\frac{p}{2}\right\rceil-1$ and the majority dominating number of \bar{G} is $\gamma_{M}(\bar{G})=1$. Since \bar{G} contains a triangle, $\chi(\bar{G})=3$ and $\gamma_{M \chi}(\bar{G}) \geq 3$. Hence, $\gamma_{M \chi}(\bar{G}) \geq \gamma_{M}(\bar{G})+1$.

4. Bounds of $\boldsymbol{\gamma}_{M_{\chi}}(\boldsymbol{G})$

Proposition : 4.1 If G is a vertex color critical and a non-trivial connected graph with $p \geq 2$ then $2 \leq \gamma_{M \chi}(G) \leq p$. These bounds are sharp.

Proof : Since G is connected and non-trivial graph with $p \geq 2, \chi(G) \geq 2$ and $\gamma_{M \chi}(G) \geq$ 2. Also since G is a vertex color critical graph, by known result (1.2)(iv), $\gamma_{M \chi}(G)=p$. Hence $2 \leq \gamma_{M \chi}(G) \leq p, p \geq 2$. When $G=K_{2}$ and $G=K_{p}$, the lower and upper bounds are sharp.

Proposition: 4.2 Let G be a connected bipartite graph with p vertices. Then $\gamma_{M \chi}(G)=p$ if and only if $G=K_{p}, p=2$.

Proof: Let G be a connected bipartite graph with p vertices. Since $\gamma_{M \chi}(G)=p$, then the graph must be a vertex color critical. The only connected bipartite vertex color critical graph is K_{2}. It implies that $G=K_{2}$. The converse is obvious.

Proposition: 4.3 If G be a graph of $\operatorname{diam}(G)=3$ then $\gamma_{M \chi}(G)=2$ and $\gamma_{M \chi}(G)=$ $\gamma_{M}(G)+1$.

Proof: Let G be a connected graph and $\operatorname{diam}(G)=3$. Then the graph G has the structure with two central vertices u and v which are adjacent with some pendants. Then $G=P_{4}$ and $G=D_{r, s}, r \leq s$ where r and s number of pendants at u and v respectively. Then by result ((i) 1.2), $\gamma_{M}(G)=|\{v\}|=1$.

Case: (i) If $s=r, r+1, r+2$ then both u and v are adjacent to some number of pendant vertices. Since $\chi(G)=2, S=\{u, v\}$ be the majority dom-chromatic set of G and $\gamma_{M \chi}(G)=|S|=2$. Hence $\gamma_{M \chi}(G)=\gamma_{M}(G)+1$.

Case: (ii) If $r<s$ and $s \geq r+3$. Choose $S=\{u, v\}$, where u and v are central vertices of G. Then $|N[S]|=d(u)+d(v)=r+s+2=p>\left\lceil\frac{p}{2}\right\rceil$.

Therefore, S is majority dominating set of G. Also $\chi(G)=2=\chi(<S>)$.
Hence S will be the majority dom-chromatic set of G and $\gamma_{M \chi}(G)=|S|=2$. Since $\gamma_{M}(G)=1, \gamma_{M \chi}(G)=\gamma_{M}(G)+1$. This result is true for $G=P_{4}$.

Proposition: 4.4 Let G be a bipartite graph of $\operatorname{diam}(G) \leq 5$. Then $\gamma_{M \chi}(G)=2$ and $\gamma_{M \chi}(G)=\gamma_{M}(G)+1$.

