

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>• Email: editor@ijfmr.com

Potential Domoic Acid (Neurotoxin) Producing Phytoplankton *Pseudonitzschia* in Indian Coastal Water - Do We Need To Care?

Gunjan Motwani¹, Rahul Rajan², Mini Raman³, Hitesh Solanki⁴

¹Assistant Professor, Shree M. P. Shah Arts and Science College, Surendranagar, Gujarat, India
 ²Research Scholar, Department of Environment Science, Gujarat University, Ahmedabad
 ³Scientist G, Space Applications Centre, ISRO, Ahmedabad
 ⁴Professor, Department of Botany, Gujarat University, Ahmedabad

Abstract

Pseudonitzschia species are potential domoic acid producers, a neurotoxin, responsible for the infamous human HAB intoxication at Prince Edward Island, Canada in 1987, costing human lives. Global warming has widened the reach of these phytoplankton species and it is being reported in Indian waters. We report the occurrence of ten*Pseudonitzschia* species in the northwestern coastal waters of India, out of which, seven are potential domoic acid producers. The question arises, are we vulnerable to HAB (Domoic Acid) toxicity? In light of the observation that *Pseudonitzschia* dominates the coastal waters of Veraval and its abundance is increasing with time, the present study briefly synthesizes the available information on the ecology, metabolism, and other relevant knowledge related to the domoic acid production by *Pseudonitzschia* and assesses the risk of human intoxication through trend and forecast analysis with the possible preventive measures required.

Keywords: Pseudonitzschia Bloom, Risk Assessment of Pseudonitzschia Bloom

1. Introduction

About half of the total human population lives within 200 km of coastlines (Creel,2003). According to data on the blue economy by World Bank (Blue economy, 2022),oceanic resources contributeabout \$1.5 trillion annually to the world economy, apart from providing much-needed nutritional benefits to human beings. Fish and other edible oceanic natural resources are one of the cheap and very good sources of proteins for a large population of coastal communities. According to the data on fish landing by Central Marine Research Institute,India produces3820207tons of fish resources annually (Annual data, 2022) which supports a large coastal community, the health of such aquatic ecosystems are of critical importance in ensuring human health as well as their economic wellbeing.

One of the emerging challenges faced by the coastal ecosystems is the outbreak of harmful blooms (HAB) of phytoplankton which sometimes causes the release of toxic secondary metabolites into the water thereby posing serious threat to the coastal ecosystem, biodiversity and human health.

Phytoplankton are microscopic, free-floating and pigment-containingorganisms performing the ecological function of fixing non-bioavailable energy (light energy) into bioavailable chemical form (carbohydrate) much like the plants of terrestrial ecosystems. Apart from the normal function of

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>• Email: editor@ijfmr.com

photosynthesis, a few phytoplankton species produce harmful secondary metabolic products which may be harmful to the ecosystem and/or cause toxicity to other organisms. According to a study by D'Silva et al., 2012, out of the 5000 species of phytoplankton existing in the world's oceans, 7% are reported to form blooms that included diverse phytoplankton groups such as diatoms, dinoflagellates, raphidophytes, prymnesiophytes and silicophytes. Among the bloom-forming phytoplankton, only 2% were reported to be toxic and dinoflagellates contributed 75% to the toxic bloom-forming phytoplankton.39 phytoplankton species are documented as responsible for the formation of algal bloom in Indian waters.

In context to Indian waters, the earliest event of toxicity was reported by Hornell in 1908 when massive fish mortality occurred due to an unidentified flagellate bloom. Subsequently, many toxic and nontoxic bloom events have been reported from Indian waters. Appendix 1 summarizes the occurrence of bloom events in Indian waters, their causative phytoplankton species and their effects. Considering the western coastline of India, most bloom events have been reported from Kerala followed by Mangalore and Goa(D'Silva et al., 2012). There has been no report of *Pseudonitzschia* bloom or its toxicity from any part of Indian water to date.

This study reports the first occurrence of *Pseudonitzschia* (a diatom) bloom along thenorthwestern coastline (Veraval coast, Gujarat) of India. Also, a mini review on bloom events in Indian waters along with the biology of *Pseudonitzschia* and the eco-physiology of domoic acid production is briefly considered in this paper. *Pseudonitzschia* produces a neurotoxin called domoic acid and various species of *Pseudonitzschia* well known for causing toxic blooms in many parts of the globe (Lelong et al., 2012). The study assesses the potential risk of toxicity through trend and forecast analysis.

2. Mini Review-Pseudonitzschia and domoic acid

• Toxin-producingPseudonitzschia species

Morphologically, *Pseudonitzschia* is a diatom with lanceolate or spindle-shaped frustule in its value view. Frustules overlap at value ends to form stepped chains (Tomas 2007). It is a marine and estuary diatom with approximately 37 species of worldwide distribution (Hubbard et al. 2008; Hasle et al., 2002; Bates 2000; Lelong et al., 2012 and references therein). 14 out of 37 species have been reported to produce domoic acid, a potential neurotoxin (Lefebvre and Robertson, 2010, Bates 2000; Trainer et al. 2008; Lelong et al., 2012). Trick et al. 2010 observed toxin production from *Pseudonitzschiagranii* in a shipboard continuous culture of natural seawater thus making it the most recent addition to the list of toxin-producing *Pseudonitzschia*. It is believed that all spices of *Pseudonitzschia* are potential toxin producers, given the appropriate growth and toxin-producing conditions along with highly sensitive toxin detection methods (Parsons et al. 1999; Wells et al. 2005; Lelong et al., 2012).

