

Majority Dom-Chromatic Number of a Bipartite Graph

J. Joseline Manora¹, R. Mekala²

¹Department of mathematics, Tranquebar Bishop Manickam Lutheran College (Affiliated to Bharathidasan university, Tiruchirappalli), Porayar.

²Department of Mathematics, E.G.S Pillay Arts and Science College (Affiliated to Bharathidasan university, Tiruchirappalli), Nagapattinam.

Abstract

In this article, the majority dom-chromatic sets of a bipartite graphs are studied. The characterization theorems on the majority dom-chromatic number $\gamma_{M\chi}(G)$ for bipartite graphs are determined. Also its relationship with other graph theoretic parameters and the majority dom-chromatic number for complement of a bipartite graphs are investigated.

Keywords: Majority dom-chromatic set, Majority dom-chromatic number.

1. Introduction

All the graphs G = (V, E) considered here are simple, finite and undirected. The concept of domination is early discussed by Ore and Berge in 1962. Then Haynes et.al [2] defined the domination number $\gamma(G)$. The majority domination number $\gamma_M(G)$ was introduced by Swaminathan and Joseline Manora [6] is the smallest cardinality of a minimal majority dominating set $S \subseteq V(G)$ of vertices and satisfies $|N[S]| \ge \left| \left[\frac{V(G)}{2} \right] \right|$. Janakiraman and Poobalaranjani [3] defined the dom-chromatic set as a dominating set $S \subseteq V(G)$ such that the induced subgraph $\langle S \rangle$ satisfies the property $\chi(\langle S \rangle) = \chi(G)$, where $\chi(G)$ is the chromatic number of G. The minimum cardinality of a dom-chromatic set S is called dom-chromatic number and is denoted by $\gamma_{ch}(G)$.

Definition : 1.1 [4] The set $S \subseteq V(G)$ is called the Majority Dominating Chromatic set (MDC- set) of a graph *G* if the set *S* is a majority dominating set and satisfies the property $\chi(\langle S \rangle) = \chi(G)$ where $\langle S \rangle$ is a induced subgraph of *G*. It is also called a majority dom-chromatic set of a graph.A majority dom-chromatic number (MDC-number) $\gamma_{M\chi}(G)$ is defined as the smallest cardinality of the majority dom-chromatic set of a graph *G*.

Results on $\gamma_M(G)$ and $\gamma_{M\chi}(G)$: 1.2 [4] and [6]

- (i) For a path P_p and cycle C_p , $\gamma_M(G) = \left\lfloor \frac{p}{6} \right\rfloor$, $p \ge 3$.
- (ii) If a graph $G = \overline{K_p}$ then $\gamma_{M\chi}(G) = \left\lceil \frac{p}{2} \right\rceil$.

- (iii) Let $G = mK_2$, $m \ge 1$. Then $\gamma_{M\chi}(G) = \left\lceil \frac{p}{4} \right\rceil + 1, p \ge 2$.
- (iv) Let *G* be any graph of order *p*. Then $\gamma_{M\chi}(G) = p$ if and only if *G* is vertex color critical.
- (v) For a graph $G = K_{m,n}$, $\gamma_{M\chi}(G) = 2$.

(vi) For any cycle
$$C_p$$
, $\gamma_{M\chi}(G) = \begin{cases} \left| \frac{p}{6} \right| &, & \text{if } p \equiv 2 \pmod{6} \\ \left| \frac{p}{6} \right| + 1 &, & \text{if } p \equiv 0,4 \pmod{6} \\ p &, & \text{if } p \text{ is odd } . \end{cases}$

(vii) If G is a path then
$$\gamma_{M\chi}(G) = \begin{cases} \left[\frac{p}{6}\right] & \text{, if } p \equiv 1,2 \pmod{6} \\ \left[\frac{p}{6}\right] + 1 & \text{, if } p \equiv 0,3,4,5 \pmod{6} \end{cases}$$

- (viii) For a graph $G = D_{r,s}$, $\gamma_{M\chi}(G) = 2$.
- (ix) Let $G = K_{1,p-1}$ be a star graph. Then $\gamma_{M\chi}(G) = 2$.
- (x) [3] Let G be a tree of diameter 3. Then $\gamma_{\chi}(G) \le p \Delta(G)$.

2. Characterisation Theorems for Bipartite Graph

Theorem: 2.1 Let G be a connected bipartite graph with p vertices. Then $\gamma_{M\chi}(G) = 2$ if and only if $G_1 = K_{m,n}$, $m \le n$, a path $G_1 = P_i$, $i \le 8$ and $G_3 = B_{X,Y}$ such that $|N[u_1] \cup N[v_1]| \ge \frac{p}{2}$ and $d(u_1, v_1) = 1$, where $u_1 \in V_1(G)$ and $v_1 \in V_2(G)$.

Proof :

Let $\gamma_{M\chi}(G) = 2$. (1) Then $\chi(G) = 2 = \chi(\langle S \rangle)$, where *S* is a majority dom-chromatic set of *G* with |S| = 2.

Case: (i) Suppose diam(G) = 1 then the graph $G = K_p$. Since K_p is vertex color critical, $\gamma_{M\chi}(G) = p$. By assumption (1), the only graph $G = K_2 = K_{1,1}$ is complete bipartite.

Case: (ii) Suppose diam(G) = 2 then the graph *G* becomes $K_{m,n}$, $m \le n$, P_3 and $K_{1,p-1}$, a star. Since $\gamma_{M\chi}(G) = 2$, by the result(1.2), we obtain the graphs which have a structures as $G_1 = C_4 = K_{2,2}$ and $G_1 = K_{1,p-1}$, $G_2 = P_3$ and also $G_3 = B_{X,Y}$ includes the following structure with diam(G) = 2.

