International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.iffmr.com • Email: editor@ijfmr.com

Prime Labeling of Nauru Graph

K.Bharatha Devi ${ }^{1}$, S.Lakshmi Narayanan ${ }^{2}$
${ }^{1}$ Research Scholar, Arignar Anna Govt Arts College, Villupuram.
${ }^{2}$ Asst Prof \& Head PG \& Research Department of mathematics, Arignar Anna Govt Arts College, Villupuram.

Abstract

A graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ is observed to admit prime labeling, if a graph that receives prime labeling is called prime graph. In this research article we investigate that the Nauru graph admits prime labeling. We construct the mirror graph and shadow graph of the Nauru graph. We also establish prime labeling using some graph operations such as duplication. switching and fusion with few ideas.

Keywords: Nauru Graph, Prime Labeling, Duplication, Fusion

1. INTRODUCTION

In this paper, we define a connected and undirected graph name Nauru graph and we denote the vertex set by $\mathrm{V}(\mathrm{G})$ and edge set by $\mathrm{E}(\mathrm{G})$ of graph G and their corresponding cardinality by $|\mathrm{V}(\mathrm{G})|$ and $|\mathrm{E}(\mathrm{G})|$.Here we establish that Nauru graph admits prime labeling.

2. PRELIMINARIES

Definition 2.1[1].
The Nauru graph is a symmetric bipartite 3-regular undirected graph with 24 vertices and 36 edges. It is a graph with girth 6. It is named by David Epstein after the twelve pointed star in the flag of Nauru [1].

Definition 2.2[4].

Let G be a bipartite graph with partite sets V_{1} and V_{2} and G^{\prime} be the copy of G with corresponding partite sets $V^{\prime}{ }_{1}$ and V^{\prime}. The mirror graph $M(G)$ of G is obtained from G and G^{\prime} by joining each vertex of V_{2} to its corresponding vertex in V_{2} by an edge. The concept of Mirror graphs was introduced by Bresar et al. in 2004 as an intriguing class of graphs.
Definition 2.3[2].
Duplication of a vertex v_{i} of a graph G constructs a new graph G_{1} by adding a vertex v_{i}^{\prime} with $\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)$ In other words, a vertex $\mathrm{v}_{\mathrm{i}}^{\prime}$ is said to be a duplication of the vertex v_{i} if all the vertices which are adjacent to v_{i} in G are now adjacent to v_{i}^{\prime} in G_{1}.
Definition 2.4[2].
A vertex switching G_{s}, of a graph G is obtained by taking a vertex v of G and by removing the entire edges incident with u and v adding edges joining v to every vertex which are not adjacent to v in G.

Definition 2.5[2].

Let u and v be two distinct vertices of a graph G. A new graph G_{1} is constructed by fusing (identifying) two vertices u and v by a single vertex x in G_{1} such that every edge which was incident with either u or v in G now incident with x in G_{1}.

3. PRIME LABELING OF NAURU GRAPH

Theorem 3.1.

The Nauru graph is a prime graph.

Proof.

Let G be the Nauru graph with 24 vertices and 36 edges. The vertex set $(G)=\left\{v_{1}, v_{2}, \ldots v_{12}, u_{1}\right.$, $\left.\mathrm{u}_{12}\right\}$. In general $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 12\right\}$ and $|\mathrm{V}(\mathrm{G})|=24$.

The edge set $E(G)=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq\right.$ $6\} U\left\{u_{2 i+7} u_{2 i+2}, i=1,2\right\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i=\right.$ $1,2\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq i \leq 6\right\}$ and $\left.\mid \mathrm{EG}\right) \mid=36$.
Let us define a labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3,24\}$ by
$f\left(v_{i}\right)=i, 1 \leq i \leq 12, f\left(u_{2 i}\right)=2 i+11, i=1,2$,
$f\left(u_{2 i+7}\right)=2 i+12, i=1,2, \quad f\left(u_{2 i-5}\right)=2 i+12,3 \leq i \leq 6$
Then