Proof: Since the graph G is bipartite, the graph structures are $P_{p}, p \leq 6, K_{1, n}, C_{4}$ and K_{2}.
Case : (i) Suppose $\operatorname{diam}(G)=1$, then the bipartite graph G becomes only K_{2}. By result [5], $\gamma_{M}(G)=1$ and $\chi(G)=2$ and by result (1.2)(iv), $\gamma_{M \chi}(G)=2$. Hence $\gamma_{M \chi}(G)=$ $\gamma_{M}(G)+1$.
case: (ii) If $\operatorname{diam}(G)=2$, then the graph structures be $G=P_{3}$ or $K_{1, n}$. By the result (1.2)(i) , $\gamma_{M}(G)=1$. Also by result (1.2)(vii), $\gamma_{M \chi}(G)=2$. In both graphs, $\gamma_{M \chi}(G)=$ $\gamma_{M}(G)+1$.
case : (iii) Let $\operatorname{diam}(G)=3$. Then the graph becomes $G=P_{4}$ or and $D_{r, s}$. By Proposition (4.3), the result is true.
case : (iv) when $\operatorname{diam}(G)=4$ and 5 , the bipartite graph is $P_{p}, p \leq 6$. By the result (1.2)(i), $\gamma_{M}(G)=1$. Since $\chi(G)=2$, the set $\left\{v_{2}, v_{3}\right\}$ be the majority dom-chromatic set of G, where $v_{2}, v_{3} \in V\left(P_{5}\right)$. Hence $\gamma_{M \chi}(G)=2=\gamma_{M}(G)+1$.

Hence, for all cases, $\gamma_{M \chi}(G)=\gamma_{M}(G)+1$.
Proposition: 4.5 Let G be a bipartite graph with $\operatorname{diam}(G) \geq 6$. Then

$$
\begin{equation*}
\gamma_{M \chi}(G)=\gamma_{M}(G), \text { if } p=1,2(\bmod 6) \tag{i}
\end{equation*}
$$

(ii) $\quad \gamma_{M \chi}(G)=\gamma_{M}(G)+1$, if $p=0,3,4,5(\bmod 6)$.

Proof: If the bipartite graph G with $\operatorname{diam}(G) \geq 6$, then $G=P_{p}$, a path with $p>6$. By the result (1.2)(i), $\gamma_{M}(G)=\left\lceil\frac{p}{6}\right\rceil$, for all $p \geq 7$ and by the result(1.2)(vii),

$$
\gamma_{M \chi}(G)=\left\{\begin{array}{l}
\left\{\frac{p}{6}\right\rceil=\gamma_{M}(G), \text { if } p \equiv 1,2(\bmod 6) \\
\left\lceil\frac{p}{6}\right\rceil+1=\gamma_{M}(G)+1, \text { if } p \equiv 0,3,4,5(\bmod 6) .
\end{array}\right.
$$

Hence the result.
Proposition: 4.6 Let G be a 3 -regular bipartite graph with p vertices. Then
$\gamma_{M \chi}(G)= \begin{cases}{\left[\frac{p}{8}\right\rceil,} & \text { if } p \equiv 2,4(\bmod 8) \\ {\left[\frac{p}{8}\right\rceil+1,} & \text { if } p \equiv 0,6(\bmod 8) .\end{cases}$
Proof : Let $V_{1}(G)=\left\{v_{1}, v_{2}, \ldots, v_{\frac{p}{2}}\right\}$ and $V_{2}(G)=\left\{u_{1}, u_{2}, \ldots, u \frac{p}{2}\right\}$ with $p=2 m$.
Case: (i) Let $p \equiv 2,4(\bmod 8)$. Let $S=\left\{v_{1}, u_{1}, v_{j}, v_{j+1}, \ldots, v_{t}\right\}$ be the subset of G with $|S|=t=\gamma_{M \chi}(G)$ such that $d\left(v_{1}, u_{1}\right)=1$ and $d\left(v_{i}, u_{j}\right) \geq 4$. Then

$$
|N[S]|=\left|N\left[v_{1}\right]+N\left[u_{1}\right]\right|+\sum_{j=1}^{t-2} d\left(u_{j}\right)-(t-2)=6+4(t-2)=4 t-2
$$

