

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 1

Kubernetes Ip-Tables Performance Using Trie

Tree And Radix Tree Implementation

Renukadevi Chuppala1, Dr. B. PurnachandraRao2

1Western Union Financial Services, CA, USA
2Sr. Solutions Architect, HCL Technologies, Bangalore, Karnataka, India.

Abstract

Kubernetes (K8s) is an open-source container orchestration platform designed to automate the

deployment, scaling, and management of containerized applications. Developed originally by Google

and now managed by the Cloud Native Computing Foundation (CNCF), Kubernetes has become the de

facto standard for container management due to its scalability, flexibility, and reliability in running

production-grade workloads. Containers package applications and their dependencies in isolated

environments, ensuring that they run the same regardless of the host environment. Docker is one of the

most well-known container platforms, but others like rkt and CRI-O are also compatible with

Kubernetes. Service abstraction refers to how Kubernetes abstracts the way applications running inside

the cluster are exposed to the outside world or internally within the cluster. A Service in Kubernetes is

an abstraction layer that defines a logical set of Pods and a policy by which to access them.

The main goal of the service abstraction is to decouple the application logic from the actual deployment

of Pods, allowing the application to scale or self-heal without requiring manual updates to other parts of

the infrastructure. In Kubernetes, IP Tables plays a key role in how networking is managed, particularly

in terms of routing traffic to Pods and Services. Kubernetes uses IPTables (via the Linux kernel) in

several key components to ensure smooth communication within the cluster and to external systems.

Kubernetes uses IPTables to implement the Service abstraction. When you create a Service, Kubernetes

sets up IPTables rules to route traffic to the correct set of Pods.

For a ClusterIP service, Kubernetes creates IP Tables rules that intercept traffic to the service's IP and

port, then routes the traffic to one of the Pods that match the service's selector. This enables round-robin

load balancing between Pods. Existing kuberenets is using Trie tree implementation for IP tables for

matching the search criteria. In this paper we will prove the performance improvement of ip tables by

using the radix tree implementation for search criteria.

Keywords: Kubernetes (K8S), Cluster, Nodes, Deployments, Pods, ReplicaSets, Statefulsets, Service,

IP-Tables, Trie Tree, Radix Tree, Load Balancer, Service Abstraction.

INTRODUCTION

Kubernetes consists of several components that work together to manage containerized applications.

Master Node: This controls the overall cluster, handling scheduling and task coordination.API Server:

Frontend that exposes Kubernetes functionalities through RESTful APIs. Scheduler: Distributes work

across the nodes based on workload requirements..Controller Manager: Ensures that the current state

matches the desired state by managing the cluster’s control loops.etcd: Kube-proxy: Manages network

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 2

communication within and outside the cluster.

Pod is the smallest deployable unit in Kubernetes, encapsulating one or more containers [1] with shared

storage and network resources. All containers in a pod run on the same node.Namespaces: These are

used to create isolated environments within a cluster. They allow teams to share the same cluster

resources without conflicting with each other. Deployment: A higher-level abstraction that manages the

creation and scaling of Pods. It also allows for updates, rollbacks, and scaling of applications. ReplicaSet

[2] ensures a specified number of replicas (identical copies) of a Pod are running at any given time.

StatefulSet: Designed to manage stateful applications, where each Pod has a unique identity and

persistent storage, such as databases. DaemonSet: Ensures that a copy of a Pod is running on all (or

some) nodes. This is useful for deploying system services like log collectors or monitoring agents.Job: A

Kubernetes resource that runs a task until completion. Unlike Deployments or Pods, a Job does not need

to run indefinitely.CronJob: Runs Jobs at specified intervals, similar to cron jobs in Linux.

LITERATURE REVIEW

Kubernetes Cluster

A cluster [3] refers to the set of machines (physical or virtual) that work together to run containerized

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and

it provides a platform for deploying, managing, and scaling containerized workloads.

Fig 1. Kubernetes cluster Architecture

Client kubectl will connect to API server [4] (part of Master Node) to interact with Kubernetes

resources like pods, services, deployment etc. Client will be authenticated through API server having

different stages like authentication and authorization. Once the client is succeeded though authentication

[5] and authorization (RBAC plugin) it will connect with corresponding resources to proceed with

further operations. Etcd [6] is the storage location for all the kubernetes resources. Scheduler will select

the appropriate node for scheduling the pods unless you have mentioned node affinity (this is the

provision to specify the particular node for accommodating the pod). Kubelet is the process which is

running on all nodes of the kubernetes cluster and it will manage the mediation between api server and

corresponding node. Communication between any entity with master node is going to happen only

through api server.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 3

Key Components of a Kubernetes Cluster:

Control Plane (Master Node):

API Server exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications,

scaling, etc.) go through the API server.

Etcd is a distributed key-value store [7] that holds the state and configuration of the cluster, including

information about pods, services, secrets, and configurations.

Controller Manager ensures that the cluster's desired state matches its actual state, by managing

different controllers (like deployment, replication, etc.).

Scheduler is the one which Assigns workloads to worker nodes based on resource availability,

scheduling policies, and requirements.

Worker Nodes:

Kubelet is the agent running on each node that ensures containers are running in Pods as specified by the

control plane.

Container Runtime [8] is the software responsible for running containers (e.g., Docker, containerd).

Kube-proxy manages network traffic between pods and services, handling routing, load balancing, and

network rules.

How a Kubernetes Cluster Works:

Pods: The smallest deployable units in Kubernetes, consisting of one or more containers. They run on

worker nodes and are managed by the control plane.

Nodes: Physical or virtual machines in the cluster that host Pods and execute application workloads.

Services: Provide stable networking and load balancing for Pods within a cluster.

Cluster Operations:

Kubernetes clusters can automatically scale up or down by adding/removing nodes or pods.

Resilience: Clusters are designed for high availability and can automatically restart failed pods or

reschedule them on healthy nodes.

Kubernetes ensures traffic is evenly distributed across Pods within a Service.

