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Abstract:  

Prediction distribution is a basis for predictive inferences applied in many real world situations. The 

Bayesian approach under uniform prior is employed in this paper to derive the prediction distribution for 

Simultaneous Auto-regressive model with multivariate Student-t error distribution. Conditional on a set 

of realized responses, a single and a set of future responses have a univariate and multivariate Student-t 

distributions respectively, whose degrees of freedom depend on the size of the realized sample and the 

dimension of the auto-regression parameters' vector but do not depend on the degrees of freedom of the 

error distribution. Results are identical to those obtained under normal error distribution by a range of 

statistical approaches such as the normal distribution, autocorrelations and classical methods. This 

indicates not only the inference robustness with respect to departures from normal error to multivariate 

Student-t error distributions, but also indicates that the Bayesian approach with uniform prior is 

competitive with other statistical methods in the derivation of prediction distribution. 
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Introduction: 

Simultaneous autoregressive (SAR) models have been used to describe the spatial variation of quantities 

of interest in the form of summaries or aggregates over regions, and have been applied for the analysis of 

data in diverse areas such as demography, economy and geography. SAR models are used for the general 

goal of unveiling and quantifying spatial relations present among the data, in particular, for detecting 

spatial clustering and assessing how quantities of interest are inuenced by explanatory variables. General 

accounts of SAR models have appeared in Anselin (1988), Haining (1990) and Cressie (1993). 

The prediction distribution of future response(s) can be derived from the simultaneous auto-regressive 

model for statistical predictive inferences. Predictive inference uses the observations from a realized  

experiment to  make inference  about  the performance of the future observation(s) of a future  experiment.  

Many authors have considered the linear regression model in prediction problems and they have been used 

different methods to derive the prediction distribution. General prediction problems  have  been  discussed  
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by  Jeffreys  (1961). Fraser and  Haq  (1970)  used  the  structural  distribution  approach,  Aitchison  and  

Dunsmore  (1975)  and Geisser (1993) used the Bayesian approach, and  Haq (1982) and Haq and Khan 

(1990) used the structural relations approach to obtain the prediction distribution from the linear model to 

mention a few. For details of predictive inferences and applications of prediction distribution interested 

readers may refer to Geisser (1993) and Khan (2004), and references therein.    

Most  of  the  authors  have  contributed  to  solving  the  prediction  problem  by  using  linear  models  

with independent and normal errors. Unlike others Rahman and Khan (2007) obtained prediction 

distribution for linear regression model with multivariate student-t errors under the bayesian approach and 

Haq and Khan (1990) obtained prediction distribution for the linear regression model with multivariate 

Student-t error terms by using the structural relation approach. In real  life  situations  when  the  underlying  

distributions  have  heavier  tails,  linear  models  with  multivariate Student-t  errors  have  been  

emphasized  and  used  by  Zellner  (1976),  and  Sutradhar  and  Ali  (1989)  among others. This study 

assumes that the error terms of the performed as  well as the  future  simultaneous auto-regressive models 

have a joint multivariate Student-t distribution, and obtains the prediction distribution(s) of future 

response(s) by the Bayesian method under a uniform prior distribution.  

Simultaneous Auto-regressive Model (SAR models): 

Description: Consider a geographic region partitioned into sub-regions indexed by the integers 1, 2, . . . , 

n. This collection of sub regions is assumed to be endowed with a neighborhood system, 

{Ni: i = 1,2,3, … … , n} ,where Ni denotes the collection of sub regions that, in a well defined sense, are 

neighbors of sub region i. This neighborhood system satisfies that for any I, j = 1,2, … … . , n, jϵNi if and 

only if iϵNiand Ni , and it is key in determining the dependence structure of the SAR model.  

An emblematic example commonly used in applications is the neighborhood system defined in terms of 

geographic adjacency 

Ni = {j: sub regions i and j share a boundary} , i = 1,2, … … , n.  