$\geq\left\lceil\frac{p}{2}\right]$. Let $p=8 r+2$. Then $|N[S]|=4 t-2=4\left\lceil\frac{p}{8}\right]-2=4\left(\frac{8 r+2}{8}\right)-2=\frac{p}{2}-2+$ $2>\left\lceil\frac{p}{2}\right\rceil$. Let $p=8 r+4$. Then $|N[S]|=4 t-2=4\left\lceil\frac{p}{8}\right\rceil-2=4\left(\frac{8 r+4}{8}\right)-2=\frac{p}{2}-2+$ $2>\left\lceil\frac{p}{2}\right\rceil$. Since $d\left(v_{1}, u_{1}\right)=1$, the induced subgraph $\langle S\rangle$ contains K_{2} and $\left.\chi(<S\rangle\right)=$ $2=\chi(G)$. Thus S is a majority dom-chromatic set of G and $\gamma_{M \chi}(G) \leq|S|=\left\lceil\frac{p}{8}\right\rceil$.

Suppose that $S=\left\{v_{1}, u_{1}, v_{j}, \ldots, v_{t}\right\}$ with $|S|=t=\gamma_{M \chi}(G)$ such that $d\left(v_{1}, u_{1}\right)=1$, $d\left(v_{i}, v_{j}\right) \geq 4$ and $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$. Since S contains the induced subgraph K_{2} and $\chi(<S>)=2=\chi(G)$. Therefore $|N[S]| \leq 4 t=4 \gamma_{M \chi}(G)$. Since $|N[S]| \geq\left[\frac{p}{2}\right], \quad\left[\frac{p}{2}\right] \leq$ $4 \gamma_{M \chi}(G)$. It implies that $\gamma_{M \chi}(G) \geq \frac{1}{4}\left[\frac{p}{2}\right]$.
Hence $\gamma_{M \chi}(G) \geq\left\lceil\frac{p}{8}\right\rceil$.
Combining (1) and (2), $\gamma_{M \chi}(G)=\left[\frac{p}{8}\right]$, if $p \equiv 2,4(\bmod 8)$.
Case: (ii) Let $p \equiv 0,6(\bmod 8)$. Let $S_{1}=\left\{v_{1}, u_{1}, v_{j} \ldots, v_{t}\right\}$ be the subset of $V(G)$ with $\left|S_{1}\right|=t_{1}=\left[\frac{p}{8}\right]+1=\gamma_{M \chi}(G)$ and $\chi\left(<S_{1}>\right)=2$. Let $p=8 r$. Then $\left|N\left[S_{1}\right]\right|=4 t-$
$2=4\left(\left\lceil\frac{p}{8}\right\rceil+1\right)-2=4\left(\frac{8 r}{8}+1\right)-2=4\left\lceil\frac{p}{8}\right\rceil+2>\frac{p}{2}+2>\left\lceil\frac{p}{2}\right\rceil$. Let $p=8 r+6$. Then $\left|N\left[S_{1}\right]\right|=4 t_{1}-2=4\left(\left\lceil\frac{p}{8}\right\rceil+1\right)-2=4\left(\frac{8 r+6}{8}+1\right)-2=4\left\lceil\frac{p}{8}\right\rceil+2>\frac{p}{2}+2>\left\lceil\frac{p}{2}\right\rceil$.
Hence $\left|N\left[S_{1}\right]\right| \geq\left\lceil\frac{p}{2}\right]$. Therefore S_{1} is a majority dom-chromatic set of G and $\gamma_{M \chi}(G) \leq$ $\left|S_{1}\right|=t_{1}=\left\lceil\frac{p}{8}\right\rceil+1$. Applying the same argument as in case (i), $\gamma_{M \chi}(G) \geq\left\lceil\frac{p}{8}\right\rceil+1$.
Hence $\gamma_{M \chi}(G)=\left\lceil\frac{p}{8}\right\rceil+1$, if $p \equiv 0,6(\bmod 8)$.
Proposition: 4.6 If the graph G is a bipartite with $\operatorname{diam}(G) \leq 2$ then $\gamma_{M \chi}(G) \leq p-$ $\Delta(G)+1$ and $\gamma_{M \chi}(G)=p-\Delta(G)+1$ if and only if $G=K_{2}, P_{3}$ and $K_{1, p-1}, p \geq 2$.
Proof: Let G be a bipartite graph with $\operatorname{diam}(G) \leq 2$. If $\Delta(G)=1$, the graph G becomes K_{2}. By the result ()$, \gamma_{M \chi}(G)=2=p-\Delta(G)+1$, if $G=K_{2}$. If $\Delta(G)=2$, the graph structures becomes P_{p}, a path and $K_{2,2}$. Since $\operatorname{diam}(G) \leq 2$, if $G=P_{3}$, by the result (1.2)(vii), $\gamma_{M \chi}(G)=2=p-\Delta(G)+1$ and $\gamma_{M \chi}\left(K_{2,2}\right)=2<p-\Delta(G)+1$. Suppose $\Delta(G)=3$. Then $G=K_{3,3}$. By the result (1.2)(v), $\gamma_{M \chi}\left(K_{3,3}\right)=2<p-\Delta(G)+1$. If $\Delta(G) \geq 4$ then the graph G becomes $K_{m, n}, m=n \geq 4$. By the result (1.2)(v), $\gamma_{M \chi}(G)=$ $2<p-\Delta(G)+1$. This is true for $\Delta(G)=1,2,3, \ldots,(p-2)$. Suppose $\Delta(G)=p-1$. Then the only bipartite graph $G=K_{1, p-1}$. By the result (1.2)(ix), $\gamma_{M \chi}(G)=2=p-$ $\Delta(G)+1$. Hence from the above cases, $\gamma_{M \chi}(G) \leq p-\Delta(G)+1$. Also from the above cases, $\gamma_{M \chi}(G)=p-\Delta(G)+1$ is true if and only if $G=K_{2}, P_{3}$ and $K_{1, p-1}, p \geq 2$.
Proposition: 4.7 Let G be a bipartite graph with $\operatorname{diam}(G)=3$. Then $\gamma_{M \chi}(G) \leq p-$ $\Delta(G)$. Also $\gamma_{M \chi}(G)=p-\Delta(G)$ if and only if $G=P_{4}$ and $D_{r, s}, r=1$ and $s=p-3$.
Proof: Let G be a bipartite graph with $\operatorname{diam}(G)=3$. By the result (1.2)(x), $\gamma_{\chi}(G) \leq p-$ $\Delta(G)$. Since $\gamma_{M \chi}(G) \leq \gamma_{\chi}(G), \gamma_{M \chi}(G) \leq \gamma_{\chi}(G) \leq p-\Delta(G)$. Hence $\gamma_{M \chi}(G) \leq p-$ $\Delta(G)$.