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=1 \\
& \operatorname{gcd}\left(f\left(v_{12)}\right) f\left(v_{1}\right)=1\right. \\
& \operatorname{gcd}\left(f\left(u_{2 i}\right) f\left(u_{11+2 i}\right)\right)=1 \\
& \operatorname{gcd}\left(f\left(u_{2 i}\right) f\left(u_{2 i-5}\right)\right)=1, \\
& \operatorname{gcd}\left(f\left(u_{2 i+7}\right) f\left(u_{2 i+2}\right)\right)=1, \\
& \operatorname{gcd}\left(f\left(u_{2 i-5}\right) f\left(u_{2 i+2}\right)\right)=1 \\
& \operatorname{gcd}\left(f\left(u_{7}\right) f\left(u_{2}\right)\right)=1, \\
& \operatorname{gcd}\left(f\left(v_{2 i}\right) f\left(u_{2 i}\right)\right)=1, \\
& \operatorname{gcd}\left(f\left(v_{2 i+7}\right) f\left(u_{2 i+7}\right)\right)=1, \\
& \operatorname{gcd}\left(f\left(v_{2 i-5}\right) f\left(u_{2 i-5}\right)=1\right.
\end{aligned}
$$

Therefore G is a prime graph.

4. CONSTRUCTION OF MIRROR GRAPH M(G) OF NAURU GRAPH.

STEP :1

Consider the Nauru graph G with 24 vertices and 36 edges.The vertex set $V(G)=\left\{v_{i}, u_{i} / 1 \leq i\right.$ $\leq 12\}$. And $|\mathrm{V}(\mathrm{G})|=24$.
The edge set $E(G)=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq\right.$ $6\} U\left\{u_{2 i+7} u_{2 i+2}, i=1,2\right\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i=\right.$ $1,2\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq i \leq 6\right\}$.
And $|\mathrm{E}(\mathrm{G})|=36 . \mathrm{G}$ is a bipartite graph with partite sets .
$\mathrm{V}_{1}(\mathrm{G})=\left\{v_{i}, u_{i} / \mathrm{i}=1,3,5,7 \ldots \ldots \ldots, 11\right\}$ and
$\mathrm{V}_{2}(\mathrm{G})=\left\{v_{i}, u_{i} / \mathrm{i}=2,4, \ldots \ldots \ldots, 12\right\}$
STEP : 2
Let G^{\prime} be the copy of the Nauru graph G with 24 vertices 36 edges. The vertex set $\mathrm{V}\left(\mathrm{G}^{\prime}\right)$ $=\left\{x_{i}, w_{i} / 1 \leq \mathrm{i} \leq 24\right\}$ and $|\mathrm{V}()|=24$.