Other examples include neighborhood systems defined based on distance from the cancroids of sub regions 

or based on similarity of an auxiliary variable; see Cressie (1993, p. 554) and Case, Rosen and Hines 

(1993). This kind of specification is quite natural for modeling summary or aggregate data where similarity 

between sub regions often depends on similarity of shared features. 

For each sub region it is observed the variable of interest, Yi , and a set of p < n explanatory variables, 

Xi = (xi1, xi2, … . . , xip)
T
. The SAR model for the responses, Y = (Y1, Y2, … . . , Yp)

T
, is formulated by 

specifying a form of spatial 

autoregression given by 

Yi = XTβ + ∑ bij
n
j=1 (Yj − Xj

Tβ) + εi , i = 1,2, … . , n.  (2.1) 

Where  β = (β1, β2, … … , βp )
T

ϵRp  are unknown regression parameters, εi~N(0 , σi
2) are independent 

and bij and σi
2 are covariance parameters; let B = (bij)n×n

 and = diag(σ1
2, σ2

2, … . , σn
2) . Provided In− B is 

nonsingular, the n scalar equations in (2.1) can be written as 

Y = Xβ + (In − B)−1ε ,        (2.2) 
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Where X is the n × p matrix with ith row  Xi
T, assumed to have full rank, and ε = (ε1 , ε2 , … , εn)T , so 

Y~Nn{Xβ , (In − B)−1M(In − BT)−1}.  

Now let us consider the simultaneous auto-regressive model for an n × 1 dimensional vector y 

Y = Xβ + (In − B)−1ε ,        (2.3) 

Where X  is the design matrix of order an n × p (n > p) ;  β = (β1, β2, … … , βp )
T
 is a vector of p auto-

regressive parameters, and ε the  errors vector associated with the responses vector y. Assume that each 

elements  of  ε is  uncorrelated  but  not  independent  with  others  and  has  the  same  univariate  Student-

t distribution with location 0, scale σ > 0 and ν  degrees of freedom (d.f.). Thus the joint probability 

density function (p.d.f.) of ε is  

f(ε) = (σ2)−
n

2  ∏
1

√v B(
1

2
,
v

2
)

n
i=1  [

v
v+n

2

[v+σ−2εTε]
v+n

2

]     (2.4) 

We obtained from the above equation, mean of ε and variance of ε are E(ε) = 0, a vector of 0’s and 

cov(ε) = (v − 2)−1vσ2In for v > 0 in which In in an identity matrix. Hence the probability density 

function of the realized response vector y is y~tn(Xβ , σ , v) with the probability density function of y is 

(Joint/Multivariate t-distribution) given by 

  ∴   f(y|β, σ2) =  
(σ2)

−
n
2

v
n
2  β(

v+n

2
)  

 
v

v+n
2

[v+σ−2(y−Xβ)T(y−Xβ)]
v+n

2

         (2.5) 

 

Prior Distribution and Posterior Distribution:  

Another class of prior distribution is called Non-information prior distributions. Which are called the 

priors of ignorance. Suppose that we are now in a situation where we have no definite (subject or object) 

prior information. To make use of Bayesian methods of inference we are compelled to express our prior 

knowledge in quantitative terms, we need a numerical specification of the state of prior ignorance. A 

common approach is to invoke the “Bayes’-Lapalce principle of insufficient reason” expressed by Jeffreys 

(1961) in the way: If there is a reason to believe on hypothesis rather than another, the probabilities are 

equal to say that the probabilities are equal is a precise way of saying that we have no ground for choosing 

between alternatives. Rather than a state of complete ignorance, the Non-informative prior refers to the 

case when relative little (or very limited) information is available a priori. It frequently means that there 

exists a set of parameter values that the experimenter believes to be frequently likely choices for the 

parameter, as described by the principle of insufficient reason. The goal here is to select a prior distribution 

that is locally uniform, that is a prior that approximately uniform distributed over the interval of interest. 

