International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.iffmr.com

- Email: editor@ifmr.com

Split Restrained Geodetic Number of a Graph

Ashalatha K S
Assistant Professor, Department of Mathematics,Vedavathi Government First Grade College, Hiriyur, Chitradurga District-577598.

Abstract

Let ' G ' be a graph. If $u, v \in V$, then a u-v geodetic of G is the shortest path between u and v. The closed interval $I[u, v]$ consists of all vertices lying in some u-v geodetic of G. For $S \subseteq V(G)$ the set $\mathrm{I}[\mathrm{S}]$ is the union of all sets $\mathrm{I}[\mathrm{u}, \mathrm{v}]$ for $u, v \in S$. A set S is a geodetic set of G if $\mathrm{I}[\mathrm{S}]=\mathrm{V}(\mathrm{G})$. The cardinality of minimum geodetic set of G is the geodetic number of G , denoted by $\mathrm{g}(\mathrm{G})$. A set S of vertices of a graph G is a split geodetic set if S is a geodetic set and $\langle\mathrm{V}-\mathrm{S}\rangle$ is disconnected, split geodetic number $\mathrm{g}_{\mathrm{s}}(\mathrm{G})$ of G is the minimum cardinality of a split geodetic set of G . In this paper I study split restrained geodetic number of a graph. A set S of vertices of a graph G is a split restrained geodetic set if S is a geodetic set and the subgraph $\langle\mathrm{V}-\mathrm{S}\rangle$ is disconnected with no isolated vertices. The minimum cardinality of a split restrained geodetic set of G is the split restrained geodetic number of G and is denoted by $g_{s r}(G)$. The split restrained geodetic numbers of some standard graphs are determined and also obtain the split restrained geodetic number in the Cartesian product of graphs.

Keywords: Geodetic set, Geodetic number, Split geodetic set, Split geodetic number, Split Restrained Geodetic set, Split Restrained Geodetic number.

1. Introduction

In this paper, we follow the notations of [4]. The graphs considered here have at least one component which is not complete or at least two nontrivial components.
The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. It is well known that this distance is a metric on the vertex set $V(G)$. For a vertex v of G, the eccentricity $\mathrm{e}(\mathrm{v})$ is the distance between v and a vertex farthest from v . The minimum eccentricity among the vertices of G is radius, $\operatorname{rad} G$, and the maximum eccentricity is the diameter, diam G. A u-v path of length $d(u, v)$ is called a $u-v$ geodesic. We define I [$u, v]$ to the set of all vertices lying on some $u-v$ geodesic of G and for a nonempty subset S of $V(G), I[S]=U_{u, v \in S} I[u, v]$. A set S of vertices of G is called a geodetic set in G if $\mathrm{I}[\mathrm{S}]=\mathrm{V}(\mathrm{G})$, and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number of G , and we denote it by $\mathrm{g}(\mathrm{G})$. The geodetic number of a graph was introduced in [6,7] and further studied in [2,8,4].
A geodetic set S of a graph $G=(V, E)$ is a split geodetic set if the induced subgraph $\langle V-S\rangle$ is disconnected. The split geodetic number $\mathrm{g}_{\mathrm{s}}(\mathrm{G})$ of G is the minimum cardinality of a split geodetic set. The split geodetic number was introduced and studied in [9].
For any undefined term in this paper, see [3] and [4].

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.iffmr.com • Email: editor@ijfmr.com

2. Preliminary Notes

We need the following results to prove further results.
Theorem 2.1 [2] Every geodetic set of a graph contains its extreme vertices.
Theorem 2.2 [2] For any tree T with k end-edges, $g(T)=k$.
Theorem 2.3 [2] For any path P_{n} with n vertices, $\mathrm{g}\left(\mathrm{P}_{\mathrm{n}}\right)=2$.
Theorem 2.4 [2] For cycle C_{n} of order $n \geq 3, g\left(C_{n}\right)=\left\{\begin{array}{l}2 \text {, if } n \text { is even } \\ 3, \text { if } n \text { is odd }\end{array}\right.$
Theorem 2.5 [2] If G is a nontrivial connected graph, then $\mathrm{g}(\mathrm{G}) \leq \mathrm{g}\left(\mathrm{G} \times \mathrm{K}_{2}\right)$.