• Habitat preference by Pseudonitzschia

Studies by Trainer et al. 2008; Caron et al. 2010; summarized that most toxin-producing species of Pseudonitzschia inhabit coastal waters. Also, coastal species were observed to produce higher ml^{-1}) concentrations of domoic acid 136 ng (Howard (0.15)to et al. 2007; Trainer et al. 2007) in comparison to the few oceanic (undetectable to 0.1 pg ml⁻¹) (Marchetti et al. 2008; Trick et al. 2010) counterparts (Lelong et al., 2012). Similar to many other diatoms, Pseudonitzschia often blooms in the upwelling zones where light and nutrient conditions are most favourable. It was observed by Trainer et al. 2008; that Pseudonitzschia blooms are common along the

western coast of the continents due to upwelling and water circulation produced by sea floor and coastal topographies. A distribution map documenting the worldwide occurrence of various species of *Pseudonitzschia*was given by Lelong et al., 2012.

• History of bloom events

The first incidence of harmful effects produced by *Pseudonitzschia* was reported from the eastern coast of Prince Edward Island, Canada, in 1987; when many people got ill and three died due to the consumption of intoxicated mussels (*Mytilus edulis*) (Todd, 1990). Following this, the toxic blooms of *P.multiserae*were observed for three years along the eastern coast of Canada (Smith et al., 1990a; Villac et al., 1993). Since then, *Pseudonitzschia* blooms and production of domoic acid has been observed in many other parts of the world (Shumway 1989; Chang 1993; Hallegraeff 1994; Miguez et al. 1996; Beltran et al. 1997; Lelong et al., 2012).

• Symptoms of domoic acid toxicity

The most unusual and serious symptom of domoic acid poisoning in humans is loss of short-term memory and in some cases, it causes permanent damage to the brain. The poison is not destroyed either by cooking or freezing. Apart from *Pseudonitzschia*, domoic acid is released by a variety of other macro and microalgae The poison was first discovered from red algae called 'doumoi' (*Chondriaarmata*) in the Japanese language, in 1958 and was used as a folk medicine in Japan to treat intestinal pinworm infestations (Villac et al., 1993; Mos, 2001).

• General properties of domoic acid

Domoic acid is water soluble and heat-stable amino acid (Hatfield et al., 1995; Leira et al., 1998) but gets degraded by bacterial action (Windust, 1992; Stewart et al., 1998) and by exposure to UV radiation (Wright et al., 1990, Bates et al., 2003). It is also known to chelate iron and thus iron is also considered as a potential degrading agent (Rue and Bruland, 2001). Limitations of nutrients such as phosphorus, silica and metals like iron and copper have been shown to promote toxin production (Pan et al., 1996b; Bates, 1998; Wells et al., 2005). Also, increased levels of salinities, dissolved inorganic carbon and urea have been related to the enhancement of toxin production (Howard et al., 2007; Doucette et al., 2008; Sun et al., 2011; Tatters et al., 2012). *Pseudonitzschia*is especially known for its interaction with iron and its ability to store it (Marchetti A, et al. 2009).

3. Materials and Methods

Water samples were collected to study phytoplankton diversity from the coastal waters of Veraval, Gujarat, which is a part of the northeastern Arabian Sea. The study was conducted from March 2003 to April 2017. The geographical distribution of all the sampling sites is shown in Figure 1.

The relative abundance of phytoplankton cells was calculated to study the extent of dominance of *Pseudonitzschia* cells over other phytoplankton communities.Decadal trend analysis and forecast analysis for the next 10 years was carried out to understand the pattern of rise and estimate the potential hazardposed by *Pseudonitzschia* cells.The threshold of bloom initiation and level of risk was determined according to the method proposed by Siegel et al (2002).For this, the mean value for decadal phytoplankton cell counts was calculated and rise in *Pseudonitzschia* cell counts above 30% of the meanvalue was considered as bloom initiation.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

4. Result and discussion

• Reporting

A study on phytoplankton assemblage revealed that diatoms dominated the overall phytoplankton diversity with 77.93% in coastal waters of Gujarat, comprising the northeastern part of the Arabian Sea. *Pseudonitzschia*alone contributed to 26% of overall phytoplankton diversity in the study region.

In order to further understand the effect of seasonal changes in *Pseudonitzschia* dominance, the study period was temporally classified as fall inter-monsoon, winter monsoon and spring inter-monsoon seasons. Again, diatoms dominated in all the seasons studied, but *Pseudonitzschia* did not (table 1). Although the abundance of *Pseudonitzschia* was significantlyhigh in all the seasons, it did not dominate the overall diversity during the two inter-monsoon seasons. *Pseudonitzschia* dominated with a relative abundance value of 0.26, exclusively in the winter monsoon season. As mentioned in the mini-review above, *Pseudonitzschia* grows best in upwelling zones and coastal waters where nutrient conditions are favourable for their growth and multiplication. During winter monsoon, cooler water at the surface sinks towards the bottom causing upwelling (Motwani et al., 2014). This upwelling water brings along nutrients from the bottom, turning the nutrient conditionfavourablefor the growth of *Pseudonitzschia*. Whereas in fall and spring inter-monsoon seasons, the hydrological condition is reversed and the water is stratified. Nutrient supply in stratified water is low thus lowering the overall phytoplankton diversity and thereby abundance of *Pseudonitzschia* as well.