Now adopting the invariance theory (Jeffreys, 1961), the joint prior density of parameters can be written 

as  

g(β , σ2)  ∝  σ−2 .                           (2.6) 

The posterior distribution of parameters for a set of sample observations is typically the major objective 

of the  Bayesian  statistical  analysis.  To  obtain  a  posterior  distribution  using  the  Bayes’s  Theorem  

a  prior distribution of unknown parameters is essential. From the equation (2.6) the joint posterior density 
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of  β  and σ2 for the realized responses y can be written as 

∴  f(β , σ2|y) ∝
(σ2)

−
n+2

2

v
n
2  β(

v+n

2
)  

 
v

v+n
2

[v+σ−2(y−Xβ)T(y−Xβ)]
v+n

2

       (2.7) 

Inference about unknown parameters β and σ2 from the above linear model has been considered in other 

studies (Zellner, 1976; Fraser and Ng, 1980). In this case, the study is concerned to derive the prediction 

distribution of future response(s) from the future model, conditional on the observed responses y from the 

realized model.  

 

The Bayesian Prediction Rule:  

If  X∗ be an unobserved future response from a future simultaneous auto-regressive model with the same 

simultaneous auto-regressive parameters and assumption of the realized model but  with different design  

matrix, then  under the Bayesian approach the prediction distribution of X∗ given y can be obtained by 

solving the following integral 

f(X∗|y) ∝  ∫ ∫ f(β , σ2|y) f(X∗)d
σ2>0β

σ2 dβ    (2.8) 

where f(β , σ2|y)  is the joint posterior density of unknown parameters β and σ2 that is provided in (2.7) 

and  f(X∗)  is  a  probability  density  of  the  future  response X∗  from  the  future  model.  This  principle  

is appropriate  when  the  future  response X∗  is  independently  distributed  from  the  observed  responses 

y  that means X∗ and y  are not dependent to each other. However, in this study the responses from the 

realized as well as the future models are dependent but uncorrelated. 

 

Prediction Distribution of a Set of Future Responses  

Let yf   be a set of nf    future responses from the model in (2.3) corresponding to the nf × p order design 

matrix Xf   and  nf × 1  dimensional errors vector εf . Thus the future model can be expressed as 

yf = Xfβ + (In − B)−1εf    (2.9) 

where, εf~tnf
(0, σ , v) , and hence yf~tnf

(Xfβ, σ , v).   

It is noted that mean and variance of  yf  are respectively Xfβ and σ2 = (In − B)−1M(In − BT)−1 

According to the assumption, the observed errors vector ε and the unobserved future errors vector εf are 

uncorrelated  but  not  independent  then  their  respective  observed  responses y    from  the  realized  

model  and unobserved  future  responses  yf from  the  future  model  are  also  dependent  but  uncorrelated.  

Thus the combined joint (Bivariate t-distribution)  probability density function (p.d.f.) of y and yf is written 

by  

f(y, yf|β, σ2) =  
G(

v+n+nf
2

)(σ2)
−

n+nf
2

v
n+nf

2  G(
v

2
)G(

n+nf
2

) 

 
1

[1+
σ−2(y−Xβ)T(y−Xβ)+(yf−Xfβ)

T
(yf−Xfβ)

v
]

v+n+nf
2

   

( univariate n=1, bivariate n=2 and multivariate n=n here bivariate n=n+nf  ) 
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∴  f(y, yf|β, σ2)∞ (σ2)−
n+nf

2  [v + σ−2θ]−
v+n+nf

2  .        (2.10) 

 Where θ = (y − Xβ)T(y − Xβ) + (yf − Xfβ)T(yf − Xfβ)and v is the d.f. of the errors distribution.  

