

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 1

Challenges in .NET Development and Potential

Improvements

Bhanuprakash Madupati

MNIT, MN

Abstract

The .NET framework has become the most popular and efficient for developing web, desktop, and mobile

applications. However, as. Several challenges still necessitate solution development for the NET to

advance and facilitate the work of developers towards better results. These are critical subtopics that

appear in the context of microservices architecture, cross-platform development, and security concerns

specific to ASP.NET, along with integration of Continuous Integration/Continuous Deployment (CI/CD)

pipelines. This paper describes these challenges and possible enhancements to fix them. The IT Unit can

enhance microservices, cross-platform capabilities, security, and CI/CD with desired optimizations to

benefit the firm. In this manner, the NET ecosystem can offer better support to meet the demands of the

contemporary software development process.

Keywords:.NET Development, Microservices, ASP.NET Core, Cross-PLatform, Security Issues,

Continuous Integration and Delivery, Azure DevOps

1. Introduction

The .NET framework is one of the most vital tools in today's world of software development. Microsoft

created it and offered a vast operational platform for developers of different types of applications. As it

has evolved from the conventional dot com business model, Extend NET Framework to the cross-

platform.NET Core and now …NET 5/6, it has also brought new opportunities alongside the challenges.

The examples include, but are not limited to, the growing use of microservice architectures for building

software systems, the growing trend in cross-platform development, and the ever-growing reliance on

cloud-based services. The demands of NET developers are these plus performance and security issues,

which they have to meet.

However, it has its pros and cons, and the following are the disadvantages of this mode of communication.

NET development poses several challenges, which, if poorly managed, can slow down the applications'

productivity and scalability. Key issues emerge in the following areas: Key issues emerge in the following

areas:

Microservices architecture, while providing flexibility and scalability, introduces challenges in container

management and inter-service communication.

The adoption of cross-platform development, especially when using ASP.NET Core, with the issue of

sometimes poor performance and differing library support depending on the Windows, Linux, or macOS

environment.

In as much as there is an impact of security in ASP, one has to enumerate some of the security threats as

follows: NET, which is still leading applications into areas of risk such as SQL injection and cross-site

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 2

scripting (XSS).

Continuous Integration and Continuous Deployment (CI/CD) procedures in the .NET environments,

where the acceleration of the development pipeline in other cloud-based services like Azure DevOps is

still an issue.

This paper aims to identify these critical challenges in .NET development and recommend improving

productivity, performance, and security. By tackling these factors, developers will be in a better position

to leverage the potential of the .NET ecosystem and maintain their competitive advantage within an

environment characterized by rapid technological advancement.

2. Challenges in Microservices Architecture

The change towards microservices architecture has been a facade of one of the leading trends in today's

software development. NET ecosystem. Microservices are designed to create expandable, controllable,

and deployable modular applications, which are more flexible than conventional monolithic architectures.

In this article, we will discuss microservices as a software design pattern and how they offer great

scalability, flexibility and ease of deployment capabilities but are very hard to achieve for developers using

these patterns. NET applications. Most of the challenges we face are related to containerization, inter-

service communication, and orchestration management, which lead to additional complexity and

overheads during both development and deployment.

2.1 Containerization Difficulties

Containerization, a key attribute of microservices, packages each modular service with its dependencies

to run independently. This independence makes services more scalable and easier to manage. In the .NET

ecosystem, people often use tools such as Docker and Kubernetes to manage containers for microservices.

However, despite this, it is also one of the most difficult pieces to integrate with Tools like React and the

.NET environment.

The problem becomes even bigger when efficiently managing the resources those containers use. Every

microservice needs separate resources, i.e. memory and CPU, and if multiple services are running at that

time, it can go out of system resources very quickly. This requires resource orchestration to effectively

allocate the right amount of resources for services on demand. At the same time, Kubernetes manages

resource allocation and scaling (and is a widely used orchestration tool), its integration with. As a result,

managing such distributed workloads and containers is always challenging for .NET Core services.

In addition, many developers find it difficult to deploy containers uniformly across different environments

(dev, test, prod). Disparate configurations between environments can cause deployment failures and

require additional effort to keep things in sync.

