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Abstract 

Let ‘G’ be a graph. If u, v ∈ V, then a u-v geodetic of 𝐺 is the shortest path between 𝑢 𝑎𝑛𝑑 𝑣.                                                            

The closed interval  I[u, v] consists of all vertices lying in some u-v geodetic of G . For S ⊆ V(G) the set 

I[S] is the union of all sets I [u, v] for 𝑢, 𝑣 ∈ 𝑆. A set S is a geodetic set of G if  I[S]=V(G). The cardinality 

of minimum geodetic set of G is the geodetic number of G, denoted by g(G). A set S of vertices of a graph 

G is a split geodetic set if S is a geodetic set and 〈V − S〉 is disconnected, split geodetic number gs(G) of 

G is the minimum cardinality of a split geodetic set of G. In this paper I study split restrained geodetic 

number of a graph. A set S of vertices of a graph G is a split restrained geodetic set if S is a geodetic set 

and the subgraph 〈V − S〉 is disconnected with no isolated vertices. The minimum cardinality of a split 

restrained geodetic set of G is the split restrained geodetic number of G and is denoted by  gsr(G). The 

split restrained geodetic numbers of some standard graphs are determined and also obtain the split 

restrained geodetic number in the Cartesian product of graphs.  
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1. Introduction 

In this paper, we follow the notations of [4]. The graphs considered here have at least one component 

which is not complete or at least two nontrivial components. 

The distance d (u, v) between two vertices u and v in a connected graph G is the length of a shortest   u-v 

path in G. It is well known that this distance is a metric on the vertex set V(G). For a vertex v of G, the 

eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among 

the vertices of G is radius, rad G, and the maximum eccentricity is the diameter, diam G. A u-v path of 

length d(u, v)  is called a u-v geodesic. We define I [u, v] to the set of all vertices lying on some   u-v 

geodesic of G and for a nonempty subset S of V(G), I[S] =∪u,v∈S I[u, v]. A set S of vertices of G is called 

a geodetic set in G if I[S]=V(G), and a geodetic set of minimum cardinality is a minimum geodetic set. 

The cardinality of a minimum geodetic set in G is called the geodetic number of G, and we denote it by 

g(G). The geodetic number of a graph was introduced in [6,7] and further studied in [2,8,4]. 

A geodetic set S of a graph G= (V, E) is a split geodetic set if the induced subgraph 〈V − S〉 is disconnected. 

The split geodetic number gs(G) of G is the minimum cardinality of a split geodetic set. The split geodetic 

number was introduced and studied in [9].   

For any undefined term in this paper, see [3] and [4]. 
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2. Preliminary Notes 

We need the following results to prove further results. 

Theorem 2.1 [2] Every geodetic set of a graph contains its extreme vertices. 

Theorem 2.2 [2] For any tree T with k end-edges, g(T)=k. 

Theorem 2.3 [2] For any path Pn with n vertices, g(Pn) = 2. 

Theorem 2.4 [2] For cycle Cn of order n ≥ 3, g(Cn) = {
2, if n is even  
3, if n is odd   

  

Theorem 2.5 [2] If G is a nontrivial connected graph, then g(G) ≤ g(G × K2). 

 

3. Main Results 

Proposition 3.1 For any graph G, g(G) ≤ gs(G) ≤ gsr(G). 

Theorem 3.2 For cycle Cn of order n ≥ 6, gsr(Cn) = {
2    if n is even
3     if n is odd

 

Proof: Let n ≥ 6, we have the following cases. 

Case 1: Let n be even. Consider {v1, v2, … , v2n, v1} be a cycle with 2n vertices and let S = {vi, vj} be a 

split restrained geodetic set of C2n. For any two antipodal vertices vi and vj, the shortest vi − vj path 

includes all the vertices of C2n. Clearly I[S] = V(C2n). Also x, y ∈ V − S, V-S is disconnected with no 

isolated vertices. Hence gsr(C2n) = 2. 

