International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@iffmr.com

Effect Of Switch-Over Devices on Availability of a Steam Generating System in A Thermal Power Plant

Dr. Kiran Bala
Assistant Professor, Department of Mathematics, Government P.G. College for Women, Sector 14, Panchkula, Haryana, India.

Abstract

: Purpose: Suggests a method to compute availability of the main part i.e. Steam- generation part of a Thermal Power Plant by taking into consideration the reapir/ failure rates of switch-over devices. This part contains gas classifier, crushing mills and boilers as its subsystems. Design/ Methodology/ Approach:. Assuming constant failure and repair rates, transition diagram of the system is drawn and problem is formulated using Markov Method. The governing difference equations are solved recursively for a steady state. Findings: System is analyzed for long run availability followed by illustration, table and graph. Originality / Value: It will help in increasing overall performance of Thermal Power Plant.

Keywords: Reliability, Availability, Markov Method.

Paper Type: Research Paper.

1. Introduction:

Competition is the life blood of our present day industrial civilization. This fact is apparent everywhere ranging from user of smallest domestic appliance to those responsible for the management of largest industrial concerns, technological projects or process industries. Today with increasing use of highly complex systems, increasing automation, the importance of obtaining highly reliable system has been recognized. A brief look back to the historical beginning of a systematic approach to the reliability problem is revealing. In the expansion of the aircraft industry after First World War, the fact that an engine might fail was partially instrumented to the development of multi-engine aircraft. This led, in 1930, to the concept of reliability. Since mid 1950, much work had been done on reliability analysis. Availability is the combination of two elements : reliability and maintainability. This means that poor reliability can be offset by improved maintainability. To improve the reliability of the system the concept of redundancy was introduced. Weiss (1956) studied a redundant system which operates repetitively and obtained various results. The priority concept of queueing theory in reliability problems has been introduced by Jaiswal (1968). Reliability is a particular case of availability in which no maintenance activity is practiced. Before going in detail, one must have some idea about Markov process . It is based on the assumption that only the last state occupied by the process is relevant in determining the future behavior. This assumption is very strong. If we turn to a process which is no longer strictly Markovian but retain enough of Markovian properties to deserve the name of Semi

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@iffmr.com

Markov Process in which transition from one state to another is governed by the transition probabilities of a Markov process but the time spent in each state, before a transition occurs, is a random variable depending upon the last transition made. Thus, at transition instants, the semi Markov process behaves just like a Markov process. Singh (1980) considered the Semi-Markov process generated by the system with imperfect switch over devices. Gupta et al.(2005) studied the numerical analysis of reliability and availability of the serial processes in butter-oil processing plant. Sarhan (2006) studied the reliability equivalences of a series system consisting of n Independent and Non-identical components. . Bansal and Goel (2016) studied the availability analysis of poultry, cattle and fish feed plant by taking various probability considerations. Ram and Nagiya (2017) discussed the gas turbine power plant performance evaluation under key failures by assuming the different types of component failure by using supplementary variable techniques, Laplace transformation and Markov process. Bala (2018) gave an idea about patents. Ghamry et al (2022) availability and reliability analysis of a k-Out-of-n Warm Standby System with common-cause failure and fuzzy failure and repair rates by assuming that the failure time of each operating unit or warm standby unit follows Weibull distribution with two fuzzy parameters and the repair time of any failed unit follows exponential distribution with one fuzzy parameter. Each fuzzy parameter is represented by triangular membership function estimated from statistical data taken from random samples of each unit. Bala K. (2022) discussed about impact of covid19. Saini et al. (2023) studied the availability and performance analysis of primary treatment unit of sewage plant by introducing the concept of redundancy and constant failure rates. It has been observed that reliability and availability of a system in different industries have been discussed so far. This has motivated me to consider the case of thermal power plant.
In this paper, a method to compute availability of Steam- generation part of a Thermal Power Planti is proposed by assuming constant failure and repair rates. Transition diagram of the system is drawn and problem is formulated using Markov Method. The governing differential equations are solved recursively for a steady state. System is analyzed for long run availability followed by illustration, table and graph.
This paper is organized in five sections. The present is introductory section. Section 2 consists of brief description about system and assumptions and notations. Mathematical formulation is done in section 3 . Section 4. gives numerical illustrations. In last section results are analyzed.