*G*₃: Fig(i)

For G_3 , $S = \{u_2, v_2\} \subseteq V(G)$ such that $d(u_2, v_2) = 1$, $|N[S]| = |N[u_2] \cup N[v_2]| \ge \left\lfloor \frac{p}{2} \right\rfloor$ and $\chi(\langle S \rangle) = 2 = \chi(G)$. It implies that *S* is a majority dom-chromatic set of G_3 . Hence $G_3 = B_{X,Y}$ with these properties.

Case: (iii) Suppose diam(G) = 3. The bipartite graph *G* becomes P_4 and $D_{r,s}$, a double star. Since $\gamma_{M\chi}(G) = 2$, by the result (1.2)(vii), $\gamma_{M\chi}(P_4) = 2$. Hence $G_2 = P_4$. In $D_{r,s}$, $r \leq s$, by assumption (1), $S = \{u_1, v_1\}$ is the subset of *G* such that $d(u_1) \leq \left[\frac{p}{2}\right] - 1$, and $d(v_1) \geq \left[\frac{p}{2}\right] - 1$ with $d(u_1, v_1) = 1$, where $u_1 \in V_1(G)$ and $v_1 \in V_2(G)$ and $|N[S]| = |N[u_2] \cup N[v_2]| \geq \left[\frac{p}{2}\right]$. Also $\chi(\langle S \rangle) = 2 = \chi(G)$. Hence *S* is a majority domchromatic set of *G*. It implies that $G_2 = B_{X,Y} = D_{r,s}$, $r \leq s$.

Case: (iv) Suppose $diam(G) \ge 4$. Then the bipartite graphs are P_p , $p \ge 5$ and any bipartite graph $B_{X,Y}$. By the result (1.2)(vii), $\gamma_{M\chi}(P_p) = \left[\frac{p}{6}\right] = 2$, p = 5,6,7,8 and $\gamma_{M\chi}(P_p) > 2$, *if* $p \ge 9$. Since $\gamma_{M\chi}(G) = 2$, the only bipartite graph $G_2 = P_5$ to P_8 . For a bipartite graph $B_{X,Y}$, if $S = \{u_1, v_1\}u_1 \in V(G)$ such that $|N[u_1] \cup N[v_1]| \ge \left[\frac{p}{2}\right]$ and $d(u_1, v_1) = 1$, where $u_1 \in V_1(G)$ and $v_1 \in V_2(G)$ with diam(G) = 4, then *S* is a majority dom-chromatic set of $B_{X,Y}$. Also clearly $\chi(<S>) = 2 = \chi(G)$ and satisfies the assumption (1). Hence the bipartite graph $G_3 = B_{X,Y}$ with the above said properties and also the only bipartite graphs are $G_2 = P_5$ to P_8 .

Conversely, let $G = K_{m,n}$, $m \le n$ which is complete bipartite with p = m + n. By the result (1.2)(v) and (vii), $\gamma_{M\chi}(G_1) = 2$ and for a path $\gamma_{M\chi}(P_i) = 2$, *if* i = 2, ..., 8. Let $G_3 = B_{X,Y}$ be a graph with bipartition $V_1(G)$ and $V_2(G)$. Let $u_1 \in V_1(G)$ and $v_1 \in V_2(G)$ such

that $d(u_1, v_1) = 1$. Since $|N[u_1] \cup N[v_1]| \ge \frac{p}{2}$ and $\chi(\langle S \rangle) = 2 = \chi(G)$. Hence $S = \{u_1, v_1\}$ is a majority dom-chromatic set of G and $\gamma_{M\chi}(G_3) = 2$.

Proposition: 2.2 Let *G* be any bipartite graph $B_{X,Y}$ with *p* vertices and without isolates. Then $\gamma_{M\chi}(G) \leq \left[\frac{p}{4}\right] + 1$ and $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + 1$ if and only if $G = K_{1,j}$, j = 1,2,3, $K_{2,2}$, P_4 and mK_2 , $m \geq 1$.

Proof: Let $G = B_{X,Y}$ be a bipartite graph with $\{u_1, u_2, ..., u_m\}$ and $\{v_1, v_2, ..., v_n\}$ and |V(G)| = p = m + n.

Case : (i) Suppose $G = K_{m,n}$, is a complete bipartite with $m \le n$. Let $S = \{u_1, v_1\}$, where $u_1 \in V(X)$ and $v_1 \in V(Y)$. Then $|N[S]| = |N[u_1]| + |N[v_1]|$

 $= (n + 1) + (m + 1) \ge \left[\frac{p}{2}\right].$ Therefore *S* is a majority dominating set of *G*. Since *G* is complete bipartite, $\chi(G) = 2 = \chi(\langle S \rangle).$ It implies that *S* is a majority dom-chromatic set of *G*. Hence $\gamma_{M\chi}(G) \le |S| = 2 = \left[\frac{p}{4}\right] + 1$, where p = 2,3,4. Thus the graph becomes $G = K_{1,1}, K_{1,2}, K_{1,3}$ and $K_{2,2}.$ When $p \ge 5$, for $G = K_{m,n}, m \le n$, by the result (1.2)(v), $\gamma_{M\chi}(G) = 2 < \left[\frac{p}{4}\right] + 1.$ Hence, $\gamma_{M\chi}(G) \le \left[\frac{p}{4}\right] + 1$, for $G = K_{m,n}, m \le n.$

Case: (ii) The graph *G* is not complete and connected bipartite.

Then the minimally connected bipartite graph is a path P_p , $p \ge 2$. By known result $(1.2)(\text{vii}), \gamma_{M\chi}(P_p) = \left\lceil \frac{p}{6} \right\rceil \text{ or } \left\lceil \frac{p}{6} \right\rceil + 1$. Hence in this structure, when p = 2, 3, 4, $\gamma_{M\chi}(G) = 2 = \left\lceil \frac{p}{6} \right\rceil + 1 = \left\lceil \frac{p}{4} \right\rceil + 1$. When $p \ge 5, \gamma_{M\chi}(G) = \left\lceil \frac{p}{6} \right\rceil \text{ or } \left\lceil \frac{p}{6} \right\rceil + 1 < \left\lceil \frac{p}{4} \right\rceil + 1$. Hence, $\gamma_{M\chi}(G) \le \left\lceil \frac{p}{4} \right\rceil + 1$, if $p \ge 2$.