Case 2:  Let n be odd. Consider {v1, v2, … , v2n+1, v1} be a cycle with 2n+1 vertices and let S = {vi, vj, vj+1} 

be a split restrained geodetic set of C2n+1, where d(vi, vj) = diam(C2n+1). By theorem 2.4 and 

proposition 3.1, no two vertices of S forma split restrained geodetic set, so there exists a split restrained 

geodetic set contains three vertices. Clearly I[S] = V(C2n+1). Also V-S is disconnected with no isolated 

vertices. Hence gsr(C2n+1) = 3. 

 

Theorem 3.3 For any path Pn, n ≥ 7, gsr(Pn) = 3.  

Proof: Let S = {v1, vn, vi} be a split restrained geodetic set of Pn, where v1, vn are the two end vertices. 

By theorem 2.3, v1 − vn path includes all the vertices of Pn and vi is a cut vertex which forms two 

connected components and for any x, y ∈ V − S, such that V-S is disconnected with no isolated vertices. 

Thus gsr(Pn) = 3. 

 

Theorem 3.4 Let T be a caterpillar that has at least five internal vertices, if T has k end-vertices, then 

gsr(T) = k + 1. 

Proof: Let S = {v1, v2, … , vk} be the set containing end-vertices of T and itself a geodetic set of T such 

that I[S} = V(T). Let {u1, u2, … , ul) ⊂ V − S. Now S′ = S ∪ {ui} is a split restrained geodetic set of T, 

where ui ∈ V − S which is a cut vertex which forms connected components. Consider P = {v1, v2, … , vk} 

be a set of end-vertices of T such that|P| < |S′| is a geodetic set but V-P is connected, so P is not a split 

restrained geodetic set. Again Q = {u1, u2, … , ul} be set of internal vertices of T such that |Q| < |𝑆′| is not 

a geodetic set. Hence it is clear that 𝑆′ is a minimum split restrained geodetic set of T. Also  x, y ∈ V − 𝑆′, 

such that V − 𝑆′ is disconnected with no isolated vertices. Hence gsr(T) = k + 1. 

 

Theorem 3.5 For any Tadpole graph gsr(Tm,n) = {
3    if m is even, n ≥ 3, m > 4
4     if m is odd, n ≥ 3, m > 3

 

Proof: Tadpole graph is a special type of graph consisting of cycle graph of m vertices and a path graph 

of n vertices connected with a bridge. 
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V = {c1, c2, … , cm} are the vertices of Cm and U = {p1, p2, … , pn} are the vertices of  Pn. W = V ∪ U are 

the vertices of tadpole graph. 

For n ≥ 3 , we have the following cases. 

Case 1: m is even and  m > 4 

Let S = {pn, ci, cj}, i < j ≤ m be a split restrained geodetic set of Tm,n, where Pn is the end vertex of          

Tm,n and ci, cj are the antipodal vertices Cn. Suppose S′ = {pn, ci}, |S′| < |S|, which is a geodetic set and 

V − S′ is connected. Hence S is a minimum split restrained geodetic set. Also for all x, y ∈ V − S, it follows 

that V-S is disconnected with no isolated vertices. Thus gsr(Tm,n) = 3. 

Case 2: m is odd and m > 4. 

Let S = {pn, ci, ci+1} is a geodetic set such that I[S] = V(Tm,n), where                                                       

d(pn, ci) = d(pn, ci+1) = diam(Tm,n). Let {c1, c2, … , cj, p1, p2, … , pn−1} ⊂ V − S. Now                              

S′ = S ∪ {pl} or S ∪ {ck} is a split restrained geodetic set of Tm,n, where pl or ck  ∈ V − S which is a cut 

vertex which forms connected components. Hence it is clear that S′ is a minimum split                        

restrained geodetic set of Tm,n. Also x, y ∈ V − S′ it follows that V − S′ is disconnected with no isolated 

vertices. Hence gsr(Tm,n) = 4. 

 

Theorem 3.6 For Banana tree graph gsr(Bn,k) = n(k − 2) + 1. 