	i un inter, () inter une opring inter interiored beacend							
Seasons	Phytoplankton groups	proportionofphytoplanktongroups(inpercentage)	Dominating species in the group	proportionofdominatingspeciesingroup(inpercentage)				
Fall inter	Diatoms	97.68	Asterionellopsisglaciallis	39.81				
monsoon	Dinoflagellates	1.75	Scrippsiellatrochoidea	0.32				
	Other algae	0.55	Trichodesmiumerythrium	0.37				
Winter	Diatoms	87.07	Pseudonitzschiadelicatissima	28.28				
monsoon	Dinoflagellates	1.67	Prorocentrumbalticum	0.49				
	Other algae	11.24	Trichodesmiumerythrium	5.20				

Table 1. Contribution (In Percentage) of Various Phytoplankton Species to the Phytoplankton Groups in
Fall Inter, Winter and Spring Inter-Monsoon Seasons

Spring	Diatoms	48.31	Nitzschialongissima	18.53
inter	Dinoflagellates	2.29	Prorocentrumbalticum	0.63
monsoon	Other algae	49.38	Trichodesmiumerythrium	46.36

Tenspecies of *Pseudonitzschia* viz. *P. australis*, *P. delicatissima*, *P.granii*, *P.lineola*, *P. multiserae*, *P.pungens*, *P.seriata*, *P.subcurvata*, *P.turgidula* P. *calcaravis* were present in the coastal waters of Gujarat. Based on the list of toxin producing species byLelong et al., 2012, sevenamong tenhave been reported to produce toxin indifferent parts of the world. With respect to overall phytoplankton diversity during the study seasons, *P.delicatissima* was the most abundant species with a 20% contribution to diversity. Although *P.delicatissima* is a toxin-producing species, presence of toxin was not observed in the study region. Similar observations were made by Lundholm&Skov 1993; Hallegraeff 1994; Walz et al. 1994, where blooms of *P.pseudodelicatissima* occurred in Scandinavia, Australia, and California, but there was no presence of toxin. The possibilities may be either these *Pseudonitzschia* species were not producing toxins or the produced toxin wastoo low to produce any harmful effect and that they were assimilated into the aquatic system.

The decadal trend of *Pseudonitzschia* abundance showed that its abundance in the coastal waters of Gujarat was almost zero (Figure 3) till 2004. Later, after its introduction in the region, itincreased in number continuously such that it can now be considered an invasive species. In 2015, its cell countoutcompeted the overall phytoplankton diversity and formed a bloom due to the occurrence of two extremely severe Figure 3.The trend for Pseudonitzschia cell counts cyclonesChapala and Meghone after the other in October-November.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>• Email: editor@ijfmr.com

Potential Hazard

The occurrence of cyclones Chapala and Meghin 2015 resulted in abnormally high phytoplankton diversity along with exuberantly high numbers of *Pseudonitzschia*. Thus considering the values for the year 2015 as an anomaly, we recalculated the trend after removing the data for 2015. Recalculated results also showed an increasing trend for Pseudonitzschiacell counts. Forecast analysis for the next 10 years showed that *Pseudonitzschia* is likelyto increase(figure 4) and therefore is a potential future hazard for the region. Veraval is a known fishing centerand a busy shipping port. Apart from fishing and shippingactivities, the shipbuilding industries of Veraval also influence the water chemistry of the region. A lot of organic matter and metal wastes are disposed into the adjacent coastal waters. The presence of Somnath temple (an old Shiva temple of historical importance)makes Veraval an important pilgrimage and tourist center of the state. Commercial activities make Veraval prone to excessive eutrophication and pollution, causing an imbalance in the proportion of essential nutrients such as nitrogen, phosphorous and potassium. Such eutrophic conditionsseemingly turnedfavourable for the growth of *Pseudonitzschia* and can act as a potential trigger for the release of domoic acid in future. According to Bhat and Matondkar, 2004, pollution and nutrient enrichment due to anthropogenic activities are the major factors that trigger and stimulate the growth of bloom-forming species. Both these triggering agents prevail in Veraval and undoubtedly are responsible for the continuously increasing abundance of *Pseudonitzschia*.

Figure 4.Trend (excluding data for the year 2015) and forecast analysis for Pseudonitzschia cell counts

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Risk Assessment

Results of the threshold method showed that *Pseudonitzschia*cells were higher than 50% of the mean value for overall phytoplankton diversity. It not only formed bloom but also posed a major risk tothe human health and fishing industry of the region under concern. The dominance of *Pseudonitzschia* and its increasing trend is definitely an alarming situation. To understand the potential risk due to the presence of *Pseudonitzschia* in alarmingly high numbers, the risk assessment method proposed by the government of South Australia, Department of Education and Children'sServices was followed. The outcome of the risk assessment process showed that human health, ecosystem and fisheries industries are extremely vulnerable to possible catastrophic effectsdue to*Pseudonitzschia*bloom in coastal waters off Gujarat. Further ahead, there is no awareness or management strategiesundertaken to handle the possible risk (table 2).

Although, there were no reports of any harm by toxin release in the study area. There is anextreme risk of domoic acid production in the near future and by all means it can affect the commercial activities of the region as well as the health and well-being of the human population that consumes intoxicated fishes.