2.2 Inter-Service Communication Complexities

In a microservices architecture, services need to communicate with each other, share data, and perform

actions. Components in monolithic applications share the same process, whereas microservice

components communicate over a network using RESTful APIs, gRPC or message queues. Although these

communication methods allow more flexibility and decoupling between services, they also bring

additional complexity.

The biggest problem is Latency. Given that a high volume of microservices calls are required, requests

may take much longer to process since some services might be deployed on different nodes, even in

different cloud regions. This results in network congestion, especially in applications where the speed of

processing can make or break the application, as Liu et al. highlight. As [1] highlights, once the number

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 3

of microservices increases, controlling network load management becomes very hard, and communication

overhead becomes obvious.

There is also the need to maintain consistency in data across your services. In single application cases, all

components use a database and share the same one, so there are some constraints to keeping data

consistent. However, in microservices, you have one service and likely a separate data table, which means

data is eventually consistent — meaning that the underlying supporting data across services might be

inconsistent (which can be damaging or not). This leads to complex solutions in the form of distributed

transactions or event-driven architectures on how data integrity is maintained across services.

Service discovery and Load balancing: One of the challenges in microservices moving to a cloud

environment is the service interaction between them. In environments where new services are added, and

old services killed left and right, finding the right instance of a service to communicate with is often

challenging. Consult or Kubernetes ' in-built service discovery, but integrate these tools into the. When

code outside smack in the middle of a .NET ecosystem is considered, things get complex and must be set

up.

2.3 Orchestration Management Challenges

Orchestration is central to managing a microservice lifecycle, which includes deployment, scaling, and

failure recovery. For a large microservices-based system, this would mean manually managing and

tracking dozens (even hundreds) of microservices. Orchestration platforms like Kubernetes are where this

comes in—an evolution for orchestrating microservices. However, programming in the .NET environment

is not easy.

As highlighted by Liu et al., when service dependencies exist [1], orchestration management becomes

more complex. Cascading failures occur due to service dependencies, where the failure of one service

triggers other dependent services to fail. It is important to ensure services are micro and independent

enough (i.e., they can recover from failures). However, it is fairly hard in the NET world, where services

can be tightly coupled.

Besides, it is not easy to orchestrate stateful services and next up on the series. Stateless Services: This is

the simpler type of service to scale since there is no shared state. On the other hand, stateful services are

hard to orchestrate because they require data to be kept after an instance failure. Persisting data, fault-

tolerance and load-balancing on a replicated stateful service is a more advanced orchestration that comes

with complexity, sometimes cluttering development cycles.

Fig: Workflow orchestration management

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 4

2.4 Debugging and Monitoring Microservices

Debugging and monitoring are other big challenges in microservices architecture. Monolithic applications

allow you to debug your code in a single shot, but microservices-based development forces you to find

the root cause across services running on different nodes. This complicates debugging since developers

need to know more about how services work with each other and the main reason for the failures.

To manage a microservices-based system, you need good logging and monitoring systems. Prometheus

and Elastic Stack are great monitoring tools that let developers monitor service response times, memory

usage, network throughputs, etc. However, it might not be easy to integrate these monitoring tools with

the. Developing software within the .NET ecosystem can be hard. Ensure that your services are properly

configured to generate system and application-level metrics and logs to be consumed by those tools.

Secondly, the size and quantity of logs produced by many services will make it easier to follow what is

necessary with some advanced log management solutions.

2.5 Potential Solutions for Microservices Challenges

Instead of microservices architecture, to address these challenges, in our proposal. With the NET, a few

more things need to work better:

Kubernetes is a very powerful tool, but it was likely not intended to be used particularly for data

engineering workloads—enhanced Container Orchestration: A lot of the integration between. Managing

resources, service discovery and load balancing have become easier with the .NET framework and

container orchestration platforms like Docker and Kubernetes. Anytime you take some configurations out

or add automated scalability, you reduce the operational overhead on developers.

More Better Logging and Monitor Frameworks: Integrate. Aligning .NET applications to this new norm

of Prometheus, Elastic Stack, and other monitoring tools can help you expand your visibility into

application performance. This enables them to identify problems earlier and quickly respond to failures.