2. System, Notations and assumptions

The steam generating system in a thermal power plant consists of three subsystems A, B, D and two switch over devices S_{1}, S_{2}.Subsystem A (Gas Classifier) provides air to furnace. It consists of components in series. Failure of any component in it causes the complete failure of A and hence the complete failure of the plant. Subsystem B (Crushing Mills) from where powdered form of the coil is sent to boiler furnace with the help of compressed air consisting of two units in operating state and one in cold standby mode each composed of several components in series. The subsystem B is further supported by a fuel subsystem B_{F}. If two units of subsystem B fail, then fuel system runs the system. It is assumed that fuel subsystem B_{F} never fails because it is used only when both the main units fail. As soon as the unit of B are repaired it is switched in and the full subsystem B_{F} is switched out.
Steam is generated in Subsystem D (Boilers). It is composed of several components in parallel. Failure of a unit(s) in D reduces the working capacity of D and hence the efficiency of the plant. It is assumed that subsystem D never fails completely.

Switch-over device $\mathbf{S}_{\mathbf{1}}$ is imperfect. Whenever the unit of subsystem B fails, it is switched out and standby unit if available is switched in by S_{1} successfully with probability u. Failure of S_{1}, when online unit has already failed causes the complete failure of the system.
Switch-over device \mathbf{S}_{2} is imperfect. Whenever two units fail in subsystem B, the fuel subsystem B_{F} is switched in by Switch-over device $\mathbf{S}_{\mathbf{2}}$ successfully with probability v. Failure of \mathbf{S}_{2} when on line unit(s) as in subsystem B has already failed causes complete failure of the system.
Most of researchers have work in the field of reliability for different techniques.

Assumptions and Notations:

1.Failures and repairs are S-independent.
2. Separate repair facilities are available for each subsystem and switch over devices.
3.Upon failure, if all repair facilities are busy, the failed unit joins the end of the queue of respective non- operating units.
4. A repaired unit is as good as new and after repair it is immediately reconnected to the system.
5. Nothing can fail when the system is in failed state.
6. System comes in field state if the switch(es) cannot detect and disconnect a failed unit.
7.Switchover is instantaneous.
8. The repair of a failed unit starts at once.
9. The failure and repair rates of all units are constant.
$\mathrm{A}, \mathrm{B}, \mathrm{D}$ denote that subsystems are in full operating state.
B_{s} denotes that subsystem B is working on standby unit.
B_{F} denotes that subsystem B is working on fuel system when all units in system B have failed.
B_{F} ' denotes that subsystem B is working on fuel system when one unit in subsystem B is still in good state.
\bar{D} denotes that subsystem D is working in reduced-state.
a denotes that system is in failed state.
b_{1}, b_{2}, b_{3} denote that one, two and three units in subsystem B are in failed state.
α_{1} denotes the failure rate of sub-system A from good to failed state.
α_{2} denotes the transition rate of the one unit as a system be from good to failed state.
α_{3} denotes the transition rate of two units of subsystem B from good to failed state.
α_{4} denotes the failure rate of subsystem D from good to reduce state D .
β_{1} denotes the constant transition rate of the subsystem A from failed state to good state.
β_{2} denotes the constant transitions rate of subsystem B from failed state b_{1} to good state.
β_{3} denotes the constant transition rate of subsystem B from their failed state to good state.
β_{4} denotes the constant transition rate of subsystem D from reduced state to good state.
β_{5}, β_{6} denotes the respective mean constant repair rates of switch-over devices $\mathrm{S}_{1}, \mathrm{~S}_{2}$ from failed states to good states.
u, v denotes the respective probabilities of successful working of switches $\mathrm{S}_{1}, \mathrm{~S}_{2}$ for each failure event. $\bar{u}=1-u, \quad \bar{v}=1-v$
P_{n} is the probability that the system is in $\mathrm{n}^{\text {th }}$ state at the time $\mathrm{t},(1 \leq \mathrm{n} \leq 22)$
$\mathrm{P}_{\mathrm{n}}=\lim _{t \rightarrow \infty} \mathrm{P}_{\mathrm{n}}(\mathrm{t})$
dash (${ }^{\prime}$) denotes the derivative with respect to time t .