Γable 2. Risk assessment of toxicity by	Pseudonitzschia in coastal	waters off Gujarat
---	----------------------------	--------------------

Risk	Consequenc	Likelihoo	Risk	What we	Effectivenes	New	Further
(people,	e	d	level	are	s of our	risk	action needed
information				doing	strategies	level	Opportupitio
, physical				now to			s for
assets and				manage			improvoment
finances,				this risk			mprovement
reputation)							

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Human	Major to	possible	extrem	No	Need to	sam	Further
health	Catastrophic	I man	e	awarenes	make	e	research
ncarth	Cutustrophie		C	s and	strategies	C	continuous
				s and	strategies		continuous
				therefore			monitoring
				nothing is			and awareness
				being			needed
				done.			
ecosystem	Major	possible	extrem	No	Need to	sam	Further
			e	awarenes	make	e	research,
				s and	strategies		continuous
				therefore			monitoring
				nothing is			and awareness
				being			needed
				done.			
Fisheries	Major	possible	extrem	No	Need to	sam	Further
industries			e	awarenes	make	e	research,
				s and	strategies		continuous
				therefore			monitoring
				nothing is			and awareness
				being			needed
				done.			

• Need for research

The absence of toxication reports does not ensure that there is no production ofneurotoxins in the region. There may be neurotoxin production but in very low concentrations that it does not cause any mortality or it may be due to lack of awareness and research carried out in the region that domoic acid remains unnoticed. Detailed studies on the presence of toxic *Pseudonitzschia*in Indian waters and their toxin production activities are required. The toxin-producing stimulus to these species and highly sensitive protocols to detect the presence of toxins at very low concentrations are also subjects of research required in this region.

• Management approaches

Occurrence of toxin-producing*Pseudonitzschias*pecies in significant proportion over other phytoplankton types call upon a need for continuous monitoring of *Pseudonitzschia* abundance, water quality, nutrient levels and anthropogenic factors that can trigger the release of domoic acid. Such monitoring can help to protect the consumers and the seafood industry. Also, fishermen and people inhabiting the coastal regions of Gujarat need to be educated about the potential hazard. Eutrophication is one of the causes of *Pseudonitzschia* dominance in the region. Sustainable approaches to control industries and shipping activities need to be adopted to curb the approaching hazard.

5. Conclusion

The coastal waters of Veraval are dominated by a potential neurotoxin-producing phytoplankton '*Pseudonitzschia*'. The abundance of *Pseudonitzschia* cells showed an increasing trend over a decadal time period. Increasing abundance is not only disturbing the present diversity but also posing a potential risk of being detrimental to human health, the ecosystemand the fisheries industry of the state. Presently there is no awareness or report of the possible threat. There is indeed a need for awareness, research and management activities to handle the fore coming threat before it actually takes a toll on human health and finances.

Appendix 1. Details of Bloom Events in Chronological Order of Their Occurrence in Coastal Waters of

	India						
Sr	Causal phytoplankton	Place of	Year of	Effect	Reference		
•	species	occurrence	occurrence				
No							
•							
1.	Unidentified flagellate	Malabar coast	November	Massive fish	Hornell (1908)		
			1908	mortality			
2.	Unidentified Peridian	Malabar to south	September-	Massive fish	Hornell (1917)		
		Kanara coasts	October 1916	mortality			
3.	Glenodinium,	Malabar coast	November	Discoloration	Hornell		
			1921	of water	&Nayudu (1923)		
4.	Gymnodinium sp.1,	Malabar coast	December 1921	Discoloration	Hornell		
	sp.2 & sp.			of water	&Nayudu (1923)		
5.	Prorocentrummicans&	Malabar coast	January 1922	Discoloration	Hornell		
	sp.			of water	&Nayudu (1923)		
6.	Ditylum sp.	Malabar coast	May 1922	-	Hornell		
	&Thalassiosira sp.				&Nayudu (1923)		
7.	Cochlodinium sp.1	Malabar coast	August 1922	Discoloration	Hornell		
				of water	&Nayudu (1923)		
8.	Cochlodinium sp.2	Malabar coast	October 1922	Discoloration	Hornell		
				of water	&Nayudu (1923)		
9.	Noctiluca miliaris	Madras, Tamil	June 1935	Discoloration	Aiyar (1936)		
		Nadu		of water. Fish			
				mortality			
10	Trichodesmiumerythrae	Krusadai island,	May 1942	Mortality of	Chacko (1942)		
•	ит	Gulf of Mannar		marine fauna			
				(Holothuriaatr			
				a& fishes)			
11	Trichodesmiumerythrae	Pamban, Gulf of	May 1942	Mortality of	Chidambaram		
•	ит	Mannar		fishes & crabs	&Unny (1944)		
12	Noctiluca miliaris,	Malabar &	October 1948	No mortality;	Bhimachar&		
•	Gymnodinium sp.4 &	Kanara coasts		but exclusion	George (1950)		
	Dinophysissp			of fishes from			