Distributed Transactions and Fault Tolerance: Distributed Transactions and Fault Tolerance: Introduce

native distributed transactions and fault tolerance mechanisms in the. Some general tips from this approach

in the .NET ecosystem can be crucial for increasing the resiliency of our microservices-based applications.

This will make managing data consistency and service dependencies much easier.

In doing so, the. NET support for microservices architecture will hopefully give the core constituents of

the .NET ecosystem more freedom and ease to harness these capabilities without overwhelming their

weight.

3. Cross-Platform Development Issues

With the introduction of ASP.NET Core, Microsoft aimed to make .NET development fully cross-platform,

meaning developers could create applications that run seamlessly across Windows, Linux, and macOS.

This was a major step forward for the .NET ecosystem, enabling it to move beyond the Windows-only

domain and serve a broader range of operating systems. However, despite these advances, developers still

face significant challenges when building cross-platform applications using ASP.NET Core.

3.1 Performance Discrepancies Across Platforms

One of the most pressing issues developers encounter is applications' varying performance depending on

the operating system. The goal of .NET Core is to provide consistent behaviour across platforms, but in

practice, applications often perform differently depending on the environment in which they are run. These

discrepancies can be attributed to several factors, including differences in system libraries, file systems,

and network configurations.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 5

For instance, Windows, being the native platform for .NET, tends to deliver optimal performance,

particularly in operations that involve low-level system interactions such as memory management, file

handling, and network communication. However, when the same applications are run on Linux or macOS,

developers often notice performance degradation or incompatibilities, particularly in areas where the

application interacts directly with the operating system's subsystems. Shakya [2] notes that features related

to system-level interactions, such as file input/output and memory management, typically perform

efficiently on Windows but may exhibit delays or inconsistencies on Linux or macOS. This variability in

performance often leads to additional debugging and optimization efforts, which can undermine the

intended benefits of cross-platform development.

Moreover, these discrepancies require developers to test applications thoroughly across all targeted

platforms, adding to the overall development and maintenance burden. While .NET Core was designed to

abstract away platform-specific differences, these issues persist, making true cross-platform parity

difficult to achieve.

3.2 Tooling and Debugging Limitations

Another significant challenge lies in the development tools available across platforms. Visual Studio on

Windows is a comprehensive IDE with advanced debugging, profiling, and development features.

However, its counterparts on Linux and macOS, such as Visual Studio Code and Visual Studio for Mac,

lack some of the robust features required for building and maintaining large enterprise applications.

While popular and flexible, Visual Studio Code is a lightweight text editor that lacks some of the advanced

debugging and profiling capabilities found in the full Visual Studio IDE. Similarly, although Visual Studio

for Mac offers many of the same features as its Windows counterpart, it does not provide full parity

regarding performance profiling, advanced debugging tools, and integration with enterprise-grade

development environments. These limitations make it difficult for developers working on Linux or macOS

to replicate the smooth development experience on Windows, particularly when debugging complex cross-

platform applications.

This gap in tooling creates a fragmented development experience, where developers working on different

operating systems must rely on workarounds or third-party tools to achieve the same level of functionality.

This fragmentation undermines the consistency that cross-platform development aims to provide, leading

to increased development time and higher complexity.

3.3 Library and Framework Support

A further challenge in cross-platform development using ASP.NET Core is the inconsistent support for

third-party libraries and frameworks across operating systems. While many libraries are compatible with

.NET Core and support cross-platform development, certain libraries remain Windows-specific, making

them unusable on Linux or macOS. These limitations force developers to either rewrite portions of their

application or introduce platform-specific code to handle these incompatibilities.

Shakya [2] explains that this lack of platform-agnostic support for libraries can significantly increase the

development time, as developers must test and debug applications on multiple platforms to ensure

consistent functionality. Additionally, developers often face issues with package compatibility when

working on different operating systems, requiring them to find alternative libraries or introduce custom

code for certain platforms. This increases the overall complexity of maintaining a cross-platform

application, as developers must manage different codebases or configurations depending on the target

platform.

Moreover, inconsistencies in system libraries—particularly those that interact with the operating system's

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 6

file system, network stack, or hardware—can lead to performance bottlenecks or outright failures.

Developers working on Linux or macOS may need to adjust their code to account for differences in how

these systems handle processes, memory, and I/O operations, which can introduce new bugs or lead to

unintentional behaviour.