Self-Healing: The control plane continuously monitors the state of the cluster and acts to correct failures

or discrepancies between the desired and current state.

Service Abstraction:

Service Abstraction [9] in Kubernetes provides a way to define a logical set of Pods and a policy by

which to access them. This abstraction enables communication between different application

components without needing to know the underlying details of each component's location or state.

Stable Network Identity: Services provide a stable IP address and DNS name that can be used to reach

Pods, which may be dynamically created or destroyed.

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a

load balancing mechanism. When a Pod fails, the service can route traffic to other healthy Pods.

Service Types: Kubernetes supports different types of services:

ClusterIP: The default type, which exposes the service on a cluster-internal IP. Only accessible from

within the cluster.

NodePort: Exposes the service on each Node’s IP at a static port (the NodePort). This way, the service

can be accessed externally.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 4

Kubernetes automatically provisions a load balancer for the service when running on cloud providers.

ExternalName maps the service to the contents of the externalName field (e.g., an external DNS name).

Iptables Coordination:

Iptables [10] is a user-space utility program that allows a system administrator to configure the IP

packet filter rules of the Linux kernel firewall. In the context of Kubernetes, iptables is used to manage

the networking rules that govern how traffic is routed to the various services.

SNo IP Address Port

1 10.3.4.3,

10.3.4.5,10.3.4.7

8125

2 10.3.5.3,

10.3.5.5,10.3.5.7

8081

3 10.3.6.3,

10.3.6.5,10.3.6.7

8080

4 10.3.2.3,

10.3.2.5,10.3.2.7

5432

5 10.3.7.3,

10.3.7.5,10.3.7.7

6212

6 10.3.8.3,

10.3.8.5,10.3.8.7

6515

Table 1: IP Tables Storage Structure

Key Functions:

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined

service configurations.

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP

addresses of packets as they pass through, which is crucial for services that need to expose Pods to

external traffic.

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent

back to the correct Pod.

Service and IP Table:

Service Request: A request is sent to the service's stable IP address.

Kubernetes Networking [11] uses iptables to manage the routing of this request. It sets up rules to map

the service IP to the IP addresses of the underlying Pods.

Load Balancing: Ip tables distributes incoming traffic among the Pods that match the service's selector,

ensuring load balancing. Return Traffic: When a Pod responds, iptables ensures that the response goes

back through the same network path, maintaining connection tracking.

 Service abstraction in Kubernetes provides a simplified and stable interface for accessing application

components, while iptables coordination ensures that the network traffic is efficiently routed to the right

Pods. Together, they form a robust networking framework that is fundamental to the operation of

Kubernetes clusters.

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 5

have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes. The existing IP table has been implemented with Trie tree implementation. A

Trie Tree [12], also known as a Prefix Tree [13] [24] [25] [26], is a specialized tree data structure used

to store associative data structures, often to represent strings. The key characteristic of a Trie is that all

descendants of a node share a common prefix of the string associated with that node. This structure is

particularly useful for tasks that involve searching for prefixes, such as auto complete systems,

dictionaries, and IP routing tables.

SNo Size Avg Lookup

(us)

Insertion

Time (us)

Deletion

Time (us)

Memory

Usage (Mb)

Cache Hit

Ratio

3 30000 15.6 30 20 150 80

4 40000 18.2 40 25 200 82

5 50000 20.8 50 30 250 84

6 60000 23.4 60 35 300 86

7 70000 26.0 70 40 350 88

8 80000 28.6 80 45 400 90

9 90000 31.2 90 50 450 92

10 100000 33.8 100 55 500 94

Table 2: IP Tables Trie Tree

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory

usage and cache hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is

15.6 us , insertion time is 30 us, deletion time is 20 , memory usage is 150 Mb and cache hit ration is

80% . IP table size 40k the same parameters are 18.2, 40us, 25us, 200Mb and 82%. IP table size 50k the

same parameters are 20.8, 50us, 30us, 250Mb and 84%. IP table size 60k the same parameters are 23.4,

60us, 35us, 300Mb and 88%. IP table size 70k the same parameters are 26.0, 70us, 40us, 350Mb and

88%. IP table size 80k the same parameters are 28.6, 80us, 45us, 400Mb and 90%. IP table size 90k the

same parameters are 31.2, 90us, 50us, 450Mb and 92% and IP table size 100k the same parameters are

33.8, 100us, 55us, 500Mb and 94%.

Graph 1: IP Tables Trie Tree

Please observe the graph representation of the same. It shows the avg lookup , Insertion time , deletion

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Avg Lookup (us) Insertion Time (us) Deletion Time (us) Memory Usage (Mb) Cache Hit Ratio

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 6

time, memory usage and cache hit ratio in different colors.

We have taken the second sample as well for the same configuration.

IP Table Size
Insertion

Time (µs)

Lookup

Time (µs)
Deletion (µs)

Memory

Usage (MB)

Cache Hit Ratio

(%)

30,000 30 20 28 15 85

40,000 35 25 32 20 83

50,000 40 30 38 24 82

60,000 45 35 42 28 80

70,000 50 38 45 32 78

80,000 55 40 50 36 77

90,000 58 42 55 40 75

100,000 60 45 55 45 73

Table 3: IP Tables Trie Tree (Second Sample)

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory

usage and cache hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is

20 us , insertion time is 30 us, deletion time is 32 , memory usage is 20 Mb and cache hit ration is 83% .

IP table size 40k the same parameters are 35, 25us, 32us, 20Mb and 83%. IP table size 50k the same

parameters are 40, 30us, 38us, 24Mb and 82%. IP table size 60k the same parameters are 45, 35us, 42us,

28Mb and 80%. IP table size 70k the same parameters are 50, 38us, 45us, 32Mb and 78%. IP table size

80k the same parameters are 55, 40us, 50us, 36Mb and 77%. IP table size 90k the same parameters are

58, 42us, 55us, 40Mb and 75% and IP table size 100k the same parameters are 60, 45us, 55us, 45Mb and

73%.