Case: (iii) The graph *G* is not complete and disconnected bipartite.

Then the graph structure becomes mK_2 , mP_4 , mC_4 and mP_6 . In such cases, by the result (1.2)(iii), $\gamma_{M\chi}(mK_2) = \left[\frac{p}{4}\right] + 1$ and all other graphs the majority dom-chromatic number is $\gamma_{M\chi}(G) < \left[\frac{p}{4}\right] + 1$. Hence $\gamma_{M\chi}(G) \le \left[\frac{p}{4}\right] + 1$. From the above cases, we obtain $\gamma_{M\chi}(G) \le \left[\frac{p}{4}\right] + 1$.

Conversely, let $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + 1$. By case (i), if *G* is a complete bipartite graph, we obtain the graphs $G = K_{1,j}$, j = 1,2,3 and $K_{2,2}$. By case (ii), if *G* is not complete bipartite then the graphs are $G = P_2$, P_3 , $P_4 = K_{1,1}$, $K_{1,2}$, P_4 . Also by case (iii), if *G* is not complete

and disconnected bipartite, the graph $G = mK_2$, $m \ge 1$. Hence $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + 1$ if and only if $G = K_{1,j}$, j = 1,2,3, $K_{2,2}$, P_4 and mK_2 , $m \ge 1$.

Proposition: 2.3 Let *G* be any connected bipartite graph with *p* vertices. Then $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$ if and only if $G = P_3$, P_4 , C_4 and $K_{1,3}$.

Proof: Assume that $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$.

Since G is connected bipartite graph, $\chi(G) \ge 2$.

Case: (i) If diam(G) = 1, then $G = K_2$ and $\gamma_{M\chi}(G) = 2 = p$, which is a contradiction to the assumption (1). Hence $G \neq K_2$.

Case: (ii) If diam(G) = 2, then $G = P_3$, C_4 , $K_{1,n}$. By the result (1.2)(vii), $\gamma_{M\chi}(P_3) = 2 = \left[\frac{p}{2}\right]$. By the result (1.2)(vi), $\gamma_{M\chi}(C_4) = \left[\frac{p}{2}\right]$. Suppose $G = K_{1,3}$, by the result(1.2)(ix), $\gamma_{M\chi}(G) = 2 = \left[\frac{p}{2}\right]$.

Case: (iii) If diam(G) = 3, then $G = P_4$ and $D_{r,s}$. By the result (1.2) (vii), $\gamma_{M\chi}(G) = 2 = \left[\frac{p}{2}\right]$. In $D_{r,s}$, by the result (1.2)(viii), $\gamma_{M\chi}(G) = 2$. The condition (1) holds when r = s = 1.

Case: (iv) If $diam(G) \ge 4$, then $G = P_p$, C_p , $p \ge 5$ and any other graphs. By the result (1.2)(vii), $\gamma_{M\chi}(G) = \left[\frac{p}{6}\right] + 1 = 2 < \left[\frac{p}{2}\right]$, which is a contradiction to the condition (1).

Thus from the above four cases, G must be P_3 , P_4 , C_4 and $K_{1,3}$.

The converse is obvious.

Proposition: 2.4 Suppose *G* is a disconnected bipartite graph. If the graph structures are $G_1 = K_{1,3} \cup mK_2$, *m* is even and $m \ge 2$, $G_2 = mP_p$, m = 4, p = 3 and $G_3 = mK_{1,3}$, m = 3 then $\gamma_{M\chi}(G) = \frac{p}{4}$.

Corollary: 2.5 Let *G* be a disconnected bipartite graph. If the graph structure is $K_{1,3} \cup mK_2$, *m* is odd then $\gamma_{M\chi}(G) = \frac{p}{4} + 1$.

Proposition: 2.6 Let *G* be a disconnected bipartite graph without isolates. Then $\gamma_{M\chi}(G) = \frac{p}{2}$ if and only if $G = mK_2$, $1 < m \le 3$.

Proof : Let
$$\gamma_{M\chi}(G) = \frac{p}{2}$$
. (1)

(1)

Since *G* be a disconnected bipartite graph, let $G_1, G_2, ..., G_k$ are the components of *G* and $V(G) = V(G_1) ... \cup V(G_k)$.

Case (i) : All components are of diameter 1. Then the graph $G = mK_2$. By the assumption (1), when $G = mK_2$ if m = 2 and 3 then $G = 2K_2$ and $3K_2$. It implies that $\gamma_{M\chi}(G) = 2$ and $3 = \frac{p}{2}$. Suppose $m \ge 4$, then by the result (1.2)(iii), $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + 1 < \frac{p}{2}$. It is a contradiction to the assumption (1).

Case (ii) : Suppose G contains the components which are of diameter1 and 2.