3.4 Proposed Solutions for Cross-Platform Development

Several enhancements are necessary to improve cross-platform development in ASP.NET Core. First, there

is a need for platform-specific optimizations for Linux and macOS to ensure that performance and

functionality are as close to the Windows environment as possible. Microsoft should focus on optimizing

system-level operations—such as file handling, memory management, and network communication—for

these platforms to reduce performance discrepancies.

Second, the tooling gap must be addressed. Microsoft can improve the debugging and profiling capabilities

of Visual Studio Code and Visual Studio for Mac to provide more robust development environments on

non-Windows platforms. Enhanced support for enterprise-grade development tools, such as improved

performance profiling and deeper integration with third-party libraries, would significantly improve the

developer experience across platforms.

Third, concerted effort should be to standardize library support across platforms. Ensuring that commonly

used third-party libraries are fully compatible with Linux, macOS, and Windows would reduce the need

for platform-specific code and make the development process smoother and more efficient. By fostering

better collaboration between library maintainers and the broader .NET community, Microsoft can help

ensure developers do not face significant hurdles when building cross-platform applications.4. Security

Vulnerabilities in ASP.NET

Security has been a concern for developers, especially when developing using ASP.NET. Even though

Microsoft continues to improve the framework's security, applications are developed within ASP.NETs

remain at risk of known weaknesses such as SQL injection, XSS, and CSRF. These weaknesses can result

in information leakage, system and data manipulation, and illegitimate access to online applications.

One of the most common problems in ASP is that it is one of the most commonly affected areas of SQL

injection. This happens when the attacker can supply data to form an SQL query, enabling the execution

of dynamic SQL where the database and its contents can be manipulated. Although ASP. As for security,

NET offers the possibility of avoiding such an attack, including Entity Framework and parameterized

queries, but developers often misuse these protections. It is, however, important to note what Alamro and

El-Qawasmeh [3] establish that it is common to find many ASPs.Unfortunately, most NET websites still

have poor input validation; thus, they remain errant to SQL injection attacks. This indicates that firms

must adhere to the recommended security practices more stringently.

Fig 1: SQL Injection in ASP .Net

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 7

Another vulnerability of ASP is cross-site scripting (XSS). NET applications.XSS enables an attacker to

input his or her scripts into the web pages viewed by other users, resulting in session putting, password

stealing, and other issues. As mentioned by Alamro and El-Qawasmeh [3], poor handling of users' input

and insufficient output encoding are the main causes of XSS vulnerabilities in ASP.NET websites.

Although there are works like Microsoft's AntiXSS library and other security measures, developers still

need to sanitize user inputs properly.

Protecting most modern web applications is also associated with CSRF, cross-site request forgery.CSRF

attacks involve man-in-the-middle techniques in which an authenticated user is manipulated to perform

undesired operations in a Web application. The ASP.NET framework comes with features that help prevent

CSRF attacks, such as using anti-forgery tokens, though developers must implement these measures in

their systems. Failing to do so means that applications are susceptible to unauthorized actions being

performed therein, much to the chagrin of unsuspecting users.

To address these vulnerabilities, developers must employ more arduous measures for vulnerability-free

ASP coding.NET applications. This includes input validation, usage of secured frameworks, and following

security measures that Microsoft provides, among other precautions. Moreover, utilizing automated

security testing tools as a part of the SDLC can also assist with identifying potential weaknesses and their

immediate rectification.

4. Continuous Integration and Continuous Deployment (CI/CD) in.NET

Thus, continuous integration and deployment are now fundamental practices in modern software

development, allowing the team to optimize application build and testing. For .NET developers, the CI/CD

pipeline, together with Azure DevOps, is one of the most well-known such integrations. However, it is

concerned with implementing and optimizing these processes within the .NET ecosystem, which offers a

number of tasks that may hamper development efficiency and result in deployment issues.

As for the main difficulties in implementing CI/CD, several key issues can be identified, such as the

complexity of pipeline configuration, which is applicable in Azure DevOps environments. As for

Dileepkumar and Mathew [1], the setup of these pipelines that follow project-specific requirements like

testing frameworks, build environments, and cloud can be challenging. Other concerns are in build agents,

dependency and test environments where developers struggle to need help with (Windows and Linux)

configurations. These can cause several hardships that affect the CI/CD process and further prolong

deployment and release times.