Graph 2: IP Tables Trie Tree -1 (Second Sample)

0

10

20

30

40

50

60

70

80

90

Insertion Time (µs) Lookup Time (µs) Deletion Time (µs) Memory Usage (MB) Cache Hit Ratio (%)

30000 40000 50000 60000 70000 80000 90000 100000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 7

Graph 3: IP Tables Trie Tree-2 (Second Sample)

Graph 4: IP Tables Trie Tree-3 (Second Sample)

Graph 2 and Graph 3 are representing the parameters Insertion time, lookup time , deletion time memory

usage and cache hit ratio where as Graph 4 represents insertion time , lookup time and deletion time.

IP Table Size
Avg Lookup

Time
Insertion Time Deletion Time

Memory Usage

(MB)

Cache Hit

Ratio

30,000 35 40 45 12 95%

40,000 40 45 50 16 93%

50,000 45 50 55 20 90%

60,000 50 55 60 25 88%

70,000 55 60 65 30 85%

80,000 60 65 70 35 83%

90,000 65 70 75 40 80%

100,000 70 75 80 45 78%

Table 4: IP Tables Trie Tree (Third Sample)

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory

usage and cache hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is

35 us , insertion time is 40 us, deletion time is 45 , memory usage is 12 Mb and cache hit ration is953% .

IP table size 40k the same parameters are 40, 45us, 50us, 16Mb and 93%. IP table size 50k the same

0

10

20

30

40

50

60

70

80

90

Insertion

Time (µs)

Lookup Time

(µs)

Deletion Time

(µs)

Memory

Usage (MB)

Cache Hit

Ratio (%)

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

Insertion Time (µs) Lookup Time (µs) Deletion Time (µs)

30000 40000 50000 60000 70000 80000 90000 100000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 8

parameters are 45, 50us, 55us, 20Mb and 90%. IP table size 60k the same parameters are 50, 55us, 60us,

25Mb and 88%. IP table size 70k the same parameters are 55, 60us, 65us, 30Mb and 85%. IP table size

80k the same parameters are 60, 65us, 70us, 35Mb and 83%. IP table size 90k the same parameters are

65, 70us, 75us, 40Mb and 80% and IP table size 100k the same parameters are 70, 75us, 80us, 45Mb and

78%.

Graph 5: IP Tables Trie Tree-3 (Third Sample)

Graph 6: IP Tables Trie Tree-3 (Third Sample)

Graph 7: IP Tables Trie Tree-3 (Third Sample)

Graph 5, Graph 6 and Graph 7 are representing the parameters Avg lookup time , Insertion time, lookup

time , deletion time memory usage and cache hit ratio.

0

10

20

30

40

50

60

70

80

90

Avg Lookup Time Insertion Time Deletion Time Memory Usage (MB) Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

0

10

20

30

40

50

60

70

80

Avg

Lookup

Time

Insertion

Time

Deletion

Time

Memory

Usage

(MB)

Cache Hit

Ratio

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

0

10

20

30

40

50

60

70

80

Avg Lookup Time Insertion Time Deletion Time Memory Usage

(MB)

Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 9

PROPOSAL METHOD

Problem Statement

Service abstraction is using IP tables to store the rules of services and provide matching to the incoming

request to the IP tables. The existing IP tables have been implemented using Trie tree data structure for

efficient matching of IP addresses and ports. We can increase the performance of IP tables using radix

tree implementation of ip tables.

Proposal

A Radix Tree [14] [23] (also called a Compact Prefix Tree or Compressed Trie) is a data structure used

for efficient storage and search operations. It optimizes space by compressing nodes with only one child.

Insert: The insert function looks for the longest common prefix between the new word and existing

nodes, possibly splitting nodes if necessary.

Search: The search function traverses the tree following the prefixes and checks if the word exists in the

tree.

Space Optimization: By compressing nodes that have only one child, this implementation reduces the

memory footprint compared to a regular Trie.

Consider the keys "cat", "can", and "cap".

 c

 |

 a

 /|\

 t n p

Here:

• "cat" has the path: root → c → a → t.

• "can" has the path: root → c → a → n.

• "cap" has the path: root → c → a → p.

 c

 |

 a

 |

(t,n,p)

The prefix "ca" is shared by all three keys, and only the divergent suffixes (t, n, and p) are branched out.

In a Radix tree, nodes that do not branch are compressed, which reduces the overall space usage. In this

case, the "ca" prefix is stored only once.

This structure is more space-efficient, especially when storing large datasets with similar keys.

Faster Search is the search process is quicker due to the reduced number of nodes and edges, as each

node represents a substring rather than individual characters.

Radix trees are commonly used in applications like network routing tables and in-memory databases due

to their efficiency in handling large datasets with shared key prefixes.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 10

Fig 2. Radix Tree architecture

A Radix tree is a type of compressed trie, which is a data structure used to implement an associative

array. It efficiently stores key-value pairs, where the keys are typically strings, though other data types

can be used. The key distinction between a trie and an n-ary tree lies in how nodes are structured. In a

trie, nodes don't hold entire keys but instead store single-character labels. The key associated with a

specific node is determined by following the path from the root to that node.

Existing kuberenets is using Trie tree implementation for IP tables for matching the search criteria. In

this paper we will prove the performance improvement of ip tables by using the radix tree

implementation for search criteria. We will use the same clusters which we have created.

IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters

have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes.

Fig. 3. Four Node Cluster One Master and Three worker Nodes.

Fig. 4 shows the four node cluster, one node is the master node and the remaining three are the worker

nodes. Master node will have control plane and all other kubernetes core libraries toi manage the cluster.

Each node in the cluster having the kubelet process , this is the agent at all the machines which is taking

care of connecting with other nodes. Docker and containerd are running at each machine along with

kubelet agent. Kube proxy the process which is available at all machines to manage the IP Tables.