IJFMR23034012

				the site.	
13	Rhizosoleniaalata	Mandapam,	March 1950	-	Raghu Prasad
•		Tamil Nadu			(1956)
14	Rhizosolenia imbricata	Mandapam,	March 1951	-	Raghu Prasad
•		Tamil Nadu			(1956)
15	Noctiluca miliaris	Mandapam–	April–July		Raghu Prasad
•		Tamil Nadu	1952		(1953, 1958)
16	Hornellia marina	Calicut, North	August &	Green	Subrahmanyan
•		Kerala	November	discoloration,	(1954)
			1949,	Fish & Faunal	
			September	mortality	
			1952		
17	Gonyaulaxpolygramma	Cochin, Kerala	November	Non-toxic but	Prakash
•		coast	1963	exclusion of	&Viswanatha
				zooplankton	Sarma (1964)
18	Trichodesmiumerythrae	Ullal, Mangalore	March 1964		Prabhu et al.
	um&				(1965)
	Trichodesmiumhildebro				
	ntii				
19	Trichodesmiumerythrae	Minicoy Island,	May–June 1965	Adverse	Nagabhushanam
	um	Lakshadweep		effects on	(1967)
		Ĩ		Tuna fisheries	
20	Asterionella japonica	Vishakhapatnam,	April 1967	discolouration	Subba Rao
		Andra Pradesh	-	of waters	(1969)
21	Noctiluca miliaris	Vellar Estuary,	August 1966-		Santha Joseph
		Tamil Nadu	1967 & May		(1975)
			1968		
22	Trichodesmiumerythrae	Laccadive island	April 1968		Qasim (1970)
	um				
23	Nitzschia sigma	Cochin	May 1970		Devassy&Bhatta
		backwaters,			thiri (1974)
		Kerala			
24	Skeletonemacostatum	Cochin	November		Devassy&Bhatta
		backwaters,	1970		thiri (1974)
		Kerala			
25	Trichodesmiumerythrae	Off Goa	March 1972		Ramamurthy et
	um				al. (1972)
26	Fragilaria oceanica	Kaikani,	August 1972		Devassy (1974)
•		Mangalore			
27	Trichodesmiumerythrae	Porto Novo,	March 1964,		Ramamurthy
•	ит	Tamil Nadu	1965,		(1968),
			1969, 1972		Ramamurthy

					(1970a, 1970b,
• •		G 10 016			1973)
28	Trichodesmiumthiebaut	Gulf of Mannar,	March–April &	Fish mortality	Chellam &
•	11	Tamii Nadu	September		Alagarswami
20	Trichodosmiumenthrae	Off Con	1975 Fobruary April		(1976) Deveses at al
	um	On Oba	1975		(1978)
30	Noctiluca miliaris	Quilon, Kerala	August 1976	Red coloration	Venugopal et al.
				of water	(1979)
31	Trichodesmiumerythrae	Ratnagiri–	March 1977		Verlencar (1978)
•	ит	Mangalore			
		&Laccadive			
		island			
32	Noctiluca miliaris	Cochin, Kerala	August 1977	-	Devassy et al.
•	TT 1 1		1001	D0D 05	(1979)
33	Unidentified sp.	Vayalar, Tamil	1981	PSP, 85	Silas et al.
•		Nadu		people	(1982)
				1000000000000000000000000000000000000	
34	Unidentified sp. (toxin	Kumble estuary	April 1983	Reports of	Karunasagar et
54	profile corresponded to	Mangalore	ripin 1905	PSP. one	al. (1984)
•	Alexandriumtamivavani	i i i i i i i i i i i i i i i i i i i		death & 85	
	chi)			hospitalized	
35	Asterionella glacialis	Vellar estuary,	March &	-	Mani et al.
•		Tamil Nadu	September/Oct		(1986)
			ober 1983		
36	Skeletonemacostatum	Dharamtar Creek,	October 1984-		Tiwari & Nair
•		Mumbai	1985		(1998)
37	Unknown causative sp.	Mangalore	April 1985 &	low levels of	Segar et al.
•			March–April	PSP recorded	(1989)
20	N	Manaalana	1986 Januar 1087	Tuture	V attack at al
38	Noctiluca miliaris	Mangalore	January 1987	Intense green	Katti et al. (1088)
•				water	(1900)
39	Noctiluca miliaris	Mandovi&Zuari	February–April	Green	Devassv& Nair
•		estuaries; Goa	1987	coloration of	(1987)
				water, fish	
				catch	
				decreased	
40	Asterionella glacialis	Gopalpur, Orissa	March 1988	discoloration	Choudhury &
•				of waters	Panigrahy (1989)
41	Asterionella glacialis	Rushikulya	April–May		Panigrahy&

•		estuary, Orissa	1988		Gouda (1990)
42 ·	Noctiluca scintillans	Kalpakkam, Tamil Nadu	October 1988		Sargunam&Rao (1989)
43	Gymnodiniumnagasaki ense	Brackwish water Kodi, Karnataka	December 1989	Red coloration of water & fish mortality	Karunasagar (1993)
44 •	Asterionella glacialis	Bahuda estuary, Orissa	May 1991	-	Mishra &Panigrahy (1995)
45	Thalassiothrixfraunfeld ii	Bahuda estuary, Orissa;	September 1991	-	Mishra &Panigrahy (1995)
46 •	Coscinodiscus centralis &Coscinodiscus excentricus	Bahuda estuary, Orissa;	June 1992	-	Mishra &Panigrahy (1995)
47 •	Noctiluca miliaris	Mangalore	May 1993	Increased in <i>Moraxella</i> like bacteria with bloom	Nayak et al. (2000)
48 •	Asterionella glacialis	Kalpakam, Tamil Nadu;	May 1993	-	Satpathy& Nair (1996)
49 .	unidentified sp.	Vizhinjam, Kerala	September 1997	Outbreak of PSP; 7 deaths, over 500 hospitalized after consuming bloom affected mussel <i>Perna</i> <i>indica</i>	Karunasagar et al. (1998)
50	Noctiluca sp.	Cochin–Calicut, Kerala	August 1998	Oxygen depletion resulted in severe fish mortality	Naqvi et al. (1998)
51	Noctiluca scintillans	Port Blair Bay, Andamans	June–July 2000	Green coloration of water	Eashwar et al. (2001)
52	Trichodesmiumerythrae um	Tamil Nadu and kolkata	April 2001	Brownish– yellow coloration of	Jyothibabu et al. (2003)