Then $G = K_{1,t} \cup mK_2$, where $G_1 = K_{1,t}$, $G_2 = mK_2$ and $V(G) = \{u, u_1, ..., u_t, v_1, ..., v_{2m}\}$ with p = 1 + t + 2m.

subcase : (i) If $|t| \ge \left[\frac{p}{2}\right] - 1$ and $2m = p - \left(\left[\frac{p}{2}\right] - 1\right)$ then the majority dom-chromatic set $S = \{u, u_1\}$ where $u, u_1 \in V(G_1)$ such that $|N[S]| \ge \left[\frac{p}{2}\right]$ and $\chi(G_1) = 2 = \chi(\langle S \rangle)$. It implies that *S* is a majority dom-chromatic set of *G* and $\gamma_{M\chi}(G) = 2 < \frac{p}{2}$, if $|t| \ge \left[\frac{p}{2}\right] - 1$, which is a contradiction to (1). Therefore $G \neq K_{1,t} \cup mK_2$.

subcase : (ii) If $|t| \leq \left\lceil \frac{p}{2} \right\rceil - 2$ then the MDC-set $S = \{u, u_1, v_1, v_2, \dots, v_k\}$, where $|k| = \left\lceil \frac{p}{2} \right\rceil - (1+t)$ such that $|N[S]| = 1 + t + 2k \geq \left\lceil \frac{p}{2} \right\rceil$. Also $\chi(G) = 2 = \chi(\langle S \rangle)$. Hence $\gamma_{M\chi}(G) = |S| = (2+k) < \frac{p}{2}$, it is a contradiction to (1). Hence the graph $G \neq K_{1,t} \cup mK_2$.

Case (iii) : If the components G_i of G with $diam(G_i) \ge 2, i = 1, 2, ..., k$ then $\gamma_{M\chi}(G) < \frac{p}{2}$. From the above cases, we get the graph structures become $G = mK_2$, $1 < m \le 3$.

Conversely, let $G = mK_2$, $m \le 3$. Then by the result (1.3)(iii), $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + 1 = \frac{p}{2}$.

Proposition: 2.7 Let *G* be a disconnected graph which is not bipartite with isolates. Then $\gamma_{M\chi}(G) \leq \left[\frac{p}{2}\right]$ and $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$ if and only if $G = pK_1$.

Proposition : 2.8 For a disconnected graph with *p* vertices, $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$ if and only if $G_1 = mK_2, m = 2,3$ and $G_2 = K_t \cup (p-t)K_1$, where K_t is a complete graph of *t* vertices with $|t| \leq \left[\frac{p}{2}\right]$.

Proof: Let *G* be a disconnected graph *p* vertices. Suppose $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$, then *S* is a majority dom-chromatic set with $\left[\frac{p}{2}\right]$ vertices. Also the chromatic number of the induced subgraph $\langle S \rangle$ and the graph *G* are equal.

Case (i) : The graph G without isolates. Then $G = mK_2, m \ge 2$. By the result (1.2)(iii), $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + 1$. It implies that when $G = 2K_2, 3K_2, \gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$. If $G = mK_3$ or $G = mP_3$ then $\gamma_{M\chi}(G) < \left[\frac{p}{2}\right]$. If each components of G such as $mK_2, m \ge 4$, $mK_t, mP_t, t \ge 3$ then $\gamma_{M\chi}(G) < \left[\frac{p}{2}\right]$. Hence the graph $G_1 = mK_2, m = 2,3$.

Case (ii): The graph *G* has isolates. Let $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$. Then the majority dom-chromatic set *S* contains $\left[\frac{p}{2}\right]$ vertices. It implies that, by the result (1.2) (iii), the graph $G = \overline{K_p} = K_1 \cup (p-1)K_1$.

Subcase: (i) If diam(G) = 1 then the components of the given disconnected graph becomes a complete graph with isolates. i.e) $G = K_t \cup (p - t)K_1$, $t \ge 2$. Since $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$ and $|t| \le \left[\frac{p}{2}\right]$, the graph structure is $G = K_t \cup (p - t)K_1$, where K_t is the complete graph of t vertices.

Subcase : (ii) If diam(G) = 2 then the components of the disconnected graph become $G_1 = P_3 \cup (p-3)K_1$ or $G_2 = K_{1,t} \cup (p-(t+1))K_1$ or $G_3 = C_4 \cup (p-4)K_1$. Then $\gamma_{M\chi}(G_1) < \left[\frac{p}{2}\right]$ and $\gamma_{M\chi}(G_2) < \left[\frac{p}{2}\right]$. In particular, $G_2 = K_{1,1} \cup (p-2)K_1 = K_2 \cup (p-2)K_1$ and $\gamma_{M\chi}(G_2) = \left[\frac{p}{2}\right]$. Since $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$ and $|t| \le \left[\frac{p}{2}\right]$, the majority dom-chromatic set *S* must contain $\left[\frac{p}{2}\right]$ vertices. Since *G* is disconnected graph with isolates, anyone component 'g' of *G* must be vertex color critical with $|V(S)| \ne t \le \left[\frac{p}{2}\right]$ and other remaining vertices are isolates. Hence the graph *G* takes the structure $G = K_t \cup (p-t)K_1$ where K_t is a complete graph which is vertex color critical and (p-t) isolates.

Subcase: (iii) Let $diam(G) \ge 3$. Then the disconnected graph becomes $G_1 = P_r \cup (p-r)K_1$ or $G_2 = D_{t_1,t_2} \cup (p - (t_1 + t_2))K_1$, where P_r is a path on r vertices and D_{t_1,t_2} is a double star with $(t_1 + t_2)$ vertices. The majority dom-chromatic number of these graphs G_1 and G_2 is $\gamma_{M\chi}(G) < \left[\frac{p}{2}\right]$. Since $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$, G must have a vertex color critical component 'g' and isolates. Hence $|V(S)| = t \le \left[\frac{p}{2}\right]$ and (p - t) isolates. Hence the only graph structure $G = K_t \cup (p - t)K_1$, where K_t is the complete graph of t vertices and $|t| \le \left[\frac{p}{2}\right]$.