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Following the above assumptions and notations , the block diagram and transition diagram of the system as shown in the figure 1 and 2 respectively.

Fig. 1. Block Diagram of the System

3. Mathematical formulation :

Probability considerations give the following differential equations associated with transition diagram of the system:
$\mathrm{P}_{1}{ }^{\prime}(\mathrm{t})+\left(\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+\mathrm{v} \alpha_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{1}(\mathrm{t})=\mathrm{u} \beta_{2} \mathrm{P}_{2}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{4}(\mathrm{t})+\beta_{4} \mathrm{P}_{5}(\mathrm{t})$ $+\beta_{1} \mathrm{P}_{15}(\mathrm{t})$
$\mathrm{P}_{2}^{\prime}(\mathrm{t})+\left(\mathrm{u} \beta_{2}+\mathrm{v} \alpha_{2}+\bar{v} \alpha_{2}+\mathrm{v} \alpha_{3}+\bar{v} \alpha_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{2}(\mathrm{t})=\mathrm{u} \alpha_{2} \mathrm{P}_{1}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{3}(\mathrm{t})+\mathrm{v} \beta_{2} \mathrm{P}_{4}(\mathrm{t})+$ $\beta_{4} \mathrm{P}_{6}(\mathrm{t})+\beta_{5} \mathrm{P}_{10}(\mathrm{t})+\beta_{1} \mathrm{P}_{16}(\mathrm{t}) \quad$ (2)
$\mathrm{P}_{3^{\prime}}(\mathrm{t})+\left(\mathrm{v} \beta_{3}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{3}(\mathrm{t})=\mathrm{v} \alpha_{3} \mathrm{P}_{2}(\mathrm{t})+\beta_{4} \mathrm{P}_{7}(\mathrm{t})+\beta_{6} \mathrm{P}_{9}(\mathrm{t})+\beta_{1} \mathrm{P}_{17}(\mathrm{t})$
$\mathrm{P}_{4}{ }^{\prime}(\mathrm{t})+\left(\mathrm{v} \beta_{3}+\mathrm{v} \beta_{2}+\alpha_{4}+\alpha_{1}\right) \mathrm{P}_{4}(\mathrm{t})=\mathrm{v} \alpha_{3} \mathrm{P}_{1}(\mathrm{t})+\mathrm{v} \alpha_{2} \mathrm{P}_{2}(\mathrm{t})+\beta_{4} \mathrm{P}_{8}(\mathrm{t})+\beta_{6} \mathrm{P}_{11}(\mathrm{t})+\beta_{1} \mathrm{P}_{18}(\mathrm{t})$