3. Main Results

Proposition 3.1 For any graph $G, g(G) \leq g_{s}(G) \leq g_{s r}(G)$.
Theorem 3.2 For cycle C_{n} of order $n \geq 6, g_{s r}\left(C_{n}\right)=\left\{\begin{array}{cc}2 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd }\end{array}\right.$
Proof: Let $\mathrm{n} \geq 6$, we have the following cases.
Case 1: Let n be even. Consider $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}}, \mathrm{v}_{1}\right\}$ be a cycle with 2 n vertices and let $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$ be a split restrained geodetic set of $C_{2 n}$. For any two antipodal vertices v_{i} and v_{j}, the shortest $v_{i}-v_{j}$ path includes all the vertices of $\mathrm{C}_{2 \mathrm{n}}$. Clearly $\mathrm{I}[\mathrm{S}]=\mathrm{V}\left(\mathrm{C}_{2 n}\right)$. Also $\mathrm{x}, \mathrm{y} \in \mathrm{V}-\mathrm{S}, \mathrm{V}-\mathrm{S}$ is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{C}_{2 \mathrm{n}}\right)=2$.
Case 2: Let n be odd. Consider $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}+1}, \mathrm{v}_{1}\right\}$ be a cycle with $2 \mathrm{n}+1$ vertices and let $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}+1}\right\}$ be a split restrained geodetic set of $C_{2 n+1}$, where $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=\operatorname{diam}\left(\mathrm{C}_{2 \mathrm{n}+1}\right)$. By theorem 2.4 and proposition 3.1, no two vertices of S forma split restrained geodetic set, so there exists a split restrained geodetic set contains three vertices. Clearly I $[\mathrm{S}]=\mathrm{V}\left(\mathrm{C}_{2 \mathrm{n}+1}\right)$. Also V-S is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{C}_{2 \mathrm{n}+1}\right)=3$.

Theorem 3.3 For any path $P_{n}, n \geq 7, g_{s r}\left(P_{n}\right)=3$.
Proof: Let $S=\left\{v_{1}, v_{n}, v_{i}\right\}$ be a split restrained geodetic set of P_{n}, where v_{1}, v_{n} are the two end vertices. By theorem 2.3, $v_{1}-v_{n}$ path includes all the vertices of P_{n} and v_{i} is a cut vertex which forms two connected components and for any $x, y \in V-S$, such that $V-S$ is disconnected with no isolated vertices. Thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{P}_{\mathrm{n}}\right)=3$.

Theorem 3.4 Let T be a caterpillar that has at least five internal vertices, if T has k end-vertices, then $\mathrm{g}_{\mathrm{sr}}(\mathrm{T})=\mathrm{k}+1$.
Proof: Let $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ be the set containing end-vertices of T and itself a geodetic set of T such that $I[S\}=V(T)$. Let $\left\{u_{1}, u_{2}, \ldots, u_{1}\right) \subset V-S$. Now $S^{\prime}=S \cup\left\{u_{i}\right\}$ is a split restrained geodetic set of T, where $u_{i} \in V-S$ which is a cut vertex which forms connected components. Consider $P=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of end-vertices of T such that $|\mathrm{P}|<\left|\mathrm{S}^{\prime}\right|$ is a geodetic set but V - P is connected, so P is not a split restrained geodetic set. Again $\mathrm{Q}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{1}\right\}$ be set of internal vertices of T such that $|Q|<\left|S^{\prime}\right|$ is not a geodetic set. Hence it is clear that S^{\prime} is a minimum split restrained geodetic set of T. Also $\mathrm{x}, \mathrm{y} \in \mathrm{V}-S^{\prime}$, such that $\mathrm{V}-S^{\prime}$ is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}(\mathrm{T})=\mathrm{k}+1$.