Conversely, let $G = K_t \cup (p-t)K_1$, where $|t| \leq \left[\frac{p}{2}\right]$. Since K_t is the complete graph, it is a vertex color critical. Then by result (1.2) (iv), $\gamma_{M\chi}(G) = p$. If $|t| = \left[\frac{p}{2}\right]$ then the graph $G = K_{\left[\frac{p}{2}\right]} \cup \left(\left[\frac{p}{2}\right]K_1\right)$ and $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$. If $|t| < \left[\frac{p}{2}\right]$ then $|t| = \left[\frac{p}{4}\right]$. The graph G becomes $G = K_{\left[\frac{p}{4}\right]} \cup \left(p - \left[\frac{p}{4}\right]\right)K_1$. The majority dom-chromatic number $\gamma_{M\chi}(G) = \left[\frac{p}{4}\right] + \left(\left[\frac{p}{2}\right] - \left[\frac{p}{4}\right]\right) = \left[\frac{p}{2}\right]$. Suppose $|t| > \left[\frac{p}{2}\right]$ then $G = K_{t'} \cup (p - t')K_1$, where |t'| > |t|. Since $K_{t'}$ is a complete graph with t' vertices, $\gamma_{M\chi}(G) = t' > t = \left[\frac{p}{2}\right]$. Hence for a disconnected graph with isolates and $|t| \le \left[\frac{p}{2}\right]$, $\gamma_{M\chi}(G) = \left[\frac{p}{2}\right]$.

3. $\gamma_{M\chi}$ for complement of a graph *G*

Proposition: 3.1 Let the bipartite graph *G* with diam(G) = 3. Then $\gamma_{M\chi}(G) = \gamma_{M\chi}(\overline{G})$ if and only if $G = P_4$, where \overline{G} is the complement of *G*.

Proof: Let the equality holds and uv be the dominating edge of *G*. Let |N[u]| = m, |N[v]| = n and p = m + n. In the graph \overline{G} , both N(u) and N(v) are of cardinality 2. The set $\{N(u) \cup N(v)\}$ is a K_{m+n-2} graph, $\chi(\overline{G}) = m + n - 2$ and $\{N(u) \cup N(v)\}$ be the majority dom-chromatic set for $\overline{G} \Rightarrow \gamma_{M\chi}(\overline{G}) = m + n - 2$. Since $\gamma_{M\chi}(G) = \gamma_{M\chi}(\overline{G})$, $\frac{m+n}{2} = m + n - 2$. It implies that m + n = 4. Hence the graph must be P_4 and C_4 . The converse is obvious.

Proposition: 3.2 If the graph $G = K_p$ is the vertex color critical graph then $1 \le \gamma_{M\chi}(\bar{G}) \le \left[\frac{p}{2}\right]$.

Proof: Since the complete graph $G = K_p$ is the vertex color critical graph, $1 \le \gamma_{M\chi}(G) \le p$. The complement of K_p is $\overline{G} = \overline{K_p}$. By the result (1.2)(ii), the majority dom-chromatic number is $\gamma_{M\chi}(\overline{G}) = \left[\frac{p}{2}\right]$. And the lower bound attains for $\overline{G} = \overline{K_2}$. Hence the result.

Proposition: 3.3 Let $G = K_{m,n}$, $m \le n$ and $m, n \ge 3$ be a complete bipartite graph. Then majority dom-chromatic number of a complement \bar{G} is $\gamma_{M\chi}(\bar{G}) \ge \left[\frac{p}{2}\right]$ and $\gamma_{M\chi}(G) < \gamma_{M\chi}(\bar{G})$.

Proof: Let $\overline{G} = K_m \cup K_n$ be the complement of *G* where K_m and K_n both are complete graphs with *m* and *n* vertices.

Case: (i) Suppose m = n, n + 1, n + 2. Since K_m and K_n are vertex color critical and p = m + n, $\gamma_{M\chi}(\bar{G}) = n$ or n + 1 and $\gamma_{M\chi}(\bar{G}) = n + 2$. Hence $\gamma_{M\chi}(\bar{G}) = max\{m, n\}$.

Case: (ii) Let m < n and $n \ge m + 3$. Since K_m and K_n are vertex color critical and p = m + n, $m < \left[\frac{p}{2}\right]$ and $n > \left[\frac{p}{2}\right]$. Hence $\gamma_{M\chi}(\bar{G}) = max\{m,n\}$. If $G = K_{m,n}$, $m \le n$, then by the result(1.2) (v), $\gamma_{M\chi}(G) = 2$. By case (i), $\gamma_{M\chi}(\bar{G}) = n \text{ or } n + 1 = \left[\frac{p}{2}\right]$ and $\gamma_{M\chi}(\bar{G}) = n + 2 > \left[\frac{p}{2}\right]$. By case (ii), $\gamma_{M\chi}(\bar{G}) = n$, if m < n. It implies that $\gamma_{M\chi}(\bar{G}) > \left[\frac{p}{2}\right]$. Hence, $\gamma_{M\chi}(G) < \gamma_{M\chi}(\bar{G})$, if $m, n \ge 3$.

Proposition: 3.4 Let *G* be a bipartite graph with $diam(G) \ge 6$. Then $\gamma_{M\chi}(\overline{G}) \ge \gamma_M(\overline{G}) + 1$, if \overline{G} is the complement of *G* and $\gamma_M(\overline{G})$ is the majority dominating number of \overline{G} .

Proof: If $diam(G) \ge 6$, then $G = P_p$, $p \ge 7$. The complement \bar{G} contains two vertices with degree $\bar{d}(u_i) = p - 2$, i = 1, p and $\bar{d}(v_i) = p - 3$, i = 2, ..., p - 1. It gives that there are atleast two vertices with degree $\bar{d}(u_i) \ge \left[\frac{p}{2}\right] - 1$ and the majority dominating number of \bar{G} is $\gamma_M(\bar{G}) = 1$. Since \bar{G} contains a triangle, $\chi(\bar{G}) = 3$ and $\gamma_{M\chi}(\bar{G}) \ge 3$. Hence, $\gamma_{M\chi}(\bar{G}) \ge \gamma_M(\bar{G}) + 1$.

4. Bounds of $\gamma_{M\chi}(G)$

Proposition : 4.1 If *G* is a vertex color critical and a non-trivial connected graph with $p \ge 2$ then $2 \le \gamma_{M\chi}(G) \le p$. These bounds are sharp.