$$
\begin{equation*}
\text { Let } \gamma_{M \chi}(G)=p-\Delta(G) \tag{1}
\end{equation*}
$$

Case: (i) Since $\operatorname{diam}(G)=3$, the graph G has a dominating edge $u v$ with some pendants at u and v. Let $V(G)=\left\{u, v, u_{1}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{s}\right\}$ where $u_{i}, i=1, \ldots, r$ and $v_{j}, j==$ $1, \ldots, s$ are pendants with $r \leq p-3$ and $s \geq 1$. Clearly, since G is bipartite, $\chi(G)=2$. By the assumption (1), $S=\left\{u, v, v_{1}, \ldots, u_{t}\right\}$ is a majority dom-chromatic set with $|S|=$ $p-\Delta(G)=t$.

Subcase: (i) Let $d(u)=p-2$ and $d(v)=2$. Since G has a dominating edge $e=u v$, $\gamma_{M \chi}(G)=|S|=2$. By the assumption (1), $\gamma_{M \chi}(G)=p-\Delta(G)$. It implies that $2=p-$
$d(u) \Rightarrow 2=p-(p-2)$. It gives the structure of the graph G with $d(u)=p-2, d(v)=$ 2 and the graph is $G=D_{r, s}, r<s$ with $r=1$ and $s=p-3$.