 

Prior and Posterior Distribution: 

Using the prior density of the equation (2.6) and the joint p.d.f. of the combined responses yf    and y  in 

(2.10), the joint posterior density of  β  and σ2 for the combined responses  and   can be easily obtained 

by the Bayes’s Theorem, as 

f(β, σ2|y, yf) = g(β , σ2) × f(y, yf|β, σ2)  

 f(β, σ2|y, yf) ∝   
(σ2)

−
n+nf+2

2

v
n+nf

2  β(
v

2
,
n+nf

2
) 

 
1

[1+
σ−2(y−Xβ)T(y−Xβ)+(yf−Xfβ)

T
(yf−Xfβ)

v
]

v+n+nf
2

    (2.11) 

 

As yf and y are not independent so they are not independently distributed. Thus the usual idea in (2.8) is 

not appropriate here. In this situation since the density function of a set of future responses  from the future 

model is linked with the density function of the set of observed responses  from the realized model within 

the combined joint p.d.f. in equation (2.10), the prediction distribution of  can be obtained by solving the 

following integral 

∴  f(yf|y) ∝  ∫ ∫  f(β, σ2|y, yf)d
σ2>0β

σ2 dβ .   (2.12) 

 

That  means,  in  this  case  the  prediction distribution  of  future  responses  can  be  derived  from  the  

joint posterior density function of the parameters for the combined responses y and yf .  

Now equation (2.11) can be expressed as the following form 

 f(β, σ2|y, yf) ∝   
(σ2)

−
n+nf+2

2

v
n+nf

2  β(
v

2
,
n+nf

2
) 

 
1

[1+
σ−2(y−Xβ)T(y−Xβ)+(yf−Xfβ)

T
(yf−Xfβ)

v
]

v+n+nf
2

  

 f(β, σ2|y, yf) =   
(σ2)

−
n+nf+2

2

v
n+nf

2  β(
v

2
,
n+nf

2
) 

 
1

[1+
σ−2θ

v
]

v+n+nf
2

  

Where θ = (y − Xβ)T(y − Xβ) + (yf − Xfβ)T(yf − Xfβ) 

 f(β, σ2|y, yf) =  
(σ2)

−
n+nf+2

2

β(
v

2
,
n+nf

2
 )

 
v

v
2

[v+σ−2θ]
v+n+nf

2

  

Let us assume that C =  θ−1vσ2     σ2 =  
Cθ

v
  θ−1σ2 =

v

C
    and putting this value in the above equation 

and then we can write  
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f(β , σ2|y, yf )∞ 
(

Cθ

v
)

−
n+nf+2

2

β(
v

2
,
n+nf

2
 )

 
v

v
2

[v+
v

C
]

v+n+nf
2

  

   f(β , σ2|y, yf ) =
v .Q

−
n+nf

2

β(
v

2
,
n+nf

2
 )

 
θ−1.C

v
2

−1

[1+C]
v+n+nf

2

      (2.13) 

Considering the transformation F =  θ−1(n + nf)σ2 and C =  θ−1vσ2  

Now putting this value in (2.13)  

f(β , σ2|y, yf ) =
v .θ

−
n+nf

2

β(
v

2
,
n+nf

2
 )

 
θ−1.C

v
2

−1

[1+C]
v+n+nf

2

  

 f(β , σ2|y, yf )∞ θ−
n+nf

2
−1  

(
v

n+nf
)

v
2

β(
v

2
,
n+nf

2
 )

 
F

v
2

−1

[1+(
v

n+nf
F)]

v+n+nf
2

     (2.14) 

And then after using the results, equation (2.12) can be written as 

f(yf|y) ∝  ∫ ∫  θ−
n+nf

2
−1  

(
v

n+nf
)

v
2

β(
v

2
,
n+nf

2
 )

 
F

v
2

−1

[1+(
v

n+nf
F)]

v+n+nf
2

  d
Fβ

σ2 dβ       (2.15) 

It is clear that F has an F-distribution with v and n + nf degrees of freedom that is, ~Fv,n+nf
 . Employing 

that the F integral in (2.15) to integrating over F, the prediction density of future responses becomes,  

∴  ∫
(

v

n+nf
)

v
2

β(
v

2
,
n+nf

2
 )

 
F

v
2

−1

[1+(
v

n+nf
F)]

v+n+nf
2

 dF
F

 = ∫
(

v

n+nf
)

v
2

β(
v

2
,
n+nf

2
 )