One must do this well to ensure complex applications with heavy traffic flow run efficiently and

effectively. In enterprise environments, a .NET application may consist of a number of services,

dependencies, or configurations that should be deployed across different platforms and clouds. Thus, the

issues regarding configuration management and dependency resolution demand more attention. According

to Dileepkumar and Mathew [4], if pipeline management is not done properly, build failures and

deployment rollbacks are common and hinder the release cycle.

Further, the persistent testing process in CI/CD pipelines raises challenges. Integration testing must also

be done and should involve automated testing to confirm that the code is sound before it is deployed to

the target environment. Nevertheless, defining unit tests, integration tests, and UI tests within CI/CD

pipelines for .NET applications can sometimes be cumbersome to develop, particularly where the

application works with other dependencies or services. It is important to ensure that tests are separate,

predictable, and quick to minimize the time a pipeline is blocked on tests.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 8

To overcome these challenges, solutions in the form of pipeline management tools and practices are

needed. They are enhancing the build agents, managing dependencies more effectively, and using

structural modularity while configuring pipelines can improve CI/CD practices. Thirdly, integrating with

other cloud services, such as Azure, can improve the scalability and deployment of large-scale .NET

environments.

Figure 2: CI/CD Pipeline for .NET projects

5. Potential Improvements

Solving the problems associated with microservices architecture, cross-platform development, security

issues, and CI/CD is crucial for the further development of tools.NET.Below are some possibilities to

increase the effectiveness of the concerning the productivity, scalability, and security of the NET

ecosystem.

5.1 Enhancements in Microservices Architecture

To handle issues of microservices architecture, there is improved coupling between. Understanding NET

and container orchestration tools such as Docker and Kubernetes is relevant to the task. A set of tools that

allows for service discovery, resource orchestrations, and load balancing can ease some of the burden

developers experience when managing distributed services. Also, better logging and monitoring

frameworks are needed. Features that could be added to Net, such as better integration with Prometheus

or Elastic Stack, would give developers a much-needed better view of the state of the system and its

performance and when things go wrong, it would enable them to find the root cause much earlier.

Additional features for distributed transactions and fault tolerance mechanisms could make creating more

resilient microservice-based applications less cumbersome.

Table 1: Comparison of Logging and Monitoring Tools for .NET Microservices

Feature Prometheus Elastic Stack Integration with .NET

Monitoring Yes Yes Full support through plugins

Logging Limited Full (via Elasticsearch) ElasticSearch, Kibana integrations

Alerting Basic (via Alertmanager) Advanced (via Watcher) Can be integrated with .NET apps

Scalability High High Easy scaling with microservices

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 9

Figure 3: Microservices Architecture with Improved Orchestration

5.2 Enhancing Cross-Platform Development

As such, to achieve better cross-platform performance,.NET could have more mature platform-specific

libraries and the underlying debugging toolset for Linux and macOS platforms. Microsoft should persist

in applying resources in such tools as Visual Studio for Mac and Visual Studio Code to achieve

compatibility with the better editions designed for Windows. Moreover, tearing down inconsistencies

between system platforms and achieving better system libraries and file management unity will help

minimize the current fragmentation that developers confront. Greater platform-unchanged assistance for

third-party libraries would also decrease the volume of platform-centered workaround demands on

developers.

Figure 4: Cross-Platform Development Toolset for .NET

5.3 Improving Security in ASP.NET

To minimize the threats resulting from security risks associated with ASP.NET applications, they have to

develop more secure applications in the complete development lifecycle. Static code analysis and

vulnerability scanning are automated security testing tools that should be included in the CI/CD process

since they identify security issues early. Furthermore, it raises developers' awareness about security

development best practices and offers stronger default settings for frequently seen security problems such

as SQL Injection, XSS, etc. Developers should adopt Microsoft's AntiXSS library and OWASP best

practices to incorporate security as a priority.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 10