Theorem 3.5 For any Tadpole graph $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{T}_{\mathrm{m}, \mathrm{n}}\right)=\left\{\begin{array}{cc}3 & \text { if } \mathrm{m} \text { is even, } \mathrm{n} \geq 3, \mathrm{~m}>4 \\ 4 & \text { if } \mathrm{m} \text { is odd, } \mathrm{n} \geq 3, \mathrm{~m}>3\end{array}\right.$
Proof: Tadpole graph is a special type of graph consisting of cycle graph of m vertices and a path graph of n vertices connected with a bridge.
$V=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ are the vertices of C_{m} and $U=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ are the vertices of $P_{n} . W=V U U$ are the vertices of tadpole graph.
For $\mathrm{n} \geq 3$, we have the following cases.
Case 1: m is even and $\mathrm{m}>4$
Let $S=\left\{p_{n}, c_{i}, c_{j}\right\}, i<j \leq m$ be a split restrained geodetic set of $T_{m, n}$, where P_{n} is the end vertex of $T_{m, n}$ and c_{i}, c_{j} are the antipodal vertices C_{n}. Suppose $S^{\prime}=\left\{p_{n}, c_{i}\right\},\left|S^{\prime}\right|<|S|$, which is a geodetic set and $V-S^{\prime}$ is connected. Hence S is a minimum split restrained geodetic set. Also for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}-\mathrm{S}$, it follows that V-S is disconnected with no isolated vertices. Thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{T}_{\mathrm{m}, \mathrm{n}}\right)=3$.
Case 2: m is odd and $m>4$.
Let $S=\left\{p_{n}, c_{i}, c_{i+1}\right\}$ is a geodetic set such that $I[S]=V\left(T_{m, n}\right)$, where $d\left(p_{n}, c_{i}\right)=d\left(p_{n}, c_{i+1}\right)=\operatorname{diam}\left(T_{m, n}\right)$ Let $\quad\left\{c_{1}, c_{2}, \ldots, c_{j}, p_{1}, p_{2}, \ldots, p_{n-1}\right\} \subset V-S$. Now $S^{\prime}=S \cup\left\{p_{1}\right\}$ or $S \cup\left\{c_{k}\right\}$ is a split restrained geodetic set of $T_{m, n}$, where p_{1} or $c_{k} \in V-S$ which is a cut vertex which forms connected components. Hence it is clear that S^{\prime} is a minimum split restrained geodetic set of $T_{m, n}$. Also $x, y \in V-S^{\prime}$ it follows that $V-S^{\prime}$ is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{T}_{\mathrm{m}, \mathrm{n}}\right)=4$.

Theorem 3.6 For Banana tree graph $g_{s r}\left(B_{n, k}\right)=n(k-2)+1$.
Proof: Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n k-2 n}\right\}$ be the set containing end-vertices of $B_{n, k}$ and itself a geodetic set of $B_{n, k}$, such that $I[S]=V\left(B_{n, k}\right)$. Let $S^{\prime}=S \cup\{u\}$ is a split restrained geodetic set of $B_{n, k}$, where $u \in V-S$ is a root vertex. Consider $P=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{nk}-2 \mathrm{n}}\right\}$ be a set of end vertices of $\mathrm{B}_{\mathrm{n}, \mathrm{k}}$ such that $|\mathrm{P}|<\left|\mathrm{S}^{\prime}\right|$ is a geodetic set but $V-P$ is connected, so P is not a split restrained geodetic set. Again $Q=\left\{u, u_{1}, u_{2}, \ldots, u_{1}\right\}$ be set of internal vertices of $B_{n, k}$ such that $|Q|<\left|S^{\prime}\right|$ is not a geodetic set. Hence it is clear that S^{\prime} is a minimum split restrained geodetic set of $B_{n, k}$. Also $x, y \in V-S^{\prime}$, such that $V-S^{\prime}$ is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{B}_{\mathrm{n}, \mathrm{k}}\right)=\mathrm{n}(\mathrm{k}-2)+1$.

4. Adding an End-Edge

For an edge $e=(u, v)$ of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, we call e an end-edge and u an end-vertex.