 
F

v
2

−1

[1+(
v

n+nf
F)]

v+n+nf
2

 dF
∞

0
  

To evaluate the integral, Let 
𝑣

𝑛+𝑛𝑓
𝐹 = 𝑄 𝐹 =

𝑛+𝑛𝑓

𝑣
 𝑄  so that 𝑑𝐹 =

𝑛+𝑛𝑓

𝑣
 𝑑𝑄  

 When F=0 then Q=0 and when 𝐹 = ∞ 𝑡ℎ𝑒𝑛 𝑄 = ∞  

                                               =  
1

𝛽(
𝑣

2
,
𝑛+𝑛𝑓

2
 )

 𝛽 (
𝑣

2
,

𝑛+𝑛𝑓

2
 )   [Using Beta distribution of Second kind] 

∴  ∫
(

𝑣

𝑛+𝑛𝑓
)

𝑣
2

𝛽(
𝑣

2
,
𝑛+𝑛𝑓

2
 )

 
𝐹

𝑣
2

−1

[1+(
𝑣

𝑛+𝑛𝑓
𝐹)]

𝑣+𝑛+𝑛𝑓
2

 𝑑𝐹 = 1 (𝑢𝑛𝑖𝑡𝑦)
𝐹

  

Using the results in equation (2.15). Then we can write  

𝑓(𝑦𝑓|𝑦) ∝  ∫ 𝜃−
𝑛+𝑛𝑓

2
−1𝑑

𝛽
𝛽       (2.16) 
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Now 𝜃 = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + (𝑦𝑓 − 𝑋𝑓𝛽)
𝑇

(𝑦𝑓 − 𝑋𝑓𝛽) can be expressed as the following form 𝜃 =

𝐴 + (𝛽 − 𝑃)𝑇𝑊(𝛽 − 𝑃). 

where 𝐴 =  𝑦𝑇𝑦 + 𝑦𝑓
𝑇𝑦𝑓 − (𝑦𝑇𝑋𝑇 + 𝑦𝑓

𝑇𝑋𝑓
𝑇)𝑊−1(𝑋𝑦 + 𝑋𝑓𝑦𝑓) is free from the parameters’ vector 𝛽 , 

𝑊 =  𝑋𝑇𝑋 + 𝑋𝑓
𝑇𝑋𝑓  and  𝑃 =  𝑊−1(𝑋𝑦 + 𝑋𝑓𝑦𝑓) . 

Putting this value in (2.16) and integrating over 𝛽 by using the multivariate Student-t integral, it is easy to 

obtain the following probability density function of 𝑦𝑓 given y and then hence the prediction distribution 

of a set of future responses 𝑦𝑓, conditional on a set of realized responses y is obtained as  

 

𝑓𝑓(𝑦𝑓|𝑦) =
(

𝑛−𝑘+𝑛𝑓

2
)|𝐼𝑛𝑓

−𝑋𝑓
𝑇𝑊−1𝑋𝑓|

1
2⁄

(
𝑛−𝑘

2
)[𝑆2(𝑛−𝑘)𝜋

𝑛𝑓]
1

2⁄
 × [1 +

(𝑦𝑓−𝑋𝑓
𝑇�̂�)

𝑇
∑(𝑦𝑓−𝑋𝑓

𝑇�̂�)

𝑛−𝑘
]

−
𝑛−𝑘+𝑛𝑓

2

 (2.17) 

Hence the prediction distribution of a set of future responses 𝑦𝑓, conditional on a set of realized responses 

y, is obtained as  

 

𝑓(𝑦𝑓|𝑦) =  × [1 +
(𝑦𝑓−𝑋𝑓

𝑇�̂�)
𝑇

∑(𝑦𝑓−𝑋𝑓
𝑇�̂�)

𝑛−𝑘
]