Proof: Since *G* is connected and non-trivial graph with $p \ge 2$, $\chi(G) \ge 2$ and $\gamma_{M\chi}(G) \ge 2$. Also since *G* is a vertex color critical graph , by known result (1.2)(iv), $\gamma_{M\chi}(G) = p$. Hence $2 \le \gamma_{M\chi}(G) \le p, p \ge 2$. When $G = K_2$ and $G = K_p$, the lower and upper bounds are sharp.

Proposition: 4.2 Let *G* be a connected bipartite graph with *p* vertices. Then $\gamma_{M\chi}(G) = p$ if and only if $G = K_p$, p = 2.

Proof: Let *G* be a connected bipartite graph with *p* vertices. Since $\gamma_{M\chi}(G) = p$, then the graph must be a vertex color critical. The only connected bipartite vertex color critical graph is K_2 . It implies that $G = K_2$. The converse is obvious.

Proposition: 4.3 If G be a graph of diam(G) = 3 then $\gamma_{M\chi}(G) = 2$ and $\gamma_{M\chi}(G) = \gamma_M(G) + 1$.

Proof: Let *G* be a connected graph and diam(G) = 3. Then the graph *G* has the structure with two central vertices *u* and *v* which are adjacent with some pendants. Then $G = P_4$ and $G = D_{r,s}$, $r \le s$ where *r* and *s* number of pendants at *u* and *v* respectively. Then by result ((i) 1.2), $\gamma_M(G) = |\{v\}| = 1$.

Case: (i) If s = r, r + 1, r + 2 then both *u* and *v* are adjacent to some number of pendant vertices. Since $\chi(G) = 2$, $S = \{u, v\}$ be the majority dom-chromatic set of *G* and $\gamma_{M\chi}(G) = |S| = 2$. Hence $\gamma_{M\chi}(G) = \gamma_M(G) + 1$.

Case: (ii) If r < s and $s \ge r + 3$. Choose $S = \{u, v\}$, where u and v are central vertices of G. Then $|N[S]| = d(u) + d(v) = r + s + 2 = p > \left\lfloor \frac{p}{2} \right\rfloor$.

Therefore, S is majority dominating set of G. Also $\chi(G) = 2 = \chi(\langle S \rangle)$.

Hence S will be the majority dom-chromatic set of G and $\gamma_{M\chi}(G) = |S| = 2$. Since $\gamma_M(G) = 1, \gamma_{M\chi}(G) = \gamma_M(G) + 1$. This result is true for $G = P_4$.

Proposition: 4.4 Let *G* be a bipartite graph of $diam(G) \le 5$. Then $\gamma_{M\chi}(G) = 2$ and $\gamma_{M\chi}(G) = \gamma_M(G) + 1$.

Proof: Since the graph *G* is bipartite, the graph structures are P_p , $p \le 6$, $K_{1,n}$, C_4 and K_2 .

Case : (i) Suppose diam(G) = 1, then the bipartite graph G becomes only K_2 . By result [5], $\gamma_M(G) = 1$ and $\chi(G) = 2$ and by result (1.2)(iv), $\gamma_{M\chi}(G) = 2$. Hence $\gamma_{M\chi}(G) = \gamma_M(G) + 1$.

case: (ii) If diam(G) = 2, then the graph structures be $G = P_3$ or $K_{1,n}$. By the result (1.2)(i), $\gamma_M(G) = 1$. Also by result (1.2)(vii), $\gamma_{M\chi}(G) = 2$. In both graphs, $\gamma_{M\chi}(G) = \gamma_M(G) + 1$.

case : (iii) Let diam(G) = 3. Then the graph becomes $G = P_4$ or and $D_{r,s}$. By Proposition (4.3), the result is true.

case: (iv) when diam(G) = 4 and 5, the bipartite graph is P_p , $p \le 6$. By the result (1.2)(i), $\gamma_M(G) = 1$. Since $\chi(G) = 2$, the set $\{v_2, v_3\}$ be the majority dom-chromatic set of *G*, where $v_2, v_3 \in V(P_5)$. Hence $\gamma_{M\chi}(G) = 2 = \gamma_M(G) + 1$.

Hence, for all cases, $\gamma_{M\chi}(G) = \gamma_M(G) + 1$.

Proposition: 4.5 Let *G* be a bipartite graph with $diam(G) \ge 6$. Then

- (i) $\gamma_{M\chi}(G) = \gamma_M(G)$, if $p = 1,2 \pmod{6}$
- (ii) $\gamma_{M\chi}(G) = \gamma_M(G) + 1$, if $p = 0,3,4,5 \pmod{6}$.

Proof: If the bipartite graph *G* with $diam(G) \ge 6$, then $G = P_p$, a path with p > 6. By the result (1.2)(i), $\gamma_M(G) = \left[\frac{p}{6}\right]$, for all $p \ge 7$ and by the result(1.2)(vii),

$$\gamma_{M\chi}(G) = \begin{cases} \left[\frac{p}{6}\right] = \gamma_M(G) &, if \ p \equiv 1,2 \ (mod \ 6) \\ \left[\frac{p}{6}\right] + 1 = \gamma_M(G) + 1 \,, if \ p \equiv 0,3,4,5 \ (mod \ 6) \end{cases}$$

Hence the result.

Proposition: 4.6 Let G be a 3-regular bipartite graph with p vertices. Then

$$\gamma_{M\chi}(G) = \begin{cases} \left[\frac{p}{8}\right] &, if \ p \equiv 2,4 \ (mod \ 8) \\ \left[\frac{p}{8}\right] + 1 &, if \ p \equiv 0,6 \ (mod \ 8). \end{cases}$$

Proof: Let $V_1(G) = \{v_1, v_2, ..., v_{\frac{p}{2}}\}$ and $V_2(G) = \{u_1, u_2, ..., u_{\frac{p}{2}}\}$ with p = 2m.