$\mathrm{P}_{5}{ }^{\prime}(\mathrm{t})+\left(\mathrm{u} \alpha_{2}+\bar{u} \alpha_{2}+\bar{v} \alpha_{3}+\mathrm{v} \alpha_{3}+\beta_{4}+\alpha_{1}\right) \mathrm{P}_{5}(\mathrm{t})=\alpha_{4} \mathrm{P}_{1}(\mathrm{t})+\mathrm{u} \beta_{2} \mathrm{P}_{6}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{8}(\mathrm{t})+$ $\beta_{1} \mathrm{P}_{19}(\mathrm{t})$
$\mathrm{P}_{6}{ }^{\prime}(\mathrm{t})+\left(\mathrm{u} \beta_{2}+\bar{v} \alpha_{2}+\mathrm{v} \alpha_{3}+\bar{v} \alpha_{3}+v \alpha_{3}+\alpha_{1}+\beta_{4}\right) \mathrm{P}_{6}(\mathrm{t})=\alpha_{4} \mathrm{P}_{2}(\mathrm{t})+\mathrm{u} \alpha_{2} \mathrm{P}_{5}(\mathrm{t})+\mathrm{v} \beta_{3} \mathrm{P}_{7}(\mathrm{t})+$ $v \beta_{2} \mathrm{P}_{8}(\mathrm{t})+\beta_{5} \mathrm{P}_{14}(\mathrm{t})+\beta_{1} \mathrm{P}_{20}(\mathrm{t})$
$\mathrm{P}_{7}^{\prime}(\mathrm{t})+\left(\beta_{4}+\mathrm{v} \beta_{3}+\alpha_{1}\right) \mathrm{P}_{7}(\mathrm{t})=\alpha_{4} \mathrm{P}_{3}(\mathrm{t})+\mathrm{v} \alpha_{3} \mathrm{P}_{6}(\mathrm{t})+\beta_{6} \mathrm{P}_{13}(\mathrm{t})+\beta_{1} \mathrm{P}_{21}(\mathrm{t})$
$\mathrm{P}_{8}^{\prime}(\mathrm{t})+\left(\mathrm{v} \beta_{3}+\mathrm{v} \beta_{2}+\beta_{4}+\alpha_{1}\right) \mathrm{P}_{8}(\mathrm{t})=\alpha_{4} \mathrm{P}_{4}(\mathrm{t})+\mathrm{v} \alpha_{3} \mathrm{P}_{5}(\mathrm{t})+\mathrm{v} \alpha_{2} \mathrm{P}_{6}(\mathrm{t})+\beta_{6} \mathrm{P}_{12}(\mathrm{t})+\beta_{1} \mathrm{P}_{22}(\mathrm{t})$
$\beta_{6} \mathrm{P}_{9+\mathrm{i}}(\mathrm{t})=\bar{v} \alpha_{3} \mathrm{P}_{2+\mathrm{i}}(\mathrm{t}) ; \mathrm{i}=0,4$
$\beta_{5} \mathrm{P}_{10+\mathrm{i}}(\mathrm{t})=\bar{u} \alpha_{2} \mathrm{P}_{1+\mathrm{i}}(\mathrm{t}) ; \mathrm{i}=0,4$
$\beta_{6} \mathrm{P}_{11}(\mathrm{t})=\bar{v} \alpha_{3} \mathrm{P}_{1}(\mathrm{t})+\bar{v} \alpha_{2} \mathrm{P}_{2}(\mathrm{t})$
$\beta_{6} \mathrm{P}_{12}(\mathrm{t})=\bar{v} \alpha_{3} \mathrm{P}_{5}(\mathrm{t})+\bar{v} \alpha_{2} \mathrm{P}_{6}(\mathrm{t})$
$\beta_{1} \mathrm{P}_{14+\mathrm{i}}(\mathrm{t})=\alpha_{1} \mathrm{P}_{\mathrm{i}}(\mathrm{t}) ; 1 \leq \mathrm{i} \leq 8$