The edge set $E\left(G^{\prime}\right)=\left\{x_{i} x_{i+1}, 1 \leq i \leq 11\right\} U\left\{x_{12} x_{1}\right\} U\left\{w_{2 i} w_{11+2 i}, i=1,2\right\} U\left\{w_{2 i} w_{2 i-5}, 3 \leq i \leq\right.$ $6\} U\left\{w_{2 i+7} w_{2 i+2}, i=1,2\right\} U\left\{w_{2 i-5} w_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{w_{7} w_{2}\right\} U\left\{x_{2 i} w_{2 i}, 1 \leq i \leq 6\right\} U\left\{x_{2 i+7} w_{2 i+7}, i=\right.$ $1,2\} U\left\{x_{2 i-5} w_{2 i-5}, 3 \leq i \leq 6\right\}$
. And $\left|\mathrm{E}\left(\mathrm{G}^{\prime}\right)\right|=36$. G^{\prime} is a bipartite graph with partite sets .
$\mathrm{V}_{1}^{\prime}\left(\mathrm{G}^{\prime}\right)=\left\{x_{i}, w_{i} \mathrm{u}_{\mathrm{i}} / \mathrm{i}=1,3,5,7, \ldots \ldots \ldots, 11\right\}$ and
$\mathrm{V}_{2}^{\prime}\left(\mathrm{G}^{\prime}\right)=\left\{x_{i}, w_{i} / \mathrm{i}=2,4\right.$, 12\}.
Where V_{1} 'and V_{2} are copies of V_{1} and V_{2} respectively.
STEP :3
Let $\mathrm{M}(\mathrm{G})$ be the mirror graph of G . The mirror graph $\mathrm{M}(\mathrm{G})$ of G is obtained from G and G^{\prime} by joining each vertex in V_{2} ' by additional edges $\left\{v_{i}, x_{i} / \mathrm{i}=1,3,5, \ldots .23\right\}$
$\mathrm{V}[\mathrm{M}(\mathrm{G})]=\left\{v_{i}, x_{i} / 1 \leq \mathrm{i} \leq 24\right\}$ is the vertex set of $\mathrm{M}(\mathrm{G})$.
$E(M(G))=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq\right.$
$6\} U\left\{u_{2 i+7} u_{2 i+2}, i=1,2\right\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i=\right.$ $1,2\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq i \leq 6\right\} U\left\{v_{i}, x_{i} / \mathrm{i}=1,3,5, \ldots .23\right\}$
In the edge set of $\mathrm{M}(\mathrm{G})|\mathrm{V}(\mathrm{M}(\mathrm{G}))|=48$.

5. Duplication of a Vertex of Nauru Graph

Theorem 5.1
The Graph obtained by duplication of any Arbitrary Vertex of Nauru Graph is Prime Graph.
Proof:
Let G be a Nauru Graph with 24 vertex and 36 edge. The vertex set

$$
\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 12\right\} \text { and }|\mathrm{V}(\mathrm{G})|=24 .
$$

The edge set $E(G)=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq\right.$ $6\} U\left\{u_{2 i+7} u_{2 i+2}, i=1,2\right\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i=\right.$ $1,2\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq i \leq 6\right\}$
and $|E(G)|=36$.
Let G_{d} represent duplication graph arbitrary vertex of G .
The Vertex Set $V\left(G_{d}\right)=\left\{v_{i}, u_{i} / 1 \leq i \leq 12\right\} U\left\{v_{i}\right.$, or $u_{i} / 1$ or 2 or. . or 12$\}$ and $\left|V\left(G_{d}\right)\right|=25$
The edge set
$E(G)=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq 6\right\} U\left\{u_{2 i+7} u_{2 i+2}, i=\right.$ $1,2\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i=1,2\right\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq\right.$ $i \leq 6\} \mathrm{U}\left\{\right.$ the 3 edges of v_{1}^{\prime} or u_{1}^{\prime} adjacent to all those vertices which are adjacent to $\left.\mathrm{v}_{1}\right\}$ and $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{d}}\right)\right|=$ 39.

Let us define a labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3,24\}$ by

$$
\begin{aligned}
& f\left(v_{i}\right)=i, 1 \leq i \leq 12, \quad f\left(u_{2 i}\right)=2 i+11, i=1,2, \\
& \quad f\left(u_{2 i+7}\right)=2 i+12, i=1,2, \quad f\left(u_{2 i-5}\right)=2 i+12,3 \leq i \leq 6
\end{aligned}
$$

$f\left(v_{i}^{\prime}\right)=25$
this pattern of labeling admits prime .
Therefore G_{d} is prime graph .

6. Switching of Nauru graph

Theorem

The graph G attained by Switching of vertex v_{1} of a Nauru Graph is Prime.