Kubelet is responsible for managing the node health status and reporting to master node.

API server is available at master node (Control Plane) and it is the point of contact between worker

 Master Node

Worker Node
Worker Node

Worker Node

 /

article/

edit/ read/

login/ forum/

read/ submit/

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 11

nodes and other components of the control plane. When ever kuberenetes client want to do to some

operation at Master it will send request to API server. This will validate the request by authenticating the

client and verifies the authorization of the operation what the client wants to do at the cluster or node

level.

Once the authentication is successful It will work with etcd to do the expected operation. If it is update

of the existing manifest file It will update the copy of the file and stores at etcd. Etcd is the key value

store , it is consistent data store for kubernetes cluster. If Kuberbetes cluster client wants to delete pod

from the specific namespace it will get triggered to API server. API server will authenticate the client ,

if it is successful then it will verify that the client is having necessary permissions to delete the pod in

that namespace. If both are successful the pod will get deleted from the namespace and parallelly it will

get updated at ectd datastore. Please find the API lifecycle at the Fig. 4.

Fig. 4. API Server Life Cycle

Fig. 5 ,6 , 7 and 8 shows the clusters for five node . six node , seven node and eight nodes.

Fig. 5. Five Node Cluster One Master and Four worker Nodes.

Pod will get deployed to specific node if there is any node affinity enabled , or else it will get scheduled

to any node based on the scheduling algorithm used by the scheduler. Container network interface is the

library which will take care of assigning the IP address to pod based on allowable ips from the specific

node ips. Ecah node is having different range of ips , and it will get managed by CNI [15]. Flannel is the

plugin from the CNI which we have used to implement this functionality. Calico is one more alternative

for flannel which we can use. As soon as pods gets deployed to node , kubelet starts reporting to control

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker

Node

Authentication

Authorization

Controller

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 12

plane on the health status of the pod.

Fig. 6. Six Node Cluster One Master and Five worker Nodes.

If we are not defining any storage location to pod , it will get automatic storage inside the container. But

the data will get lost for each restart of the pod. This is the reason we can have number of storage classes

, where we can attach the volume from the local disk to container. What ever the files we are having at

local to node , they will get exposed to container. Changes will get reflected automatically if we do

something at the local files. Converse of this is always true.

If there any environment parameters [16] [22] [30] , we can pads them through env section of the pod

manifest files. If there are any changes in the parameters we need to redeploy the pod for each update in

the manifest files. To avoid this type of overhead we can deploy them using the configMap object of the

kuberentes. This is what is called separation [17] of the parameters from the manifest files. We can do

the changes at parameters independent of the pod deployment. The changes will get reflected

automatically without having to redeploy the pod.

Fig. 7. Seven Node Cluster One Master and Six worker Nodes.

We have different types of volumes [18] [21] which we can attach to pod. Need to create the volume

(folder) at the node where the pod is getting scheduled. Using Node affinity we can schedule the pod in

the expected location. If there is any chance of mismatch in the pod schedule , this architecture will not

workout. We can use dynamic volume creation if there is any deployment in production and if we

doesn’t have access to prod location.

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker

Node

Worker

Node

Worker

node

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker

Node

Worker

Node

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 13

The volume gets created automatically as soon as we deploy the pod. Container Storage Interface [19]

[20] [21] will take care of creation of volumes.

Fig. 8. Eight Node Cluster One Master and Seven worker Nodes.

We can connect github location files as well to container using the volume mount plugin in yaml file.

We can manage the pod to pod communication using the service abstraction. Since the pod ip is

ephermal we need to use service abstraction to connect to pod.

Number of nodes in the cluster is no way related to size of the IP table, but if the number of services ,

ingress controllers are high in count , it will directly proportional to size of the IP Table. We have three

types of probes in Kubernetes liveness probe , readiness probe and startup probe. First one checks if the

application is still running, second one checks if the application is ready to server the traffic and last one

checks if the application has started properly.

We have configured different sizes of cluster and with different configurations on volumes like hostPath,

gitRepo, emptyDir, nfs.

If there are number of pods working of interconnected functionalty like one pod is working on

calculation , second pod is collecting the info from the first pod, where as third pod needs to record the

log files. In this each pod needs to have access to another pods storage location or volume.

In this case instead of using the volume at each node , it would be better to define the volume at master

location and make it available at all nodes in the cluster. This is what is called Network File System

sharing mechanism. We have implemented this service as well.

The size of the IP Table depends on the number of services , as well as the number of pods , network

policies , and ingress rules in the cluster irrespective of Trie tree [26] [27] [28] [29][30] or Radix tree

implementation.

 Master Node

Worker

Node

Worker

Node

Worker

Node
Worker
Node

Worker

Node

Worker
Node

Worker
Node

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 14

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 15

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 16

Imports functions time for measuring the time taken to insert and search elements, random and string to

generate random strings of lowercase letters, matplotlib.pyplot is for visualizing the comparison between

Trie and Radix Tree.

TrieNode Class represents a node in the Trie and it contains a dictionary children to store its child nodes,

is_end_of_word is a boolean flag to mark if the current node is the end of a word.

RadixNode Class represents a node in the Radix Tree. Similar to TrieNode, it has children and

is_end_of_word. Trie Class implements the Trie data structure.

Insert function inserts a word into the Trie. It creates a new node for each character in the word. Search

function (search()) Searches for a word in the Trie, returning True if it exists, False otherwise.

RadixTree Class implements the Radix Tree. Insert function (insert()) inserts words into the Radix Tree

by considering two characters (prefixes) at a time. Search function (search()) Searches for words using

the same two-character prefix method. The helper functions generate_random_words(n, length)

Generates n random words, each of length length and measure_trie_performance(words) mMeasures the

time taken to insert and search words in the Trie . The function measure_radix_performance(words)

measures the time taken to insert and search words in the Radix Tree.

In performance comparison the program generates 30,000 random words (each 10 characters long) and

inserts and searches them in both the Trie and Radix Tree. It measures the time for insertion and

searching for both structures.