Proof: Let S = {v1, v2, … , vnk−2n} be the set containing end-vertices of Bn,k and itself a geodetic set of  

Bn,k, such that I[S] = V(Bn,k). Let S′ = S ∪ {u} is a split restrained geodetic set of  Bn,k, where u ∈ V − S 

is a root vertex. Consider P = {v1, v2, … , vnk−2n} be a set of end vertices of Bn,k such that |P| < |S′| is a 

geodetic set but V − P is connected, so P is not a split restrained geodetic set. Again Q = {u, u1, u2, … , ul} 

be set of internal vertices of Bn,k such that |Q| < |S′| is not a geodetic set. Hence it is clear that S′ is a 

minimum split restrained geodetic set of Bn,k. Also x, y ∈ V − S′, such that V − S′ is disconnected with no 

isolated vertices. Hence gsr(Bn,k) = n(k − 2) + 1. 

 

4. Adding an End-Edge 

For an edge e = (u, v) of a graph G with deg(u) = 1 and deg (v) > 1, we call e an end-edge and u an 

end–vertex. 

 

Theorem 4.1 For the Helm graph Hn  n ≥ 6 , gsr(Hn) = n + 3. 

Proof: Let Helm graph Hn is a graph obtained from the wheel graph by attaching an end-edge at each 

vertex of the n-cycle of the wheel. 

Let V(Hn) = {x, u1, u2, … , un, v1, v2, … , vn} where deg(𝑥) = 𝑛, deg(vi) = 1 and deg(ui) = 4 for each 

i ∈ {1,2, … , n}.  

Let S = {v1, v2, … , vn, x} be the set of n-end vertices of Hn and a vertex of degree n is a geodetic set of Hn 

such that I[S] = V(Hn). Let {u1, u2, … , un} ⊂ V − S. Now S′ = S ∪ {ui, uj} is a split restrained          

geodetic set of Hn, where ui, uj ∈ V − S which are cut vertices forms connected components.               

Consider P = {v1, v2, … , vk,x} be a set of end vertices and a vertex of degree n of Hn such that |P| < |S′| 

is a geodetic set but V − P is connected, so P is not a split restrained geodetic set, again Q = {u1, u2, … , un} 

be the vertices of the cycle of 𝐻𝑛, such that |Q| < |S′| is not a geodetic set. Hence it is clear that S′ is the 

minimum split restrained geodetic set of Hn. Also x, y ∈ V − S′, it follows that V − S′ is disconnected with 

no isolated vertices. Hence gsr(Hn) = n + 3. 
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Theorem 4.2 Let G′ be the graph obtained by adding an end-edge (ui, vi), i=1, 2…, n to each vertex of 

cycle Cn = G for n ≥ 6, such that ui ∈ G, vi ∉ G, then gsr(G′) = n + 2. 

Proof: Let G = Cn = {u1, u2, … , un, u1} be a cycle with n vertices. Let G′ be the graph obtained by adding 

an end-edge (ui, vi), i = 1,2, … , n to each vertex of G such that ui ∈ G, vi ∉ G. Clearly X = {v1, v2, … , vn} 

is the n number of end-vertices of G′. Let S = X ∪ {ui, uj} be a split restrained geodetic set of G′, where 

ui, uj are cut vertices which forms connected components. Thus I[S] = V(G′). Also x, y ∈ V − S, such that 

V − S is disconnected with no isolated vertices, thus gsr(G′) = n + 2. 

 

Theorem 4.3 Let G′ be the graph obtained by adding k end-edges {(u, v1), (u, v2), … , (u, vk)} to a cycle 

Cn = G of order n ≥ 6, with u ∈ G and {v1, v2, … , vk} ∉ G.  

Then gsr(G′) = {
k + 2      for even cycle
k + 3       for odd cycle

 

Proof: Let G = Cn = {u1, u2, … , un, u1} be a cycle with n vertices and let G′ be the graph obtained from 

G = Cn by adding k end-edges {(u, v1), (u, v2), … , (u, vk)} for fixed u ∈ G and {v1, v2, … , vk} ∉ G. We 

have the following cases. 

Case 1: Let G = C2n,n> 2. Consider S = {v1, v2, … , vk} ∪ {ui}, for any vertex ui of G. Now S′ = S ∪ {u} 

be a split restrained geodetic set,{v1, v2, … , vk} are the end –vertices of G′ and u, ui are antipodal vertices 

of G, thus I[S′] = V(G′). Consider P = {v1, v2, … , vk} as a set of end-vertices such that |P| < |S′| is not a 

geodetic set, that is for some vertex ui ∈ V(G), ui ∉ I[P]. If  P = S, then P is not split restrained geodetic 

set. Thus S′ is the minimum split restrained geodetic set. Then V − S′ is an induced subgraph which has 

more than one connected component. Thus gsr(G′) = k + 2. 