Theorem 4.1 For the Helm graph $H_{n} n \geq 6, g_{s r}\left(H_{n}\right)=n+3$.
Proof: Let Helm graph H_{n} is a graph obtained from the wheel graph by attaching an end-edge at each vertex of the n -cycle of the wheel.
Let $\mathrm{V}\left(\mathrm{H}_{\mathrm{n}}\right)=\left\{\mathrm{x}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ where $\operatorname{deg}(x)=n, \operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)=1$ and $\operatorname{deg}\left(\mathrm{u}_{\mathrm{i}}\right)=4$ for each $i \in\{1,2, \ldots, n\}$.
Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}, x\right\}$ be the set of n-end vertices of H_{n} and a vertex of degree n is a geodetic set of H_{n} such that $\left[[S]=V\left(H_{n}\right)\right.$. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \subset V-S$. Now $S^{\prime}=S \cup\left\{u_{i}, u_{j}\right\}$ is a split restrained geodetic set of H_{n}, where $u_{i}, u_{j} \in V-S$ which are cut vertices forms connected components. Consider $P=\left\{v_{1}, v_{2}, \ldots, v_{k}, x\right\}$ be a set of end vertices and a vertex of degree n of H_{n} such that $|P|<\left|S^{\prime}\right|$ is a geodetic set but $V-P$ is connected, so P is not a split restrained geodetic set, again $Q=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of the cycle of H_{n}, such that $|Q|<\left|S^{\prime}\right|$ is not a geodetic set. Hence it is clear that S^{\prime} is the minimum split restrained geodetic set of H_{n}. Also $\mathrm{x}, \mathrm{y} \in \mathrm{V}-\mathrm{S}^{\prime}$, it follows that $V-\mathrm{S}^{\prime}$ is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+3$.

E-ISSN: 2582-2160
Website: www.ijfmr.com

- Email: editor@ijfmr.com

Theorem 4.2 Let G^{\prime} be the graph obtained by adding an end-edge $\left(u_{i}, v_{i}\right), i=1,2 \ldots, n$ to each vertex of cycle $\mathrm{C}_{\mathrm{n}}=\mathrm{G}$ for $\mathrm{n} \geq 6$, such that $\mathrm{u}_{\mathrm{i}} \in \mathrm{G}, \mathrm{v}_{\mathrm{i}} \notin \mathrm{G}$, then $\mathrm{g}_{\text {sr }}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}+2$.
Proof: Let $\mathrm{G}=\mathrm{C}_{\mathrm{n}}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{u}_{1}\right\}$ be a cycle with n vertices. Let G^{\prime} be the graph obtained by adding an end-edge $\left(u_{i}, v_{i}\right), i=1,2, \ldots, n$ to each vertex of G such that $u_{i} \in G, v_{i} \notin G$. Clearly $X=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the n number of end-vertices of G^{\prime}. Let $S=X \cup\left\{u_{i}, u_{j}\right\}$ be a split restrained geodetic set of G^{\prime}, where u_{i}, u_{j} are cut vertices which forms connected components. Thus $I[S]=V\left(G^{\prime}\right)$. Also $x, y \in V-S$, such that $\mathrm{V}-\mathrm{S}$ is disconnected with no isolated vertices, thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}+2$.