It prints the times for insertion and searching for both data structures. It uses matplotlib to visualize the

performance comparison using bar charts. We have done the same comparison for 40k, 50k, 60k, 70k ,

80k , 90k and 100k values.

SNo Size Avg Lookup

(us)

Insertion

Time (us)

Deletion

Time (us)

Memory

Usage (Mb)

Cache Hit

Ratio

3 30000 7.8 15 10 90 85

4 40000 9.2 20 12 120 88

5 50000 10.6 25 15 150 90

6 60000 12.0 30 18 180 92

7 70000 13.4 35 20 210 94

8 80000 14.8 40 25 240 96

9 90000 16.2 45 30 270 98

10 100000 17.6 50 35 300 99

Table 5: IP Tables Radix Tree

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 17

Please find the number of entries in IP table , avg lookup time, Insertion time , deletion time , memory

usage and cache hit ratio for different cluster configurations. For IP table size 30k the avg lookup time is

7.8 us , insertion time is 15 us, deletion time is 10 , memory usage is 90 Mb and cache hit ration is 85% .

IP table size 40k the same parameters are 9.2, 20us, 12us, 120Mb and 88%. IP table size 50k the same

parameters are 10.6, 25us, 15us, 150Mb and 90%.

IP table size 60k the same parameters are 12.0, 30us, 18us, 180Mb and 92%. IP table size 70k the same

parameters are 13.4, 35us, 20us, 210 Mb and 94%. IP table size 80k the same parameters are 14.8, 40us,

25us, 240Mb and 96%. IP table size 90k the same parameters are 16.2, 45us, 30us, 270Mb and 98% and

IP table size 100k the same parameters are 17.6, 50us, 35us, 300Mb and 99%.

Graph 8: IP Tables Radix Tree

 Graph 8 represents the IP tables Radix Tree implementation’s metrics.

SNo Size Avg Lookup

(us)

Insertion

Time (us)

Deletion

Time (us)

Memory

Usage (Mb)

Cache Hit

Ratio

3 30000 15.6

7.8

30

15

20

10

150

90

80

85

4 40000 18.2

9.2

40

20

25

12

200

120

82

88

5 50000 20.8

10.6

50

25

30

15

250

150

84

90

6 60000 23.4

12.0

60

30

35

18

300

180

86

92

7 70000 26.0

13.4

70

35

40

20

350

210

88

94

8 80000 28.6

14.8

80

40

45

25

400

240

90

96

9 90000 31.2

16.2

90

45

50

30

450

270

92

98

10 100000 33.8

17.6

100

50

55

35

500

300

94

99

Table 6: Trie Tree vs Radix Tree

Table 6 shows the comparison between Trie tree and Radix tree implementation of IP Tables. IP Table

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Avg Lookup (us) Insertion Time (us) Deletion Time (us) Memory Usage (Mb) Cache Hit Ratio

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 18

Size 30000 entries avg lookup time is 15.6 micro seconds where as for Radix tree it is 7.8 micro

seconds. Insertion time is 30 micro seconds and for raidix tree it is 15 micro seconds. Deletion time is

20 micro seconds and 10 micro seconds for Radix tree implementation. For 40000 entries avg lookup

speed is 18.2 and for Radix tree it is almost 50% reduced.

 If the table size is 50000 entries then the avg lookup speed is 20.8 micro seconds and radix is 10.6 only,

Insertion speed is 50 for Trie tree implementation and Radix tree it is 25 micro seconds only. Deletion

speed is 30 micro seconds where as for Radix tree it is 15 micro seconds, memory usage came down

from 250 to 150 when we shift from Triee to Radix tree implementation. Cache hit ratio increased to 90

from 84 in Radix tree implementation.

For 60000 entries 23.4 micro seconds is the avg lookup speed for Trie Tree where it is 12.0 for Radix

tree implementation. Insertion and deletion times are reduced to 50% when we shift from Trie tree to

Radix tree implementation. Memory usage came down from 300 to 180 where as cache hit ratio

increased to 92 from 86.

For 70000 entries 26.0 micro seconds is the avg lookup speed for Trie Tree where it is 13.4 for Radix

tree implementation. Insertion and deletion times are reduced to 50% when we shift from Trie tree to

Radix tree implementation. Memory usage came down from 350 to 210 where as cache hit ratio

increased to 94 from 88.

For 80000 entries 28.6 micro seconds is the avg lookup speed for Trie Tree where it is 14.8 for Radix

tree implementation. Insertion and deletion times are reduced to 50% when we shift from Trie tree to

Radix tree implementation. Memory usage came down from 400 to 240 where as cache hit ratio

increased to 96 from 90.

For 90000 entries 31.2 micro seconds is the avg lookup speed for Trie Tree where it is 16.2 for Radix

tree implementation. Insertion and deletion times are reduced to 50% when we shift from Trie tree to

Radix tree implementation. Memory usage came down from 450 to 270 where as cache hit ratio

increased to 98 from 92.

For 100000 entries 33.8 micro seconds is the avg lookup speed for Trie Tree where it is 17.6 for Radix

tree implementation. Insertion and deletion times are reduced to 50% when we shift from Trie tree to

Radix tree implementation. Memory usage came down from 500 to 300 where as cache hit ratio

increased to 99 from 94.

With this analysis we can say that by using the radix tree implementation of the IP Tables Avg lookup

speed , Insertion and deletion times are getting reduced by 50% and the memory usage is coming down

by almost 45%, Cache hit ratio is getting increased by 5%.

Graph 9: Trie Tree vs Radix Tree

0

100

200

300

400

500

600

Avg look
up Trie

Tree

Avg look
up Radix

Tree

Insertion
Time Trie

Tree

Insertion
Time
Radix
Tree

Deletion
Trie Tree

Deletion
Radix
Tree

memory
usage

Trie Tree

memory
usage
Radix
tree

Cache
Trie tree

Cache
Radix
tree

30000 40000 50000 60000 70000 80000 90000 100000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 19

Graph 9 represents the trend which we have discussed so far on the table. Avg lookup speed, insertion,

deletion times, memory usage are having downwards trend where as cache hit ratio is having upwards

trend.