Figure 5: Secure Development Lifecycle for ASP.NET

5.4 Streamlining CI/CD Processes

To efficiently set up CI/CD pipelines. In Azure DevOps, developers can be expected to learn that pipeline

build agents in NET can be improved, as well as the method of managing dependencies in pipelines. In

pipeline configuration, modularisation configurations and automation, the process of determining

dependencies necessary for a build is recommended. The process of resolving these dependencies can also

help to prevent build failures. Also, increasing the test automation quality by making tests more isolated

and efficient will result in faster deployment and reduce release cycles. It is also possible that future

enhancements of Azure DevOps that incorporate other cloud-based services can enable more seamless

direct deployment of applications at scale across distributed systems. This includes proper scaling and

making the pipelines more resilient, specifically for cloud-native use cases.

These proposed improvements address current issues and allow developers to leverage the.NET

ecosystem's evolving capabilities. Improving microservice, inter-platform compatibility, security, and

CI/CD initiatives will benefit, as will software delivery.NET and enhance it to become more competitive

and well aligned to the requirements of modern development.

6. Conclusion

In summary, the challenges that have been experienced in this study are as follows: NET developers can

be addressed through the following improvements: NET developers can be addressed through the

following improvements:

1. Microservices Architecture:

• Increased compatibility with containerization platforms such as Docker and Kubernetes.

• Improved diagnostics through better logging and monitoring.

• ELEIn general, there is more support for distributed transactions and tolerance to faults.

2. Cross-Platform Development:

• A continuation of developing and improving the modern platform-specific libraries and debuggers for

Linux and macOS.

• When the behaviour of the different system components must be similar across platforms.

• Better support for third-party libraries is needed to work across various platforms.

3. Security in ASP.NET:

• Increased rigorousness in implementing and using automated security testing tools in CI/CD pipelines.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230112048 Volume 5, Issue 1, January-February 2023 11

• Proper training of software developers to reduce the level of insecurity of the software.

• Increased utilization of AntiXSS tools and OWASP recommendations as integrating them into the

development cycle.

4. CI/CD Processes:

• Specifically, tune build agents and pipeline configurations for extremely large-scale applications.

• I am reconstructing application dependency management to be modularized and automated to

minimize occurrences of build failures.

• We are focused on optimizing the deployment speed and reliability by improving test automation

coverage.

By pursuing these improvements, the .NET ecosystem can overcome existing issues and further enhance

itself as a strong, adaptive, and safer environment for developing advanced applications.

References

1. G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, “Microservices: architecture, container, and

challenges,” 2020 IEEE 20th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Dec. 2020, doi: https://doi.org/10.1109/qrs-c51114.2020.00107.Available:

https://qrs20.techconf.org/QRSC2020_FULL/pdfs/QRS-C2020-

4QOuHkY3M10ZUl1MoEzYvg/891500a629/891500a629.pdf.

2. S. Shakya, “Cross Platform Web Application Development Using ASP.NET Core,” Culminating

Projects in Computer Science and Information Technology, May 2018. Available:

https://repository.stcloudstate.edu/csit_etds/23/.

3. H. Alamro and E. El-Qawasmeh, “Discovering security vulnerabilities and leaks in ASP.NET

websites,” Jun. 2012, doi: https://doi.org/10.1109/cybersec.2012.6246175.

4. S. R. Dileepkumar and J. Mathew, “Optimize Continuous Integration and Continuous Deployment in

Azure DevOps for a controlled Microsoft .NET environment using different techniques and practices,”

IOP Conference Series: Materials Science and Engineering, vol. 1085, no. 1, p. 012027, Feb. 2021,

doi: https://doi.org/10.1088/1757-899x/1085/1/012027.

5. G. Agarwal, Modern DevOps Practices. Packt Publishing Ltd, 2021.

6. A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen, “Design notations for secure software:

a systematic literature review,” Software & Systems Modeling, vol. 16, no. 3, pp. 809–831, Aug. 2015,

doi: https://doi.org/10.1007/s10270-015-0486-9

7. C. W. Fuller, “Continuous Integration/Continuous Delivery Pipeline for Air Force Distributed

Common Ground System (AF DCGS),” AFIT Scholar, 2020. Available:

https://scholar.afit.edu/etd/4540/.

https://www.ijfmr.com/
https://doi.org/10.1109/cybersec.2012.6246175