Case 2: Let G = C2n+1, n > 3. Consider S = {v1, v2, … , vk} ∪ {ui, ui+1} for any adjacent vertices 

ui, ui+1 ∈ G. Now S′ = S ∪ {u} be a split restrained geodetic set, such that {v1, v2, … , vk} are the end-

vertices of G′ and d(u, ui) = d(u, ui+1) = diam(G). Thus I[S′] = V(G′). For any x, y ∈ V − S′,it follows 

that V − S′ is disconnected with no isolated vertices. Thus gsr(G′) = k + 3.  

 

5. Cartesian Product 

The Cartesian product of the graphs H1 and H2, written as H1 × H2, is the graph with vertex set 

V(H1) × V(H2), two vertices (u1, u2) and (v1, v2) being adjacent in H1 × H2  if and only if                     

either u1 = v1 and (u2, v2) ∈ E(H2), or u2 = v2 and (u1, v1) ∈ E(H1). 

 

Theorem 5.1 For any cycle Cn of order n,  gsr(K2 × Cn) = {
4                   if n is even
5        if n is odd, n > 3

 

Proof: Consider G = Cn, Let K2 × Cn be a graph formed from two copies G1 and G2 of G.                               

Let V = {v1, v2, … , vn} be the vertices of G1 and W = {w1, w2, … , wn} be the vertices of  G2                         

U =  V ∪ W. We have the following cases. 

Case 1: Let n be even. Consider S = {vi, wj} is a geodetic set of  K2 × G such that vi − wj path is equal to 

diam(K2 × G), which includes all the vertices of K2 × G. Let S′ = {vi, wi, vj, wj}, where 

(vi, wi), (vj, wj) ∈ E(K2 × G). Now U − S′ is an induced subgraph which is disconnected but no isolated 

vertices. Hence gsr(K2 × G) = 4. 

Case 2: Let n be odd. Consider S = {vi, wj, vk} is the geodetic set of K2 × G such that                       

d(vi, wj) = diam(K2 × G) = d(wj, vk). Thus I[S] = U(K2 × G). Let S′ = {vi, wi, vj, wj, vk}, where 
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(vi, wi), (vj, wj) ∈ E(K2 × G). Now U − S′ is an induced subgraph which is disconnected with                     

no isolated vertices. Hence gsr(K2 × G) = 5. 

 

Theorem 5.2 For any path Pn of order n>3, gsr(K2 × Pn) = 4. 

Proof: Consider G = Pn. Let K2 × Pn be a graph formed from two copies G1 and G2 of G.                                 

Let V = {v1, v2, … , vn} be the vertices of G1, W = {w1, w2, … wn} be the vertices of G2  and U = V ∪ W.  

Let n > 3. If S = {vi, wj, } is a geodetic set of K2 × Pn where d(vi, wj) = diam(K2 × Pn).                             

Let S′ = S ∪ {vi+1, wj+1}, Now U − S′ is an induced subgraph which is disconnected with no isolated 

vertices. Hence gsr(K2 × Pn) = 4. 

 

Theorem 5.3 For any complete graph of order n > 3, gsr(K2 × Kn) = n. 

Proof: Let G1 and G2 be disjoint copies of G = Kn, n > 3. Let V = {v1, v2, … , vn}                                              

and W = {w1, w2, … , wn} be the vertex sets of G1 and G2, respectively. Let S be a minimum geodetic set 

of K2 × Kn. Without loss of generality, we may assume that v1 ∈ S. Since                                              

d(v1, wj) = 2 = diam(K2 × Kn) for each j = {2,3, … , n}, {wj|2 ≤ j ≤ n} ⊆ S. So g(K2 × Kn) ≥ n, and 

thus gsr(K2 × Kn) ≥ n. Since {v1} ∪ {wj|2 ≤ j ≤ n} forms a split restrained geodetic set of K2 × Kn, 

gsr(K2 × Kn) ≤ n. Thus gsr(K2 × Kn) = n. 
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