IP Table Size
Insertion Time

(µs)

Lookup Time

(µs)

Deletion Time

(µs)

Memory Usage

(MB)

Cache Hit

Ratio (%)

30,000 25 15 18 12 90

40,000 28 18 20 16 88

50,000 32 22 25 19 86

60,000 35 25 28 22 85

70,000 38 28 30 26 83

80,000 42 30 32 30 81

90,000 45 32 35 34 79

100,000 48 35 40 38 78

Table 6: IP Tables Radix Tree (Second Sample)

Graph 10: IP Tables Radix Tree (Second Sample)

Graph 11: Trie Tree vs Radix Tree (Second Sample)

0

10

20

30

40

50

60

70

80

90

100

Insertion Time

(µs)

Lookup Time

(µs)

Deletion Time

(µs)

Memory Usage

(MB)

Cache Hit

Ratio (%)

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

Trie Tree
Insertion Time

(µs)

Radix Tree
Insertion Time

(µs)

Trie Tree
Lookup Time

(µs)

Radix Tree
Lookup Time

(µs)

Trie Tree
Deletion Time

(µs)

Radix Tree
Deletion Time

(µs)

30000 40000 50000 60000 70000 80000 90000 100000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 20

SNo

Size Avg Lookup

(us)

Insertion

Time (us)

Deletion

Time (us)

Memory

Usage (Mb)

Cache Hit

Ratio

3 30000 35

15

40

25

45

18

12

12

95

90

4 40000 25

18

35

28

32

20

20

16

83

88

5 50000 30

22

40

32

38

25

24

19

82

86

6 60000 35

25

45

35

42

28

28

22

80

85

7 70000 38

28

50

38

45

30

32

30

78

81

8 80000 40

30

55

42

50

32

36

30

77

81

9 90000 42

32

58

45

55

35

40

34

75

79

10 100000 45

35

60

48

55

40

45

38

73

78

Table 7: Trie Tree vs Radix Tree (Second Sample)

Table 7 shows the comparison between Trie tree and Radix tree implementation of IP Tables. IP Table

Size 30000 entries avg lookup time is 15 micro seconds where as for Trie tree it is 20 micro seconds.

Insertion time is 30 micro seconds and for raidix tree it is 25 micro seconds.

Deletion time is 28 micro seconds and 18 micro seconds for Radix tree implementation. For 40000

entries avg lookup speed is 25 and for Radix tree it is 18 micro seconds only.

 If the table size is 50000 entries then the avg lookup speed is 30 micro seconds and radix is 22 only,

Insertion speed is 40 for Trie tree implementation and Radix tree it is 32 micro seconds only.

Deletion speed is 32 micro seconds where as for Radix tree it is 20 micro seconds, memory usage came

down from 20 to 16 when we shift from Triee to Radix tree implementation. Cache hit ratio increased to

88 from 83 in Radix tree implementation.

For 60000 entries 35 micro seconds is the avg lookup speed for Trie Tree it is 25 for Radix tree

implementation. Insertion time is 45 micro seconds where as it is 25 micro seconds n Radix tree

implementation , deletion time is 42 us in trie gtree where as it is 28 us in radix tree. Memory usage

came down from 28 to 22 where as cache hit ratio increased to 85 from 80.

For 70000 entries 38 micro seconds is the avg lookup speed for Trie Tree it is 28 for Radix tree

implementation. Insertion time is 50 micro seconds where as it is 38 micro seconds n Radix tree

implementation , deletion time is 45 us in trie tree where as it is 30 us in radix tree. Memory usage came

down from 32 to 30 where as cache hit ratio increased to 81 from 78.

For 80000 entries 40 micro seconds is the avg lookup speed for Trie Tree it is 30 for Radix tree

implementation. Insertion time is 55 micro seconds where as it is 42 micro seconds n Radix tree

implementation , deletion time is 50 us in trie gtree where as it is 32 us in radix tree. Memory usage

came down from 36 to 30 where as cache hit ratio increased to 81 from 77.

For 90000 entries 42 micro seconds is the avg lookup speed for Trie Tree it is 32 for Radix tree

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 21

implementation. Insertion time is 58 micro seconds where as it is 48 micro seconds n Radix tree

implementation , deletion time is 55 us in trie gtree where as it is 35 us in radix tree. Memory usage

came down from 40 to 34 where as cache hit ratio increased to 79 from 75.

For 100000 entries 45 micro seconds is the avg lookup speed for Trie Tree it is 35 for Radix tree

implementation. Insertion time is 60 micro seconds where as it is 48 micro seconds n Radix tree

implementation, deletion time is 55 us in trie gtree where as it is 40 us in radix tree. Memory usage came

down from 45 to 38 where as cache hit ratio increased to 78 from 73.

Graph 10 represents the Radix tree implementation stats for IP Table and Graph 11 represents the

comparison of Trie tree and Radix tree implementation.

With this analysis we can say that by using the radix tree implementation of the IP Tables Avg lookup

speed , Insertion and deletion times are getting reduced by 30% and the memory usage is coming down

by almost 20%, Cache hit ratio is getting increased by 5%.