Fig. 2. Transition diagram of the System
With initial conditions
$P_{1}(0)=1$ and 0 otherwise.
Since management is generally interested in long run availability of the system, the system is required to run satisfactorily for a long time.
As $\mathrm{t} \rightarrow \infty, \frac{d P}{d t} \rightarrow 0$
Putting $\frac{d P}{d t} \rightarrow 0$ in equations (1) to (13) and solving recursively, we get the steady state probabilities as $\mathrm{p}_{\mathrm{n}}=\mathrm{r}_{\mathrm{n}} \mathrm{p}_{1} ; 1 \leq \mathrm{n} \leq 22$
Using the normalizing condition $\sum_{n=1}^{n=22} \mathrm{p}_{\mathrm{n}}=1$,
p_{1} may be obtained and is evaluated as
$\mathrm{p}_{1}=\left[\sum_{i=1}^{i=22} \mathrm{r}_{\mathrm{i}}\right]^{-1}$
The steady state availability $\left(\mathrm{A}_{\mathrm{v}}\right)$ of the system is given by
$\mathrm{A}_{\mathrm{v}}=\sum_{n=1}^{n=8} \mathrm{p}_{\mathrm{n}}=\left[\begin{array}{ll}\sum_{n=1}^{n=8} & \mathrm{r}_{\mathrm{n}}\end{array}\right]\left[\begin{array}{ll}\sum_{n=1}^{n=8} & \mathrm{r}_{\mathrm{n}}\end{array}\right]^{-1}$
Where $\mathrm{k}_{1}=\beta_{4}+\mathrm{v} \beta_{3}, \mathrm{k}_{2}=\mathrm{k}_{1}+\mathrm{v} \beta_{2}$,
$1_{1}=\mathrm{k}_{1}\left[\left(\alpha_{2}+\alpha_{3}+\mathrm{u} \beta_{2}+\beta_{4}\right) \mathrm{k}_{2}-\alpha_{2} \mathrm{v} \beta_{2}\right]-\mathrm{v} \beta_{3} \alpha_{2} \mathrm{k}_{2}$,
$\mathrm{l}_{2}=\mathrm{k}_{1} \mathrm{k}_{2} \alpha_{4}$,
$\mathrm{l}_{3}=\mathrm{k}_{2} \mathrm{v} \alpha_{4} \beta_{4}$,
$1_{4}=\mathrm{k}_{1} v \beta_{2} \alpha_{4}$,
$l_{5}=k_{1}\left(k_{2} \alpha_{2}+v \beta_{2} \alpha_{3}\right.$,
$\mathrm{m}_{1}=\mathrm{k}_{2} \mathrm{l}_{1} \alpha_{4}$,
$\mathrm{m}_{2}=\left(\mathrm{k}_{2} \mathrm{u} \beta_{2}+\mathrm{v} \beta_{3} \alpha_{2}\right) \mathrm{l}_{2}$,
$m_{3}=m_{2} l_{3}\left(l_{2}\right)^{-1}$,
$\mathrm{m}_{4}=\mathrm{m}_{2} \mathrm{l}_{4}\left(\mathrm{l}_{2}\right)^{-1}+\mathrm{vb}_{3} \alpha_{4} 1_{1}$,
$m_{5}=l_{1}\left[\left(\alpha_{2}+\alpha_{3}+\beta_{4}\right) \mathrm{k}_{2}-\mathrm{v} \beta_{3} \alpha_{3}\right]-1_{5}\left(\mathrm{k}_{2} \mathrm{u} \beta_{2}+\mathrm{v} \beta_{3} \alpha_{2}\right)$,
$\mathrm{m}_{6}=\left[\left(\alpha_{2}+\alpha_{4}+\alpha_{3}+\mathrm{u} \beta_{2}\right) \mathrm{l}_{1}-\beta_{4} \mathrm{l}_{2}\right] \mathrm{m}_{5}-\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{2}$,
$\mathrm{m}_{7}=\mathrm{m}_{5} \mathrm{l}_{1} \alpha_{2}+\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{1}$,
$\mathrm{m}_{8}=\left(\mathrm{v} \beta_{3} \mathrm{l}_{1}+\beta_{4} \mathrm{l}_{3}\right) \mathrm{m}_{5}-\beta_{4} 1_{5} \mathrm{~m}_{3}$,
$\mathrm{m}_{9}=\left(\mathrm{v} \beta_{2} \mathrm{l}_{1}+\beta_{4} \mathrm{l}_{4}\right) \mathrm{m}_{5}+\beta_{4} \mathrm{l}_{5} \mathrm{~m}_{4}$,
$\mathrm{n}_{1}=\mathrm{m}_{5} \alpha_{3} \mathrm{l}_{1} \mathrm{k}_{2}+\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} 1_{5}\right) \mathrm{m}_{1} \beta_{4}$,