Proof

Let G_{s} represents the Switching vertex graph v_{1} of Nauru Graph.

```
\(\mathrm{V}(\mathrm{Gs})=\left\{v_{i}, u_{i} / 1 \leq \mathrm{i} \leq 12\right\}|\mathrm{v}(\mathrm{Gs})|=24\).
\(E(G)=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq 6\right\} U\left\{u_{2 i+7} u_{2 i+2}, i=\right.\)
\(1,2\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i=1,2\right\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq\right.\)
\(i \leq 6\} U\left\{v_{i}, x_{i} / 3 \leq i \leq 23, i \neq 8\right\}\)
and \(|\mathrm{E}(\mathrm{G})|=56\).
```

Let us define a labelling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3,24\}$ by

$$
\begin{aligned}
& f\left(v_{i}\right)=i, 1 \leq i \leq 12, \quad f\left(u_{2 i}\right)=2 i+11, i=1,2, \\
& f\left(u_{2 i+7}\right)=2 i+12, i=1,2, \quad f\left(u_{2 i-5}\right)=2 i+12,3 \leq i \leq 6
\end{aligned}
$$

the above pattern of labelling Gs admits prime labelling.
Therefore It is Prime Graph.

7. Fusing of two vertices.

Theorem:
The graph attained by fusing v_{1} and u_{12} of a Nauru graph is prime graph.
Proof:
Let G_{f} be a graph attained by fusing vertices v_{1}, u_{12} as one of vertex u in Nauru graph.
$\mathrm{V}\left(\mathrm{G}_{\mathrm{f}}\right)=\left\{v_{i}, u_{i} / 2 \leq \mathrm{i} \leq 12\right\} \mathrm{U}\{\mathrm{u}\}$ and

$$
\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{f}}\right)\right|=23 .
$$

$$
\begin{gathered}
E\left(G_{f}\right)=\left\{v_{i} v_{i+1}, 1 \leq i \leq 11\right\} U\left\{v_{12} v_{1}\right\} U\left\{u_{2 i} u_{11+2 i}, i=1,2\right\} U\left\{u_{2 i} u_{2 i-5}, 3 \leq i \leq 6\right\} U\left\{u_{2 i+7} u_{2 i+2}, i\right. \\
=1,2\} U\left\{u_{2 i-5} u_{2 i+2}, 3 \leq i \leq 5\right\} U\left\{u_{7} u_{2}\right\} U\left\{v_{2 i} u_{2 i}, 1 \leq i \leq 6\right\} U\left\{v_{2 i+7} u_{2 i+7}, i\right. \\
=1,2\} U\left\{v_{2 i-5} u_{2 i-5}, 3 \leq i \leq 6\right\}
\end{gathered}
$$

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3,, 23\}$ by

$$
\begin{aligned}
& f\left(v_{i}\right)=i, 1 \leq i \leq 12, \quad f\left(u_{2 i}\right)=2 i+11, i=1,2 \\
& \quad f\left(u_{2 i+7}\right)=2 i+12, i=1,2, \quad f\left(u_{2 i-5}\right)=2 i+12,3 \leq i \leq 6
\end{aligned}
$$

The above pattern admits prime labeling.

Conclusion:

In this we proceed Nauru graph admits Prime labeling and also constructed mirror graph, and also established prime labeling using operations such as duplication, switching and fusion.

Reference

1. BurkardPolster and Hendrik van Maldeghem, some construction of small generalized polygons, journal of combinatiorial Theory, series A. 96(2001),162-179.
2. A. Edward Samuel and S. Kalaivani , prime labeling to brush graph, International Journal of Mathematics Trends and Technology 55(4) 2018.
3. Joseph A. Gallian, A dynamics survery of graph labeling , The Electronic journal of Combinatorics,(2019).
4. S.K. Vaidya and N.B. Vyas, E-cordial labeling some mirror graph , International journal of contemporary Advanced Mathematics (IJCM) 2 (2011), 22-77.
5. S.K. Vaidya and N.H. Shah, prime cordial labeling of some graph, Open Journal of Discrete Mathematics (2012), 11-16.
6. S.K. Vaidya and N.J. Kothari, line gracefulness some path related graph, International Journal of Mathematics and Scientific Computing 4(1) (2014),15-18.
7. V.ANNAMMA and NH Begum, prime labeling of pappus graph, Advanced and Application in Mathematical Science, V(21) Issue(2). Dec 2021, 773-784.