				water	
53	Cochlodiniumpolykriko	off Goa	October 2001	Fish mortality	O'Herald (2001)
•	ides			coincided with	
				bloom	
54	Noctiluca scintillans	Minnie bay, Port	December 2002	Green	Dharani et al.
•		Blair–Andamans		coloration of	(2004)
				water	
55	Noctiluca scintillans	Goa to Porbandar	February-	Green	Prabhu
•		(Gujarat)	March 2003	coloration of	Matondkar et
				water	al. (2004)
56	Chattonella marina	Calicut to	September	Fishery was	Jugnu& Kripa
•		Tellicherry,	2002 & 2003	affected	(2009)
		Kerala			
57	Asterionella glacialis	Gopalpur, Orissa;	March- April	discoloration	Sasamal et al.
•			2004	of waters	(2005)
58	Kareniamikimotoi	Kerala coast	July-September	Massive fish	Iyer et al. (2008)
•			2004	mortality	
59	Noctiluca miliaris	Thiruvananthapur	September	discoloration	Sahayak et al.
•		am,	2004	of water	(2005)
		Kerala			
60	Unidentified	Kerala	September-		Ramaiah et al.
•	holococcolithophore		October 2004		(2005)
61	Noctiluca scintillans	Rushikulya river,	April 2005	discoloration	Mohanty et al.
•		South Orissa		of water,	(2007)
		coast		oxygen	
				depletion	
62	Trichodesmiumerythrae	Mangalore-	May 2005	Discoloration	Anoop et al.
•	ит	Quilon		of water, no	(2007)
				mortality	
63	Coscinodiscus	Kodikkal–	August 2006	discoloration	Padmakumar et
•	asteromphalus	Calicut, Kerala;		of waters	al. (2007)
	var. centralis				
64	Trichodesmiumerythrae	Kalpakkam,	March 2007	Yellowish-	Satpathy et al.
•	um	Tamil Nadu		green	(2007)
				colouration of	
				water. No fish	
				mortality	
65	Noctiluca miliaris	off Gujarat	March 2007	Deep green	Padmakumar et
•				colouration of	al. (2008b)
				water	
66	Microcystis aeruginosa	Chalakudy River	March 2008	Discolouration	Padmakumar et
•		in		of water.	al. (2008a)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>• Email: editor@ijfmr.com

		Central Kerala		Itching, irritation of	
				skin	
67	Noctiluca scintillans	Kochi, Kerala	August 2008	Brick red	Padamakumar et
•				discolouration	al.
				of water, no	(2010a)
				fish	
			0.1.0000	mortality	<u>a</u>
68	Protoperidiniumsp.	Mangalore coast	October 2008		Sanilkumar et al. (2009)
69	Noctiluca miliaris	off Goa	October 2008		Sanilkumar et al.
•					(2009)
70	Noctiluca scintillans	Gulf of Mannar,	October 2008	Discoloration	Gopakumar et al.
•		Orissa		of water.	(2009)
				Corals got	
				bleached, due	
				to lack of	
				oxygen. Fishes	
				died	
71	Trichodesmiumervthrae	Mandanam &	October 2008	Mortality of	Anantharaman et
	um	Keelakarai	000000 2000	several fishes	al. (2010)
•		Tamil Nadu		and shellfishes	un (2010)
72	Trichodesmiumerythrae	off Kollam,	May–June 2009	Brown	Padmakumar et
•	um	Kochi &	-	discolouration	al. (2010b)
		Kannur, Kerala		of water	
		coast			
73	Kareniamikimotoi	Cochin	October 2009	Intense	Madhu et al.
•		Barmouth, Kerala		brownish	(2011)
				colouration to	
				water	
74	Chattonella marina	Off Kochi,	September	Rusty	Padmakumar et
•		Kerala	2009	brownish-	al. (2011)
				reddiscolourati	
	14:		D 1 2000	on of water	0 1 1 1
15	<i>Microcystis aeruginosa</i>	vellarEstuary,	December 2009		Santhosh Kumar
•		1 amii Nadu			et al. (2010)
		Inadu			

6. Acknowledgement

The work was funded byDST-SERB, Gov. of India, under the NPDF scheme. We are grateful to Dr. Ashish Jha and Sreejith Thilakan from Central Institute of Fisheries Technologies, Veraval and the

entire marine ecosystems team from Space Applications Centre, ISRO, Ahmedabad and the Department of Botany, Gujarat University for their support during the sample collection.

7. Conflict of Interest Statement

The research was a sponsored work, funded by DST-SERB, Gov. of India, under the NPDF scheme.