Case: (i) Let $p \equiv 2, 4 \pmod{8}$. Let $S = \{v_1, u_1, v_j, v_{j+1}, \dots, v_t\}$ be the subset of G with $|S| = t = \gamma_{M\chi}(G)$ such that $d(v_1, u_1) = 1$ and $d(v_i, u_j) \ge 4$. Then

$$|N[S]| = |N[v_1] + N[u_1]| + \sum_{j=1}^{t-2} d(u_j) - (t-2) = 6 + 4(t-2) = 4t - 2$$

 $\geq \left[\frac{p}{2}\right]. \text{ Let } p = 8r + 2. \text{ Then } |N[S]| = 4t - 2 = 4\left[\frac{p}{8}\right] - 2 = 4\left(\frac{8r+2}{8}\right) - 2 = \frac{p}{2} - 2 + 2 > \left[\frac{p}{2}\right]. \text{ Let } p = 8r + 4. \text{ Then } |N[S]| = 4t - 2 = 4\left[\frac{p}{8}\right] - 2 = 4\left(\frac{8r+4}{8}\right) - 2 = \frac{p}{2} - 2 + 2 > \left[\frac{p}{2}\right]. \text{ Since } d(v_1, u_1) = 1, \text{ the induced subgraph} < S > \text{ contains } K_2 \text{ and } \chi(<S>) = 2 = \chi(G). \text{ Thus } S \text{ is a majority dom-chromatic set of } G \text{ and } \gamma_{M\chi}(G) \leq |S| = \left[\frac{p}{8}\right].$ (1)

Suppose that $S = \{v_1, u_1, v_j, ..., v_t\}$ with $|S| = t = \gamma_{M\chi}(G)$ such that $d(v_1, u_1) = 1$, $d(v_i, v_j) \ge 4$ and $|N[S]| \ge \left[\frac{p}{2}\right]$. Since *S* contains the induced subgraph K_2 and $\chi(\langle S \rangle) = 2 = \chi(G)$. Therefore $|N[S]| \le 4t = 4\gamma_{M\chi}(G)$. Since $|N[S]| \ge \left[\frac{p}{2}\right]$, $\left[\frac{p}{2}\right] \le 4\gamma_{M\chi}(G)$. It implies that $\gamma_{M\chi}(G) \ge \frac{1}{4}\left[\frac{p}{2}\right]$.

Hence
$$\gamma_{M\chi}(G) \ge \left[\frac{p}{8}\right].$$
 (2)

Combining (1) and (2), $\gamma_{M\chi}(G) = \left[\frac{p}{8}\right]$, if $p \equiv 2, 4 \pmod{8}$.

Case : (ii) Let $p \equiv 0, 6 \pmod{8}$. Let $S_1 = \{v_1, u_1, v_j \dots, v_t\}$ be the subset of V(G) with $|S_1| = t_1 = \left\lceil \frac{p}{8} \right\rceil + 1 = \gamma_{M\chi}(G)$ and $\chi(\langle S_1 \rangle) = 2$. Let p = 8r. Then $|N[S_1]| = 4t - 1$

 $2 = 4\left(\left[\frac{p}{8}\right] + 1\right) - 2 = 4\left(\frac{8r}{8} + 1\right) - 2 = 4\left[\frac{p}{8}\right] + 2 > \frac{p}{2} + 2 > \left[\frac{p}{2}\right]. \text{ Let } p = 8r + 6. \text{ Then } |N[S_1]| = 4t_1 - 2 = 4\left(\left[\frac{p}{8}\right] + 1\right) - 2 = 4\left(\frac{8r+6}{8} + 1\right) - 2 = 4\left[\frac{p}{8}\right] + 2 > \frac{p}{2} + 2 > \left[\frac{p}{2}\right].$ Hence $|N[S_1]| \ge \left[\frac{p}{2}\right].$ Therefore S_1 is a majority dom-chromatic set of G and $\gamma_{M\chi}(G) \le |S_1| = t_1 = \left[\frac{p}{8}\right] + 1$. Applying the same argument as in case (i), $\gamma_{M\chi}(G) \ge \left[\frac{p}{8}\right] + 1$. Hence $\gamma_{M\chi}(G) = \left[\frac{p}{8}\right] + 1$, if $p \equiv 0, 6 \pmod{8}$.

Proposition: 4.6 If the graph G is a bipartite with $diam(G) \le 2$ then $\gamma_{M\chi}(G) \le p - \Delta(G) + 1$ and $\gamma_{M\chi}(G) = p - \Delta(G) + 1$ if and only if $G = K_2$, P_3 and $K_{1,p-1}$, $p \ge 2$.

Proof: Let *G* be a bipartite graph with $diam(G) \leq 2$. If $\Delta(G) = 1$, the graph *G* becomes K_2 . By the result (), $\gamma_{M\chi}(G) = 2 = p - \Delta(G) + 1$, if $G = K_2$. If $\Delta(G) = 2$, the graph structures becomes P_p , a path and $K_{2,2}$. Since $diam(G) \leq 2$, if $G = P_3$, by the result (1.2)(vii), $\gamma_{M\chi}(G) = 2 = p - \Delta(G) + 1$ and $\gamma_{M\chi}(K_{2,2}) = 2 . Suppose <math>\Delta(G) = 3$. Then $G = K_{3,3}$. By the result (1.2)(v), $\gamma_{M\chi}(K_{3,3}) = 2 . If <math>\Delta(G) \geq 4$ then the graph *G* becomes $K_{m,n}$, $m = n \geq 4$. By the result (1.2)(v), $\gamma_{M\chi}(G) = 2 . This is true for <math>\Delta(G) = 1, 2, 3, ..., (p - 2)$. Suppose $\Delta(G) = p - 1$. Then the only bipartite graph $G = K_{1,p-1}$. By the result (1.2)(ix), $\gamma_{M\chi}(G) = 2 = p - \Delta(G) + 1$. Hence from the above cases, $\gamma_{M\chi}(G) \leq p - \Delta(G) + 1$. Also from the above cases, $\gamma_{M\chi}(G) = K_2$, P_3 and $K_{1,p-1}$, $p \geq 2$.