−
𝑛−𝑘+𝑛𝑓

2

,and the normalizing constant of the prediction 

distribution is given by  

𝑓 =  
G(

𝑛−𝑘+𝑛𝑓

2
)|𝐼𝑛𝑓

−𝑋𝑓
𝑇𝑀−1𝑋𝑓|

1
2

G(
𝑛−𝑘

2
)[𝜋

𝑛𝑓(𝑛−𝑘)𝑆2]
1
2

   

 

where ∑= [𝑆−2 (𝐼𝑛𝑓
− 𝑋𝑓

𝑇𝑊−1𝑋𝑓)]
−

1

2
,  �̂� =  (𝑋𝑋𝑇)−1𝑋𝑦 is the OLS estimator of the simultaneous auto-

regressive vector 𝛽 , 

 

𝑆2 =  (𝑛 − 𝑘)−1  [(𝑦 − 𝑋𝑇�̂�)
𝑇

(𝑦 − 𝑋𝑇�̂�)]   

      =  (𝑛 − 𝑘)−1𝑦𝑇[𝐼𝑛 − 𝑋𝑇(𝑋𝑋𝑇)−1𝑋]𝑦,   

 

Here, it is clear that𝑦𝑓 , the vector of a set of future responses, has an   𝑛𝑓-dimensional multivariate Student-

t distribution with the location 𝑋𝑓
𝑇�̂� , scale [𝑆−2 (𝐼𝑛𝑓

− 𝑋𝑓
𝑇𝑊−1𝑋𝑓)]

−
1

2
 , and the shape parameter n - k . 

This result is identical with the results obtained for the same model Rahman and Khan (2007), and for the 

multiple regression model with independent and normal errors by Zellner (1971) and Geisser (1993) 
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among others. Therefore, it is noted that the prediction distribution is unaffected by departures from the 

model with independent and normal errors to multivariate Student-t errors distribution.  

Prediction Distribution of a Single Future Response:  

For   𝑛𝑓 = 1  the  set  of  future  responses  vector 𝑦𝑓 becomes  a  single  future  response,  and  hence  if    

denotes a single future response, then the future simultaneous auto-regressive model in (2.9) becomes the 

following form  

𝑦𝑓 = 𝑋𝑓𝛽 + (𝐼𝑛 − 𝐵)−1𝜀𝑓    (2.18) 

 

Where𝑋𝑓 , is a 1 × 𝑝  order design vector, 𝛽  is the same simultaneous auto-regressive coefficients vector 

of order 𝑝 × 1 and 𝜀𝑓 is the error term associated with 𝑦𝑓  and 𝜀𝑓 has a univariate Student-t distribution as 

𝜀𝑓~𝑡1(0, 𝜎, 𝑣) . By the same operations as used in previous section for the derivation of prediction 

distribution of a set of  future  responses,  it  can  be  easily  obtained  the  joint  posterior  density  of  

parameters  for  a  single  response 𝑦𝑓 and the realized responses vector y  under the same prior distribution 

𝑔(𝛽 , 𝜎2)  ∝  𝜎−2 and   can be easily obtained by the Bayes’s Theorem, as 

𝑓(𝛽, 𝜎2|𝑦, 𝑦𝑓) = 𝑔(𝛽 , 𝜎2) × 𝑓(𝑦, 𝑦𝑓|𝛽, 𝜎2)  

 𝑓(𝛽, 𝜎2|𝑦, 𝑦𝑓) ∝   
(𝜎2)

−
𝑛+3

2

𝑣
𝑛+1

2  𝛽(
𝑣

2
,
𝑛+1

2
) 

 
1

[1+
𝜎−2(𝑦−𝑋𝛽)𝑇(𝑦−𝑋𝛽)+(𝑦𝑓−𝑋𝑓𝛽)

𝑇
(𝑦𝑓−𝑋𝑓𝛽)

𝑣
]

𝑣+𝑛+1
2

       (2.19)  

The  prediction  distribution  of  a  single  future  response 𝑦𝑓 can  be  derived  from  the  joint  posterior  

density   function for the combined responses 𝑦𝑓 and y in (2.19) by integrating over the parameters 𝛽  and 