8. Authors' Biography

Gunjan Motwani- Assistant professor and Head, biology Department, Shree M. P. Shah Arts and Science College, Surendranagar, Gujarat.

Rahul Rajan- PhD from Gujarat University also worked as a research fellow at Space Applications Centre-ISRO.

Mini Raman- Scientist-G and head at Marine Ecosystems division, EPSA, Space Applications Centre-ISRO.

Hitesh Solanki- Professor at the Department of Botany, Gujarat University.

References:

- 1. Bates S.S., 'Domoic- acid- producing diatoms: Another genus added!' Journal of Phycology, 2000, 36(6),978-983.
- Bates S.S., 'Ecophysiology and metabolism of ASP toxin production' in Anderson, D.M., Cembella, A.D., Hallegraeff, and G.M. (Eds.), Physiological Ecology of Harmful Algal Blooms, Springer-Verlag, Heidelberg, 1998, 405–42.
- BatesS.S., Léger, C., Wells, M.L., Hardy, K., 'Photodegradation of domoic acid' in Bates, S.S. (Eds.), Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae.Canadian Technical Report of Fisheries and Aquatic Science (2498), 2003, 30-35.
- 4. Beltran A.S., Palafox-Uribe, M., Grajales-Montiel J., Cruz-Vil-Lacorta, A., Ochoa, J. L., 'Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading', Toxicon, 1997, 35, 447-453.
- Caron D.A., Garneau M.E., Seubert E., Howard M.D.A., Darjany L., Schnetzer A., Cetinic I., Filteau G., Lauri P., Jones B., Trussell S., 'Harmful algae and their potential impacts on desalination operations off southern California', Water Research, 2010,44, 385–416.
- Chang F. H., 'The first records of Gymnodinium sp. nov. (cf. breve) (Dinophyceae) and other harmful phytoplankton species in the early 1993 blooms in New Zealand'in P.Lassus, G. Arzul, E. Erard, P. Gentien and C. Marcaillou (Eds.), Harmful Marine Algal Blooms, Lavoisier, Intercept Ltd., Andover, England, 1993, 27-32.
- 7. Creel Liz., 'Ripple effects: population and coastal regions', Population reference Bureau measure communications, 2003. 1-8.
- 8. D'Silva M.S., Anil A. C., Naik R.K., D'Costa P.M., 'Algal blooms: a perspective from the coasts of India', Natural Hazards, 2012, 63, 1225-1253.
- 9. Doucette G.J., King K.L., Thessen A.E., Dortch Q., 'The effect of salinity on domoic acid production by the diatom *Pseudonitzschiamultiseries*', Nova Hedwigia, 2008, 31–46,
- 10. Hallegraeff G.M., 'Species of the diatom genus *Pseudonitzschia*in Australian waters', Botanica Marina, 1994, 37, 397-411.

- 11. Hasle G.R., 'Are most of the domoic acid-producing species of the diatom genus Pseudonitzschia cosmopolites?', Harmful Algae, 2002,1, 137–146,
- Hatfield C.L., Gauglitz E.J., Jr Barnett H.J., Lund J.K., Wekell J.C., Eklund M. 'The fate of domoic acid in Dungeness crab (Cancer magister) as a function of processing', Journal of Shellfish Research, 1995, 14, 359–363.
- Howard M.D.A., Cochlan W.P., Ladizinsky N., KudelaR.M., 'Nitrogenous preference of toxigenic *Pseudonitzschiaaustralis* (Bacillariophyceae) from field and laboratory experiments', Harmful Algae, 2007, 6, 206–217.
- 14. Hubbard K. A., Rocap G., Armbrust E. V., 'Inter-and intraspecific community structure within the diatom genus *Pseudonitzschia*(Bacillariophyceae)', Journal of phycology, 2008,44(3), 637–649.
- 15. Lefebvre K.A., Robertson A., 'Domoic acid and human exposure risks: a review', Toxicon, 2010, 56(2), 218-230.
- 16. Leira F.J., Vieites J.M., Botana, L.M., Vyeites M.R., 'Domoic acid levels of naturally contaminated scallops as affected by canning', Journal of Food Science, 1998, 63, 1081–1083.
- Lelong A., Hegaret H., Soudant P., Bates S.S., 'Pseudonitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfishpoisoning: revisiting previous paradigms', Phycologia, 2012, 51(2), 168– 216.
- Lundholm N., Skov, J., 'Pseudonitzschiapseudodelicatissimain Scandinavian coastal waters', IOC Newsletter, UNESCO, Harmful Algae News, 1993, 5(4).
- 19. Marchetti A., Lundholm N., Kotaki Y., Hubbard K., Harrison P.J., Armbrust E.V., 'Identification and assessment of domoic acid production in oceanic Pseudonitzschia (Bacillariophyceae) from ironlimited waters in the northeast subarctic Pacific', Journal of Phycology, 2008, 44, 650–661.
- Marchetti A., Parker M.S., Moccia L.P., Lin E.O., Arrieta A.L., Ribalet F., Michael E.P.M., Maldonado T., Armbrust E.V., 'Ferritin is used for iron storage in bloom-forming marine pennate diatoms', Nature, 2009, 457, 467–470.
- Miguez A., Fernandez M.L., Fraga S., 'First detection of domoic acid in Galicia (NW of Spain)' in T. Yasumoto, Y. Oshima and Y. Fukuyo (Eds.), Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris, 1996, 143-145.
- 22. Motwani G., Raman M., Matondkar P., Parab S., Pednekar S., Solanki H., 'Comparison between phytoplankton bio- diversity and various indices for winter monsoon and inter monsoon periods in north-eastern Arabian Sea', Indian Journal of Geo marine. Sciences, 2014, 43(8), 1513-1518.
- 23. Mos L., 'Domoic acid: a fascinating marine toxin',Environmental toxicology and Pharmacology, 2001, 9,79–85.
- 24. Pan Y., Subba Rao D.V., Mann K.H., 'Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschiamultiseries under phosphate limitation', Journal of Phycology, 1996b, 32,371–381.
- 25. Parsons M.L., Scholin C.A., Miller P.E., Doucette G.J., Powell C.L., Fryxell G.A., Dortch Q., Soniat T.M., 'Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probe field trials, genetic variability, and domoic acid analyses', Journal of Phycology, 1999, 35, 1368–1378.
- 26. Rue E.,Bruland, K., 'Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom *Pseudonitzschia*',Marine Chemistry, 2001, 76,127–134.