$\mathrm{n}_{2}=\mathrm{m}_{5} \alpha_{2}\left(\mathrm{l}_{1} \mathrm{k}_{2}+\beta_{4} \mathrm{l}_{2}\right)+\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} \mathrm{l}_{5}\right) \mathrm{m}_{2} \beta_{4}$,
$\mathrm{n}_{3}=\beta_{4}\left[\mathrm{~m}_{5} \alpha_{2} \mathrm{l}_{3} \mathrm{k}_{2}+\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} \mathrm{l}_{5}\right) \mathrm{m}_{3}\right]$,
$\mathrm{n}_{4}=\mathrm{m}_{5}\left[1_{1} \mathrm{k}_{2}\left(\alpha_{4}+\mathrm{v} \beta_{2}+\mathrm{v} \beta_{3}\right)-\alpha_{4} \beta_{4} \mathrm{l}_{1}-\alpha_{2} \beta_{4} \mathrm{l}_{4}\right]-\left(\mathrm{l}_{1} \alpha_{3}+\alpha_{2} 1_{5}\right) \mathrm{m}_{4} \beta_{4}$,
$\mathrm{n}_{5}=\mathrm{m}_{5} \mathrm{l}_{1}\left[\mathrm{k}_{1}\left(\alpha_{4}+\mathrm{v} \beta_{3}\right)-\alpha_{4} \beta_{4}\right]-\alpha_{3} \beta_{4}\left(\mathrm{~m}_{5} \mathrm{l}_{3}+\mathrm{m}_{3} \mathrm{l}_{5}\right)$,
$\mathrm{n}_{6}=\mathrm{m}_{1} \mathrm{l}_{5} \alpha_{3} \beta_{4}$,
$\mathrm{n}_{7}=\mathrm{m}_{5} \alpha_{3}\left(\mathrm{l}_{1} \mathrm{k}_{1}+\beta_{4} \mathrm{l}_{2}\right)+\mathrm{l}_{5} \mathrm{~m}_{1} \alpha_{3} \beta_{4}$,
$\mathrm{n}_{8}=\alpha_{3} \beta_{4}\left(\mathrm{l}_{4} \mathrm{~m}_{5}+\mathrm{l}_{5} \mathrm{~m}_{4}\right)$,
$\mathrm{n}_{9}=\mathrm{n}_{4} \mathrm{n}_{5}-\mathrm{n}_{8} \mathrm{n}_{3}$,
$\mathrm{n}_{10}=\mathrm{m}_{8} \mathrm{n}_{4}+\mathrm{m}_{9} \mathrm{n}_{3}$,
$\mathrm{n}_{11}=\mathrm{n}_{4} \mathrm{n}_{6}+\mathrm{n}_{8} \mathrm{n}_{1}$,
$\mathrm{n}_{12}=\mathrm{m}_{6} \mathrm{n}_{4}-\mathrm{m}_{9} \mathrm{n}_{2}$,
$\mathrm{n}_{13}=\mathrm{n}_{4} \mathrm{n}_{7}+\mathrm{n}_{8} \mathrm{n}_{2}$,
$\mathrm{r}_{1}=1$,
$\mathrm{r}_{2}=\left[\left(\mathrm{n}_{4} \mathrm{~m}_{7}+\mathrm{m}_{9} \mathrm{n}_{1}\right) \mathrm{n}_{9}+\mathrm{n}_{10} \mathrm{n}_{11}\right]\left[\mathrm{n}_{9} \mathrm{n}_{12}-\mathrm{n}_{13} \mathrm{n}_{10}\right]^{-1}$,
$\mathrm{r}_{3}=\left[\left(\mathrm{n}_{11}+\mathrm{n}_{13} \mathrm{r}_{2}\right)\left(\mathrm{n}_{9}\right)^{-1}\right.$,
$r_{4}=\left[\left(n_{1}+n_{2} r_{2}+n_{3} r_{3}\right)\left(n_{4}\right)^{-1}\right.$,
$r_{5}=\left[\left(m_{1}+m_{2} r_{2}+m_{3} r_{3}+m_{4} r_{4}\right)\left(m_{5}\right)^{-1}\right.$,
$r_{6}=\left[\left(l_{2} r_{2}+l_{3} r_{3}+l_{4} r_{4}+l_{5} r_{5}\right)\left(l_{1}\right)^{-1}\right.$,
$\mathrm{r}_{7}=\left(\alpha_{3} r_{3}+\alpha_{3} r_{6}\right) \mathrm{k}_{2}{ }^{-1}$,
$\mathrm{r}_{8}=\left(\alpha_{4} r_{4}+\alpha_{3} r_{5}+\alpha_{2} r_{6}\right) \mathrm{k}_{1}^{-1}$,
$\mathrm{r}_{9}=\mathrm{r}_{2} \bar{v} \alpha_{3} \beta_{6}{ }^{-1}$,
$\mathrm{r}_{10}=\bar{u} \alpha_{2} \beta_{5}{ }^{-1}$,
$\mathrm{r}_{11}=\bar{v}\left(\alpha_{2} \mathrm{r}_{2}+\alpha_{3}\right) \beta_{6}{ }^{-1}$,
$\mathrm{r}_{12}=\bar{v}\left(\alpha_{2} \mathrm{r}_{6}+\alpha_{3} \mathrm{r}_{5}\right) \beta_{6}{ }^{-1}$,
$\mathrm{r}_{13}=\bar{v} \alpha_{3} \mathrm{r}_{6} \beta_{6^{-1}}$,
$\mathrm{r}_{14}=\bar{u} \alpha_{2} \mathrm{r}_{5} \beta_{5^{-1}}$,
$\mathrm{r}_{15}=\alpha_{1} \beta_{1^{-1}}$,
$\mathrm{r}_{14+\mathrm{i}}=\mathrm{r}_{15} \mathrm{r}_{\mathrm{i}} \quad ; 2 \leq \mathrm{i} \leq 8$