𝜎2 . For completing the derivation of prediction distribution of a single future response, the same 

operational steps are used as considered in the previous section. At first the joint posterior density can be 

expressed as its convenient form as like in equation 

𝑓(𝛽 , 𝜎2|𝑦, 𝑦𝑓 ) =
𝑣 .𝑄

−
𝑛+𝑛𝑓

2

𝛽(
𝑣

2
,
𝑛+𝑛𝑓

2
 )

 
𝜃−1.𝐶

𝑣
2

−1

[1+𝐶]
𝑣+𝑛+𝑛𝑓

2

 , 

 And then using an appropriate transformation 

𝐹 =  𝜃−1(𝑛 + 𝑛𝑓)𝜎2 and𝐶 =  𝜃−1𝑣𝜎2, 

The parameter 𝜎2 can be eliminated by the 𝐹𝑣,𝑛+1 integral. After that 𝜃 ,   can be expressed as a quadratic  

form  of 𝛽 and  then  the  properties  of  the  multivariate  Student-t  distribution  can  be  used  to  complete  

the   integration over 𝛽 . Finally, the prediction distribution of a single future response 𝑦𝑓, conditional on 

a set   of realized responses y, is obtained as  

𝑓(𝑦𝑓|𝑦) =
(

𝑛−𝑘+1

2
)|𝐼𝑛𝑓

−𝑋𝑓
𝑇𝑊−1𝑋𝑓|

1
2⁄

(
𝑛−𝑘

2
)[𝑆2(𝑛−𝑘)𝜋]

1
2⁄

 × [1 +
(𝑦𝑓−𝑋𝑓

𝑇�̂�)
𝑇

∑(𝑦𝑓−𝑋𝑓
𝑇�̂�)

𝑛−𝑘
]

−
𝑛−𝑘+1

2

 (2.20) 
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Hence the prediction distribution of a set of future responses 𝑦𝑓, conditional on a set of realized responses 

y, is obtained as  

 

f(yf|y) =  × [1 +
(yf−Xf

Tβ̂)
T

∑(yf−Xf
Tβ̂)

n−k
]

−
n−k+nf

2

,and the normalizing constant of the prediction distribution 

is given by  

f =  
G(

n−k+1

2
)|Inf

−Xf
TM−1Xf|

1
2

G(
n−k

2
)[π(n−k)S2]

1
2

   

 

where ∑= [S−2(1 − Xf
TW−1Xf)]

−
1

2,  β̂ =  (XXT)−1Xy is the OLS estimator of the simultaneous auto-

regressive vector β , 

 

S2 =  (n − k)−1  [(y − XTβ̂)
T

(y − XTβ̂)]   

      =  (n − k)−1yT[In − XT(XXT)−1X]y,   

 

Thus, the  prediction  distribution  of  a  single  future  response  for  the  simultaneous auto-regressive  

model  with multivariate Student-t error terms is a univariate Student-t distribution with appropriate 

parameters.  

Conclusion:  

The prediction distribution  of  future  response(s),  conditional  on  a  set  of  observed  responses  has  

been derived  for  the  simultaneous auto-regressive model  having  multivariate  Student-t  errors  by  the  

improper Bayesian  method.  Results  reveal  that  the  prediction  distribution  of  a  single  future  response  

and  a  set  of future  responses  are  a  univariate  Student-t  distribution  and  a  multivariate  Student-t  

distribution respectively. It has been shown that the prediction distributions for the simultaneous auto-

regressive model remains identical  by  a  change  in  the  error  distribution  from  normal  to  multivariate  

Student-t  distribution.  

Furthermore, the prediction distribution depends on the observed responses and the design matrices of the 

realized model as well as the future model. The shape parameter of the prediction distribution depends on 

the size of the realized sample and the dimension of parameters vector of the model. However, the shape 

parameter of the prediction distribution does not depend on the d.f. of the errors distribution.  
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