- 27. Bhat S.R., MatondkarS.G.P., 'Algal blooms in the seas around India Networkingfor research and outreach', Current Science, 2004, 87(8), 1079-1083.
- 28. Siegel D., DoneyS., Yoder J., 'The North Atlantic spring phytoplankton bloom and Sverdrup's Critical Depth Hypothesis', Science, 2002, 296(5568),730–733.
- 29. Shumway S.E., 'A serious threat to shellfish aquaculture', World Aquaculture, 1989, 20, 65-74.
- 30. Smith J.C., Cormier R., Worms J., Bird C.J., Quiliam M.A., Pocklington R., Angus, R., Hanic L., 'Toxic blooms of the domoic acid containing diatom *Nitzschiapungens*in the Cardigan River, Prince Edward Island', inGraneli, E., Sundstrom, B., Edler, L., Anderson, D.M. (Eds.), Toxic Marine Phytoplankton, Elsevier Science, New York, 1990a.
- 31. Stewart J.E., Marks L.J., Gilgan M.W., Pfeiffer E., Zwicker B.M., 'Microbial utilization of the neurotoxin domoic acid: blue mussels (Mytilus edulis) and soft shell clams (Myaarenaria) as sources of the microorganisms', Canadian journal of microbiology, 1998, 44, 456–464.
- 32. Sun J., Hutchins D.A., Feng Y.Y., SeubertE.L., Caron D.A., Fu, F.X., 'Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom *Pseudonitzschiamultiseries*', Limnology and Oceanography, 2011, 56, 829–840.
- 33. Tatters, A.O., Fu, F X., Hutchins, D.A., 'High CO2 and silicate limitation synergistically increase the toxicity of *Pseudonitzschiafraudulenta*', PLoS ONE, 2012, 7(2), e32116.
- 34. Todd E.C.D., 'Amnesic shellfish poisoning a new seafood toxin syndrome', inGraneli, E., Anderson, D. M, Edler, L., Sunstrom, B. (Eds.) Toxic marine phytoplankton. Elsevier, New York, 1990, 504-508.
- 35. Tomas C.R., 'Identifying Marine phytoplankton'Academic Press, New York, 1997, 858,
- 36. Trainer V.L., Cochlan W.P., Erickson A., Bill B.D., Cox F.H., Borchert J.A., Lefebvre K.A., 'Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways' Harmful Algae, 2007, 6, 449–459.
- 37. Trainer V.L., Hickey B.M., Bates S.S., 'Diatoms, Oceans and Human Health: Risks and Remedies from the Sea, in Walsh PJ, et al. (Eds), Elsevier Science Publishers, New York, 2008, 219–238.
- 38. Trick C.G., Bill B.D., Cochlan W.P., Wells M.L., Trainer V.L., Pickell L.D., 'Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas' Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5887– 5892.
- 39. Villac M.C., Roelke D.L., Villareal T.A., Fryxell G.A., 'Comparison of two domoic acidproducing diatoms: a review'Hydrobiologia, 1993, 269(1),213–224.
- 40. Walz P.M., Garrison D. L., Graham W. M., Cattey M. A., Tjeerdema R. S., Silver M. W., 'Domoic acid-producing diatom blooms in Monterey Bay, California: 1991-1993' Natural Toxins, 1994, 2, 271-279.
- 41. Wells M.L., TrickC.G., Cochlan W.P., Hughes M.P., Trainer V.L., 'Domoic acid: the synergy of iron, copper, and the toxicity of diatoms', Limnology andOceanography, 2005, 50, 1908–1917.
- 42. Windust A.J., 'The response of bacteria, microalgae and zooplankton to the diatom *Nitzschiapungens* form multiseries, and its toxic metabolite domoic acid', M.Sc. thesis, Dalhousie University, Halifax, Nova Scotia, 1992.
- 43. Wright J.L.C., Falk M., McInnes A.G., Walter J. A., 'Identification of isodomoic acid D and two new geometrical isomers of domoic acid in toxic mussels', Canadian Journal of Chemistry, 1990, 68, 22-25.

Internet reference:

- Blue
 economy,
 https://www.worldbank.org/en/topic/oceans-fisheries-and-coastaleconomies(Accessed 21 July 2022).
- 2. Annual data,<u>https://www.cmfri.org.in/annual-data</u> (Accessed 21 July 2022)