Theorem 4.3 Let G^{\prime} be the graph obtained by adding k end-edges $\left\{\left(u, v_{1}\right),\left(u, v_{2}\right), \ldots,\left(u, v_{k}\right)\right\}$ to a cycle $C_{n}=G$ of order $n \geq 6$, with $u \in G$ and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \notin G$.
Then $g_{s r}\left(G^{\prime}\right)= \begin{cases}k+2 & \text { for even cycle } \\ k+3 & \text { for odd cycle }\end{cases}$
Proof: Let $G=C_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right\}$ be a cycle with n vertices and let G^{\prime} be the graph obtained from $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$ by adding k end-edges $\left\{\left(\mathrm{u}, \mathrm{v}_{1}\right),\left(\mathrm{u}, \mathrm{v}_{2}\right), \ldots,\left(\mathrm{u}, \mathrm{v}_{\mathrm{k}}\right)\right\}$ for fixed $\mathrm{u} \in \mathrm{G}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\} \notin \mathrm{G}$. We have the following cases.
Case 1: Let $G=C_{2 n}, n>2$. Consider $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cup\left\{u_{i}\right\}$, for any vertex u_{i} of G. Now $S^{\prime}=S \cup\{u\}$ be a split restrained geodetic set, $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are the end -vertices of G^{\prime} and u, u_{i} are antipodal vertices of G, thus I $\left[S^{\prime}\right]=V\left(G^{\prime}\right)$. Consider $P=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ as a set of end-vertices such that $|P|<\left|S^{\prime}\right|$ is not a geodetic set, that is for some vertex $u_{i} \in V(G), u_{i} \notin I[P]$. If $P=S$, then P is not split restrained geodetic set. Thus S^{\prime} is the minimum split restrained geodetic set. Then $V-\mathrm{S}^{\prime}$ is an induced subgraph which has more than one connected component. Thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{G}^{\prime}\right)=\mathrm{k}+2$.
Case 2: Let $G=C_{2 n+1}, n>3$. Consider $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cup\left\{u_{i}, u_{i+1}\right\}$ for any adjacent vertices $u_{i}, u_{i+1} \in G$. Now $S^{\prime}=S \cup\{u\}$ be a split restrained geodetic set, such that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are the endvertices of G^{\prime} and $d\left(u, u_{i}\right)=d\left(u, u_{i+1}\right)=\operatorname{diam}(G)$. Thus $I\left[S^{\prime}\right]=V\left(G^{\prime}\right)$. For any $x, y \in V-S^{\prime}$,it follows that $V-S^{\prime}$ is disconnected with no isolated vertices. Thus $g_{s r}\left(G^{\prime}\right)=k+3$.

5. Cartesian Product

The Cartesian product of the graphs H_{1} and H_{2}, written as $\mathrm{H}_{1} \times \mathrm{H}_{2}$, is the graph with vertex set $\mathrm{V}\left(\mathrm{H}_{1}\right) \times \mathrm{V}\left(\mathrm{H}_{2}\right)$, two vertices $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ being adjacent in $\mathrm{H}_{1} \times \mathrm{H}_{2}$ if and only if either $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in E\left(H_{2}\right)$, or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in E\left(H_{1}\right)$.

Theorem 5.1 For any cycle C_{n} of order $n, g_{s r}\left(K_{2} \times C_{n}\right)= \begin{cases}4 & \text { if } n \text { is even }\end{cases}$
Proof: Consider $G=C_{n}$, Let $K_{2} \times C_{n}$ be a graph formed from two copies G_{1} and G_{2} of G. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of G_{1} and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the vertices of G_{2} $\mathrm{U}=\mathrm{V} \cup \mathrm{W}$. We have the following cases.
Case 1: Let n be even. Consider $S=\left\{v_{i}, w_{j}\right\}$ is a geodetic set of $K_{2} \times G$ such that $v_{i}-w_{j}$ path is equal to $\operatorname{diam}\left(K_{2} \times G\right)$, which includes all the vertices of $K_{2} \times G$. Let $S^{\prime}=\left\{v_{i}, w_{i}, v_{j}, w_{j}\right\}$, where $\left(v_{i}, w_{i}\right),\left(v_{j}, w_{j}\right) \in E\left(K_{2} \times G\right)$. Now $U-S^{\prime}$ is an induced subgraph which is disconnected but no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times G\right)=4$.
Case 2: Let n be odd. Consider $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right\}$ is the geodetic set of $\mathrm{K}_{2} \times \mathrm{G}$ such that $d\left(v_{i}, w_{j}\right)=\operatorname{diam}\left(K_{2} \times G\right)=d\left(w_{j}, v_{k}\right)$. Thus $I[S]=U\left(K_{2} \times G\right)$. Let $S^{\prime}=\left\{v_{i}, w_{i}, v_{j}, w_{j}, v_{k}\right\}$, where
$\left(v_{i}, w_{i}\right),\left(v_{j}, w_{j}\right) \in E\left(K_{2} \times G\right)$. Now $U-S^{\prime}$ is an induced subgraph which is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times \mathrm{G}\right)=5$.