Proposition: 4.7 Let *G* be a bipartite graph with diam(G) = 3. Then $\gamma_{M\chi}(G) \le p - \Delta(G)$. Also $\gamma_{M\chi}(G) = p - \Delta(G)$ if and only if $G = P_4$ and $D_{r,s}$, r = 1 and s = p - 3.

Proof: Let *G* be a bipartite graph with diam(G) = 3. By the result (1.2)(x), $\gamma_{\chi}(G) \le p - \Delta(G)$. Since $\gamma_{M\chi}(G) \le \gamma_{\chi}(G)$, $\gamma_{M\chi}(G) \le \gamma_{\chi}(G) \le p - \Delta(G)$. Hence $\gamma_{M\chi}(G) \le p - \Delta(G)$.

Let
$$\gamma_{M\chi}(G) = p - \Delta(G).$$
 (1)

Case : (i) Since diam(G) = 3, the graph *G* has a dominating edge uv with some pendants at *u* and *v*. Let $V(G) = \{u, v, u_1, ..., u_r, v_1, v_2, ..., v_s\}$ where $u_i, i = 1, ..., r$ and $v_j, j = 1, ..., s$ are pendants with $r \le p - 3$ and $s \ge 1$. Clearly, since *G* is bipartite, $\chi(G) = 2$. By the assumption (1), $S = \{u, v, v_1, ..., u_t\}$ is a majority dom-chromatic set with $|S| = p - \Delta(G) = t$.

Subcase: (i) Let d(u) = p - 2 and d(v) = 2. Since *G* has a dominating edge e = uv, $\gamma_{M\chi}(G) = |S| = 2$. By the assumption (1), $\gamma_{M\chi}(G) = p - \Delta(G)$. It implies that 2 = p - 2

 $d(u) \Rightarrow 2 = p - (p - 2)$. It gives the structure of the graph *G* with d(u) = p - 2, d(v) = 2 and the graph is $G = D_{r,s}$, r < s with r = 1 and s = p - 3.

Subcase: (ii) Let $d(u) \le p - 3$ and $d(v) \ge 3$. The majority dom-chromatic set for the graph *G* is $S = \{u, v\}$. It implies that $\gamma_{M\chi}(G) = |S| = 2$. By the assumption (1), $\gamma_{M\chi}(G) = p - \Delta(G) = p - d(u) = p - (p - 3) = 3$. Hence, $\gamma_{M\chi}(G) .$

Subcase: (iii) If d(u) = p - 2 and d(v) = p - 2 then the majority dom-chromatic set becomes $S = \{u, v\}$. It implies that $\gamma_{M\chi}(G) = |S| = 2$. By the assumption (1), $\gamma_{M\chi}(G) = p - \Delta(G) = p - d(u) \Longrightarrow 2 = p - (p - 2)$. Since d(u) = p - 2 and d(v) = p - 2, $r = s = 1 \Longrightarrow p = r + s + 2 = 4$.

Hence the graph G with p = 4 vertices and diam(G) = 3 is P_4 .

Case: (ii) Suppose *G* has no dominating edge e = uv. Then the graph *G* is a wounded spider with diam(G) = 3 and the graph contains a vertex *u* with $d(u) = \frac{p}{2}$ and $d(u_i) \le 2, u_i \in (V(G) - \{u\})$. Hence $S = \{u, u_1\}$ be the majority dom-chromatic set of *G* with $d(u_1) = 2$, where $d(u, u_1) = 1$ and $\gamma_{M\chi}(G) = |S| = 2$. By the assumption (1), $\gamma_{M\chi}(G) = p - \Delta(G) = p - \frac{p}{2} = \frac{p}{2}$. Hence $\gamma_{M\chi}(G) .$

Thus, $\gamma_{M\chi}(G) = p - \Delta(G)$ if and only if $G = P_4$ and $D_{r,s}$, r = 1 and s = p - 3.

5. Conclusion

In this paper, we studied majority dom-chromatic number for a bipartite graph. The characterisation theorems on $\gamma_{M\chi}(G)$ for bipartite graphs are established and its relationship with other domination parameters are discussed. Some results of a disconnected graph and the majority dom-chromatic number for the complement \overline{G} of the graph *G* are investigated.

REFERENCES

[1] Chaluvaraju, B. and Appajigowda, C. - *The dom-chromatic number graph*, Malaya Journal of Matematik, vol 4(1), 1-7, (2016).

[2] Haynes, T.W., Hedetniemi Peter, S.T. and Slater, T. – *Fundamentals of domination in graphs*, Marcel Dekker Inc, Newyork , (1998).

[3] Janakiraman, T.N. and Poobalaranjani, M. - *Dom-chromatic sets of graphs*, International Journal of Engineering Science, Advanced

Computing and Bio-Technology, Vol. 2, No.2, April-June 2011, 88-103,

[4] Joseline Manora, J. and Mekala, R.- *Majority dom-chromatic set of a graph*, Bulletin of Pure and Applied Sciences, Vol.38E(Math & Stat), No.1, 289-296, (2019).

[5] Joseline Manora, J. and Swaminathan, V. - *Results on majority dominating sets*-Scientia Magna - Dept.of mathematics, Northwest university, X'tian, P.R. China), vol.7, No.3, 53-58, (2011).

[6] Joseline Manora, J. and Swaminathan, V. - *Majority dominating sets in graphs* -I, Jamal Academic Research Journal, Vol.3, No.2, 75-82, (2006).

[7] Paulraj Jayasimman, I., Joseline Mnora, J. and Swaminathan, V., Results on majority domatic number of a graph, IEEE conference proceedings Advances in Engineering, Science and Management (ICAESM), 2012.