IP Table Size
Avg Lookup

Time
Insertion Time Deletion Time

Memory Usage

(MB)

Cache Hit

Ratio

30,000 30 35 40 10 97%

40,000 35 40 45 13 95%

50,000 40 45 50 18 92%

60,000 45 50 55 22 90%

70,000 50 55 60 28 87%

80,000 55 60 65 33 85%

90,000 60 65 70 38 83%

100,000 65 70 75 42 80%

Table 8: IP Tables Radix Tree (Third Sample)

Graph 12: IP Tables Radix Tree-1 (Third Sample)

0

10

20

30

40

50

60

70

80

Avg Lookup

Time

Insertion Time Deletion Time Memory Usage

(MB)

Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 22

Graph 13: IP Tables Radix Tree-2 (Third Sample)

Graph 14: IP Tables Radix Tree-3 (Third Sample)

IP

Table

Size

Trie

Avg

Looku

p

Time

Radix

Avg

Looku

p

Time

Trie

Insertio

n Time

Radix

Insertio

n Time

Trie

Deletio

n Time

Radix

Deletio

n Time

Trie

Memor

y

Usage

(MB)

Radix

Memor

y

Usage

(MB)

Trie

Cach

e Hit

Rati

o

Radi

x

Cach

e Hit

Rati

o

30,000 35 30 40 35 45 40 12 10 95% 97%

40,000 40 35 45 40 50 45 16 13 93% 95%

50,000 45 40 50 45 55 50 20 18 90% 92%

60,000 50 45 55 50 60 55 25 22 88% 90%

70,000 55 50 60 55 65 60 30 28 85% 87%

80,000 60 55 65 60 70 65 35 33 83% 85%

90,000 65 60 70 65 75 70 40 38 80% 83%

100,00

0 70 65 75 70 80 75 45 42 78% 80%

Table 9: Trie Tree vs Radix Tree (Third Sample)

0

10

20

30

40

50

60

70

80

Avg Lookup

Time

Insertion Time Deletion Time Memory Usage

(MB)

Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

0

10

20

30

40

50

60

70

80

Avg Lookup Time Insertion Time Deletion Time Memory Usage (MB) Cache Hit Ratio

30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 23

Graph 15: IP Tables Trie Tree Vs Radix Tree -1

(Third Sample)

Graph 16: IP Tables Trie Tree Vs Radix Tree-2

(Third Sample)

Graph 17: IP Tables Trie Tree Vs Radix Tree-3

(Third Sample)

Table 9 shows the comparison between Trie tree and Radix tree implementation of IP Tables. IP Table

Size 30000 entries avg lookup time is 30 micro seconds where as for Trie tree it is 35 micro seconds.

Insertion time is 40 micro seconds and for raidix tree it is 35 micro seconds. Deletion time is 45 micro

seconds and 40 micro seconds for Radix tree implementation.

For 40000 entries avg lookup speed is 40 and for Radix tree it is 35 micro seconds only.

0

10

20

30

40

50

60

70

80

Trie Avg

Lookup

Time

Radix

Avg

Lookup

Time

Trie

Insertion

Time

Radix

Insertion

Time

Trie

Deletion

Time

Radix

Deletion

Time

Trie

Memory

Usage

(MB)

Radix

Memory

Usage

(MB)

Trie

Cache Hit

Ratio

Radix

Cache Hit

Ratio

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

80

90

Trie Avg

Lookup

Time

Radix

Avg

Lookup

Time

Trie

Insertion

Time

Radix

Insertion

Time

Trie

Deletion

Time

Radix

Deletion

Time

Trie

Memory

Usage

(MB)

Radix

Memory

Usage

(MB)

Trie

Cache

Hit Ratio

Radix

Cache

Hit Ratio

30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

80

30000 40000 50000 60000 70000 80000 90000 100000

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 24

 If the table size is 50000 entries then the avg lookup speed is 45 micro seconds and radix is 40 only,

Insertion speed is 50 for Trie tree implementation and Radix tree it is 45 micro seconds only.

Deletion speed is 55 micro seconds where as for Radix tree it is 50 micro seconds, memory usage came

down from 20 to 18 when we shift from Triee to Radix tree implementation. Cache hit ratio increased to

95 from 93 in Radix tree implementation.

For 60000 entries 50 micro seconds is the avg lookup speed for Trie Tree it is 45 for Radix tree

implementation. Insertion time is 55 micro seconds where as it is 50 micro seconds n Radix tree

implementation , deletion time is 25 us in trie gtree where as it is 22 us in radix tree. Memory usage

came down from 28 to 22 where as cache hit ratio increased to 90 from 88.

For 70000 entries 55 micro seconds is the avg lookup speed for Trie Tree it is 50 for Radix tree

implementation. Insertion time is 60 micro seconds where as it is 55 micro seconds n Radix tree

implementation , deletion time is 65 us in trie tree where as it is 60 us in radix tree. Memory usage came

down from 30 to 28 where as cache hit ratio increased to 87 from 85.

For 80000 entries 60 micro seconds is the avg lookup speed for Trie Tree it is 55 for Radix tree

implementation. Insertion time is 65 micro seconds where as it is 60 micro seconds n Radix tree

implementation , deletion time is 70 us in trie gtree where as it is 65 us in radix tree. Memory usage

came down from 35 to 33 where as cache hit ratio increased to 85 from 83.

For 90000 entries 65 micro seconds is the avg lookup speed for Trie Tree it is 60 for Radix tree

implementation. Insertion time is 70 micro seconds where as it is 65 micro seconds n Radix tree

implementation , deletion time is 75 us in trie gtree where as it is 70 us in radix tree. Memory usage

came down from 40 to 38 where as cache hit ratio increased to 83 from 80.

For 100000 entries 70 micro seconds is the avg lookup speed for Trie Tree it is 65 for Radix tree

implementation. Insertion time is 70 micro seconds where as it is 65 micro seconds n Radix tree

implementation, deletion time is 80 us in trie gtree where as it is 75 us in radix tree. Memory usage came

down from 45 to 42 where as cache hit ratio increased to 80 from 80.

Graph 12 , 13 and 14 represents the Radix Tree implementation statistics for the IPTables. Graph 15 ,

16 and 17 represents the comparison of IP Tables performance stats for Trie tree implementation and

Radix tree impmentation.

With this analysis we can say that by using the radix tree implementation of the IP Tables Avg lookup

speed , Insertion and deletion times are getting reduced by 8% and the memory usage is coming down

by almost 7%, Cache hit ratio is getting increased by 5%.