Theorem 5.2 For any path P_{n} of order $\mathrm{n}>3, \mathrm{~g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times \mathrm{P}_{\mathrm{n}}\right)=4$.
Proof: Consider $G=P_{n}$. Let $K_{2} \times P_{n}$ be a graph formed from two copies G_{1} and G_{2} of G. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of $G_{1}, W=\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ be the vertices of G_{2} and $U=V \cup W$. Let $n>3$. If $S=\left\{v_{i}, w_{j},\right\}$ is a geodetic set of $K_{2} \times P_{n}$ where $d\left(v_{i}, w_{j}\right)=\operatorname{diam}\left(K_{2} \times P_{n}\right)$. Let $\mathrm{S}^{\prime}=\mathrm{S} \cup\left\{\mathrm{v}_{\mathrm{i}+1}, \mathrm{w}_{\mathrm{j}+1}\right\}$, Now $\mathrm{U}-\mathrm{S}^{\prime}$ is an induced subgraph which is disconnected with no isolated vertices. Hence $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times \mathrm{P}_{\mathrm{n}}\right)=4$.

Theorem 5.3 For any complete graph of order $n>3, g_{s r}\left(K_{2} \times K_{n}\right)=n$.
Proof: Let G_{1} and G_{2} be disjoint copies of $G=K_{n}, n>3$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the vertex sets of G_{1} and G_{2}, respectively. Let S be a minimum geodetic set of $K_{2} \times K_{n}$. Without loss of generality, we may assume that $v_{1} \in S$. Since $d\left(v_{1}, w_{j}\right)=2=\operatorname{diam}\left(K_{2} \times K_{n}\right)$ for each $j=\{2,3, \ldots, n\},\left\{w_{j} \mid 2 \leq j \leq n\right\} \subseteq S$. So $g\left(K_{2} \times K_{n}\right) \geq n$, and thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times K_{\mathrm{n}}\right) \geq \mathrm{n}$. Since $\left\{\mathrm{v}_{1}\right\} \cup\left\{\mathrm{w}_{\mathrm{j}} \mid 2 \leq \mathrm{j} \leq \mathrm{n}\right\}$ forms a split restrained geodetic set of $K_{2} \times K_{n}$, $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times \mathrm{K}_{\mathrm{n}}\right) \leq \mathrm{n}$. Thus $\mathrm{g}_{\mathrm{sr}}\left(\mathrm{K}_{2} \times \mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}$.

6. References

1. B. Bresar, S Klavzar, A.T. Horvat, "On the Geodetic Number and Related metric sets in Cartesian product graphs", Discrete Mathematics, 2008, 308, 5555-5561.
2. G. Chartrand, F.Harary, P.Zhang, "On the Geodetic Number of a Graph", Networks 2002, 39, 1-6.
3. G.Chartrand, P.Zhang, "Introduction to Graph Theory", Tata McGraw Hill Publication Co Limited, 2006.
4. F.Harary, "Graph Theory", Addison-Wesley, Reading, MA, 1969
5. T. Jiang, I. Pelayo, D. Pritikin,. "Geodesic Convexity and Cartesian products", Manuscript, 2004.
6. F.Buckley, F.Haray, "Distance in Graphs", Addison-Welsey, Redwood city, CA, 1990.
7. F.Harary, E.Loukakis, C.Tsouros, "The Geodetic Number of a Graph", Math.Comput.Modeling, 1993, 17(11), 87-95.
8. F.Buckley, F.Harary, L.V.Quintas, "Extremal results on the Geodetic Number of a Graph", Scientia, 1988, 17-26.
9. Venkanagouda M.Goudar, Ashalatha K S, Venkatesha, "Split Geodetic Number of a Graph", Advances and Applications in Discrete Mathematics, 2014, 13, 9-22.

Licensed under Creative Commons Attribution-ShareAlike 4.0 International License