4. Numerical illustrations:

To study the effect of switch -over device over the availability, we evaluate availability of the system by taking $\mathbf{u}=\mathbf{v}=\mathbf{0 . 9}, \alpha_{1}=\alpha_{2}=0.02, \alpha_{4}=0.01, \alpha_{3}=0.001$,

$$
\beta_{2}=\beta_{4}=0.2, \beta_{1}=0.3, \beta_{3}=0.15
$$

The Availability Table is given below:

$\beta_{6} \beta_{5}$	0.15	0.20	0.25	0.30
0.15	0.92671533	0.929253191	0.930782538	0.93180489
0.20	0.92709225	0.92963207	0.93116266	0.93218585
0.25	0.92731848	0.92985955	0.93139089	0.93241458
0.30	0.92746937	0.93001127	0.93154310	0.93257265

Perfect Switch-over Devices:

When the switch-over device is perfect, the results are obtained by taking $\mathbf{u}=\mathbf{v}=\mathbf{1}$ in the forgoing analysis. By taking $\alpha_{1}=\alpha_{2}=0.02, \alpha_{4}=0.01, \alpha_{3}=0.001$,

$$
\beta_{2}=\beta_{4}=0.2, \beta_{1}=0.3, \beta_{3}=0.15
$$

Availability of the system is evaluated to be 0.938493205 .

5.Analysis of results:

Study of above Availability table and graph reveals that β_{5} increases the availability of the system more effectively than β_{6}. Although we should try to keep the switches good, availability for perfect switchover devices can be calculated by taking $u=v=1$. Athough, the repair of the switch S_{1}, requires more care than the switch S_{2}. Similar comparative tables and graphs can be prepared by taking repair/failure rates for various components. As controlling the failure of subsystems/units is more difficult than controlling the repair. Table for repair rates provides good information about the effectiveness of the system components.

References:

1. Weiss, G.H ,"On the theory of replacement of machinery with random failure time," Nav.Res.Log.Qrt,1956.
2. Jaiswal, N.K. ," Priority queues", Academic press, 1968.
3. Singh, J. Effect of switch failure on two-redudant system, IEEE Trans. Rel. 29 (1), 82-83, 1980.
4. P. Gupta, A. K. Lal, R. K. Sharma, and J. Singh, "Numerical analysis of reliability and availability of the serial processes in butter-oil processing plant," Int. J. Qual. Reliab. Manag., vol. 22, no. 3, pp.

303-316, 2005, doi: 10.1108/02656710510582507.
5. A. M. Sarhan, "Reliability Equivalences of a Series System Consists of n Independent and Nonidentical Components," International Journal of Reliability and Applications, vol. 7, no. 2. pp. 111125, 2006.
6. R. Bansal and P. Goel, "Availability analysis of poultry , cattle and fish feed plant," vol. 1, no. 1, pp. 8-16, 2016.
7. M. Ram and K. Nagiya, "Gas turbine power plant performance evaluation under key failures," J. Eng. Sci. Technol., vol. 12, no. 7, pp. 1871-1886, 2017.
8. Dr. Kiran Bala, "Thermo Elasticity: A Patent Review," Int. J. Case Stud., vol. 7, no. 2018-08, pp. 96-99, 2018, [Online]. Available: http://www.casestudiesjournal.com
9. E. El-Ghamry, A. H. Muse, R. Aldallal, and M. S. Mohamed, "Availability and Reliability Analysis of a k-Out-of-n Warm Standby System with Common-Cause Failure and Fuzzy Failure and Repair Rates," Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/3170665.
10. K. Bala, "Impact of the COVID-19 Pandemic on Higher Education in Haryana (Student's Perspective)," Int. J. All Res. Educ. Sci. Methods (IJARESM), vol. 10, no. 4, pp. 1050-1056, 2022.
11. M. Saini, D. Goyal, and A. Kumar, "Availability and Performance Analysis of Primary Treatment Unit of Sewage Plant," vol. 21, no. April, pp. 383-396, 2023.