Subcase: (ii) Let $d(u) \leq p-3$ and $d(v) \geq 3$. The majority dom-chromatic set for the graph G is $S=\{u, v\}$. It implies that $\gamma_{M \chi}(G)=|S|=2$. By the assumption (1), $\gamma_{M \chi}(G)=$ $p-\Delta(G)=p-d(u)=p-(p-3)=3$. Hence, $\gamma_{M \chi}(G)<p-\Delta(G)$.

Subcase: (iii) If $d(u)=p-2$ and $d(v)=p-2$ then the majority dom-chromatic set becomes $S=\{u, v\}$. It implies that $\gamma_{M \chi}(G)=|S|=2$. By the assumption (1), $\gamma_{M \chi}(G)=$ $p-\Delta(G)=p-d(u) \Rightarrow 2=p-(p-2)$. Since $d(u)=p-2$ and $d(v)=p-2, r=$ $s=1 \Rightarrow p=r+s+2=4$.

Hence the graph G with $p=4$ vertices and $\operatorname{diam}(G)=3$ is P_{4}.
Case: (ii) Suppose G has no dominating edge $e=u v$. Then the graph G is a wounded spider with $\operatorname{diam}(G)=3$ and the graph contains a vertex u with $d(u)=\frac{p}{2}$ and $d\left(u_{i}\right) \leq$ $2, u_{i} \in(V(G)-\{u\})$. Hence $S=\left\{u, u_{1}\right\}$ be the majority dom-chromatic set of G with $d\left(u_{1}\right)=2$, where $d\left(u, u_{1}\right)=1$ and $\gamma_{M \chi}(G)=|S|=2$. By the assumption $(1), \gamma_{M \chi}(G)=$ $p-\Delta(G)=p-\frac{p}{2}=\frac{p}{2}$. Hence $\gamma_{M \chi}(G)<p-\Delta(G)$.

Thus, $\gamma_{M \chi}(G)=p-\Delta(G)$ if and only if $G=P_{4}$ and $D_{r, s}, r=1$ and $s=p-3$.

5. Conclusion

In this paper, we studied majority dom-chromatic number for a bipartite graph. The characterisation theorems on $\gamma_{M \chi}(G)$ for bipartite graphs are established and its relationship with other domination parameters are discussed. Some results of a disconnected graph and the majority dom-chromatic number for the complement \bar{G} of the graph G are investigated.

REFERENCES

[1] Chaluvaraju, B. and Appajigowda, C. - The dom-chromatic number graph, Malaya Journal of Matematik, vol 4(1), 1-7, (2016).
[2] Haynes, T.W., Hedetniemi Peter, S.T. and Slater, T. - Fundamentals of domination in graphs, Marcel Dekker Inc, Newyork , (1998).
[3] Janakiraman, T.N. and Poobalaranjani, M. - Dom-chromatic sets of graphs, International Journal of Engineering Science, Advanced

Computing and Bio-Technology, Vol. 2, No.2, April-June 2011, 88-103,
[4] Joseline Manora, J. and Mekala, R.- Majority dom-chromatic set of a graph, Bulletin of Pure and Applied Sciences , Vol.38E(Math \& Stat), No.1, 289-296, (2019).
[5] Joseline Manora, J. and Swaminathan, V. - Results on majority dominating setsScientia Magna - Dept.of mathematics, Northwest university, X'tian, P.R. China), vol.7, No.3, 53-58, (2011).
[6] Joseline Manora, J. and Swaminathan, V. - Majority dominating sets in graphs $-I$, Jamal Academic Research Journal, Vol.3, No.2, 75-82, (2006).
[7] Paulraj Jayasimman, I., Joseline Mnora, J. and Swaminathan, V. , Results on majority domatic number of a graph, IEEE conference proceedings Advances in Engineering, Science and Management (ICAESM), 2012.