EVALUATION

The comparison of Trie Tree implementation results with Radix tree implementation shows that later

one exihibits high performance. If the IP table size is 30000 entries the average lookup time is 15.6

micro seconds in Trie tree implementation and it is 7.8 micro seconds in radix implementation.

Insertion time, deletion time is 50% reduced to radix implementation , memory usage is reduced to 40%

and cache hit ratio came up to 85 from 80. The same type of evaluation is there all table sized entries

40000, 50000, 60000, 70000, 80000 , 90000 and 100000.

We can conclude that using the Radix implementation of ip tables in kubernetes increases the avg

lookup time , insertion time , deletion time , memory usage and cache hit ratio.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 25

CONCLUSION

We have configured three node , four node , five node , six node , seven node , eight node , nine node

and ten node clusters with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes.

IP Table size is no way related to cluster size (number of nodes). size of the IP table is influenced by the

number of pods, services, and network policies, it is not a direct measure of the cluster size (i.e., the

number of nodes). Instead, it is more closely related to the complexity of the network configuration in

the cluster.

A larger cluster with many pods and services, especially if there are complex network policies or ingress

configurations, will likely result in a larger IP table.

I have tested the performance of ip tables having Trie tree implementation and Radix implementation

using different IP table sizes such as 30000, 40000, 50000, 60000, 70000, 80000, 90000 and 100000

entries. The performance is getting increased with radix implementation i.e avg lookup time , insertion

time, deletion time are raising to 50%, memory usage is coming down to 40% and hit ratio is raising to

5%. Time complexity and space complexity have not been covered in this paper .

The future work includes finding the time and space complexity for Radix implementation of IP Tables.

REFERENCES

1. Kuberenets in action by Marko Liksa , 2018.

2. Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate

enterprise systems, and scale applications in your enterprise by Scott Surovich and Marc Boorshtein,

2020.

3. Kubernetes Patterns, Ibryam , Hub

4. Kubernetes Best Practices , Burns, Villaibha, Strebel , Evenson.

5. Learning Core DNS, Belamanic, Liu.

6. Core Kubernetes , Jay Vyas , Chris Love.

7. A Formal Model of the Kubernetes Container Framework. GianlucaTurin, AndreaBorgarelli,

SimoneDonetti, EinarBrochJohnsen, S.LizethTapiaTarifa, FerruccioDamiani

Researchreport496,June202

8. Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data

Analysis, IEEE Xplore, 13 February 2020.

9. A survey of Kubernetes scheduling algorithms, Khaldoun Senjab, Sohail Abbas, Naveed Ahmed &

Atta ur Rehman Khan Journal of Cloud Computing volume, 12 , 2023.

10. Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science

Laboratory in Universities, by Zhe Wang 1,Hao Liu ,Laipeng Han ,Lan Huang and Kangping Wang.

11. Study on the Kubernetes cluster mocel, Sourabh Vials Pilande. International Journal of Science and

Research , ISSN : 2319-7064.

12. Multiset-Trie Data Structure, Mikita Akulich, Mikita Akulich, Iztok Savnik.

13. Implementation of Trie Structure for Storing and Searching of English Spelled Homophone Words ,

Dr. Vimal P.Parmar , Dr. CK Kumbharana.

14. Composite Radix Tree-A Storage Method for Efficient Retrieval of Massive Data, Yanan Qi; Linkun

Sun; Wenbao Jiang, IEEE Xplore.

15. Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and Challenges, International

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR230229761 Volume 5, Issue 2, March-April 2023 26

Journal of Innovative Research in Engineering & Management, Indrani Vasireddy, G. Ramya,

Prathima Kandi

16. Research on Kubernetes' Resource Scheduling Scheme, Zhang Wei-guo, Ma Xi-lin, Zhang Jin-

zhong.

17. Deploying Microservice Based Applications with Kubernetes: Experiments and Lessons Learned,

Leila Abdollahi Vayghan Montreal, Mohamed Aymen Saied; Maria Toeroe; Ferhat Khendek, IEEE

XPlore.

18. Improving Application availability with Pod Readiness Gates https://orielly.ly/h_WiG

19. Kubernetes Best Practices: Resource Requests and limits https://orielly.ly/8bKD5

20. Configure Default Memory Requests and Limits for a Namespace https://orielly.ly/ozlUi1

21. Kubernetes CSI Driver for mounting images https://orielly.ly/OMqRo

22. Modelling performance & resource management in kubernetes by Víctor Medel, Omer F. Rana, José

Ángel Bañares, Unai Arronategui.

23. The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases, Viktor Leis, Alfons

Kemper, Thomas Neumann.

24. Trie: Mathematical and Computer Modelling An Alternative Data Structure for Data Mining

Algorithms F. BODON AND L. R~NYAI Computer and Automation Institute, Hungarian Academy

of Sciences.

25. Application of TRIE data structure and corresponding associative algorithms for process

optimization in GRID environment, Vladislav Kashansky, Igor Kaftannikov.

26. An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different

Data Usage Models, M. Thenmozhi1 and H. Srimathi, Indian Journal of Science and Technology,

Vol 8(4), 364–375, February 2015.

27. Research on Multibit-Trie Tree IP Classification Algorithm, Yi Jiang; Fengjun Shang, IEEE

Explore.

28. A reduction algorithm based on trie tree of inconsistent system, Xiaofan Zhang, IEEEXplore

29. Predicting resource consumption of Kubernetes container systems using resource models, Gianluca

Turin , Andrea Borgarelli , Simone Donetti , Ferruccio Damiani , Einar Broch Johnsen , S. Lizeth

Tapia Tarifa.

30. TRIE DATA STRUCTURE, Pallavraj SAHOO. 2015, Research Gate.

https://www.ijfmr.com/
https://orielly.ly/h_WiG
https://orielly.ly/8bKD5
https://orielly.ly/ozlUi1
https://orielly.ly/OMqRo

