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Abstract 

In this paper we present equations to generate the concatenation of natural numbers 𝐴 ∈ ℕ. The main 

ingredient of our study is the innocuous repunit of a number 𝑅𝐴 ; and in this study we introduce three 

amalgamation operators: ↕ for the constant,  ↑ for the incremental and ↓ for the detrimental cases of 

concatenation according to a variable arithmetic progression. Our method of amalgamation demonstrates 

the generation of common number sequences, as well as how any two different natural numbers can be 

joined and alternated, depending on which of the numbers should be displayed first. We also introduce an 

operator Ω(𝐴 )  based on repunits and whose dynamics yields two constants 𝐻𝑜  and 𝐻𝑒  which we 

calculate.  Amongst the few corollaries from this conjecture is an identity stating that the product of the 

repunits of those irrational numbers 𝑅𝐻𝑜
𝑅𝐻𝑒

is equal to unity.   
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1. Introduction  

In this paper, we introduce equations and operators using the repunits and palindromic numbers [1]. 

Regarding the composition of natural numbers, mathematicians from the Greeks to the great Gauss 

ascribed the role of atoms on the number line to prime numbers. Hypotheses such as the fundamental 

theorem of arithmetic [2] hint at the perception that primes constitute all natural numbers and that it is 

through factorization that every natural number is uniquely created. We assert that every natural 

number 𝐴 ∈ ℕ can be concatenated with units of itself or other numbers; and manipulating the repunit 

function 𝑅𝐴 provides a means to do so seamlessly.  In this paper we also present a general equation for the 

expanded form of repunit summands expressed as combinations of products; as well as presenting the 

modified repunit function (conjectured by Witno and others) which is quite useful in our method of 

concatenation; consequently producing some of the beautiful sequences such as even sequences with a 

visible arithmetic progression. Smarandache and others have studied various concatenated patterns for the 

purposes of finding infinite sequences of prime numbers. In this paper we devise new amalgamation 

functions to describe the constant, incremental and detrimental cases of numerical concatenation.  Based 

on 𝑅𝐴 again, we also describe a omega operator over a natural number Ω(𝐴 ) which we study, resulting in 

the derivation of two irrational constants 𝐻𝑜  and 𝐻𝑒  which we approximate to a few decimal places by 

calculating the omega of some random natural numbers repeatedly, for very large numbers of iterations to 

mimic even and odd limit to infinity. 
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2. On the expanded form of repunit summands and the modified repunit  

2.1. Proposition The expanded form for the repunit of the sum of numbers  𝑎1, 𝑎2, 𝑎3 … 𝑎𝑛 ∈ ℕ up to  𝑛 =

4: 

𝑅(𝑎1+𝑎2) =𝑅𝑎1
 +  𝑅𝑎2

 +  9𝑅𝑎1
𝑅𝑎2

                                                                       (2.11)    

𝑅(𝑎1+𝑎2+𝑎3) =𝑅𝑎1
 +  𝑅𝑎2

 +  𝑅𝑎3
+ 9𝑅𝑎1

𝑅𝑎2
+ 9𝑅𝑎2

𝑅𝑎3
+ 9𝑅𝑎1

𝑅𝑎3
+  92𝑅𝑎1

𝑅𝑎2
𝑅𝑎3

 

𝑅(𝑎1+𝑎2+𝑎3+𝑎4) =𝑅𝑎1
 + 𝑅𝑎2

 +  𝑅𝑎3
+ 𝑅𝑎4

+ 9𝑅𝑎1
𝑅𝑎2

+ 9𝑅𝑎2
𝑅𝑎3

+ 9𝑅𝑎1
𝑅𝑎3

+ 9𝑅𝑎1
𝑅𝑎4

+ 9𝑅𝑎2
𝑅𝑎4

+ 9𝑅𝑎4
𝑅𝑎3

+  92𝑅𝑎1
𝑅𝑎2

𝑅𝑎3 + 92𝑅𝑎1
𝑅𝑎3

𝑅𝑎4
+ 92𝑅𝑎1

𝑅𝑎2
𝑅𝑎4

+ 92𝑅𝑎2
𝑅𝑎3

𝑅𝑎4

+ 93𝑅𝑎1
𝑅𝑎2

𝑅𝑎3
𝑅𝑎4. 

In terms of combinations of terms, disregarding order, 

𝑅(𝑎1+𝑎2) = 90{sum of (2 choose 1) terms of the product of 1 unique factor combination}

+ 91{sum of (2 choose 2) terms of the product of 2 unique factor combinations} 

𝑅(𝑎1+𝑎2+𝑎3) = 90{sum of (3 choose 1) terms of the product of 1  unique factor combination}

+ 91{sum of (3 choose 2) terms of the product of 2 unique factor combinations}

+ 92{sum of (3 choose 3) terms of the product of  3  unique factor combinations} 

𝑅(𝑎1+𝑎2+𝑎3+𝑎4) = 90{sum of (4 choose 1) terms of the product of 1  unique factor combination}

+ 91{sum of (4 choose 2) terms of the product of 2  unique factor combinations}

+ 92{sum of (4 choose 3) terms of the product of 3  unique factor combinations}

+ 93{sum of (4 choose 4) terms of the product of 4 unique factor combinations}. 

In compact form, we assign ∏  [𝑅𝑎𝜇
] as the product  𝑅𝑎𝑗

 𝑅𝑎𝑘
 𝑅𝑎𝑙

… containing ℎ factors exhausting all 

the possible unique combinations from (
𝑛
ℎ

), the general repunit of summands equation for ℎ, 𝑖, 𝑙, 𝑛 ∈ ℕ is:   

𝑅
[∑ (𝑎𝑖)

n

𝑖=1
] =

∑ {9ℎ−1 ∑ [∏  𝑅𝑎𝜇
 

terms with ℎ factors  = (
𝑛
ℎ) 

terms with ℎ factors  = 1
] 

𝑛

ℎ=1

}.                                              (2.12) 

Remark:  All 𝑅
[∑ (𝑎𝑖)

n

𝑖=1
] 
can be condensed into repunits of the sum of only two numbers 𝑦 and 𝑦 since 

the sum 𝑎1 +  𝑎2 +  𝑎3, … 𝑎𝑛  =  𝑎𝑥+𝑎𝑦; and from 2.11 by the associative property of addition for any 

𝑥, 𝑦 ∈ ℕ:  

𝑅(𝑥+𝑦) =  𝑅(𝑦+𝑥) = 𝑅𝑦 +  (1 + 9𝑅𝑦)𝑅𝑥 =  𝑅𝑥 +  (1 + 9𝑅𝑥)𝑅𝑦.                                              (2.13) 

 

2.2. Proposition There exists a variation of repunits consisting of a series of repdigit 0’s which we denote 

by 𝑧 ∈ ℕ between two consecutive 1’s in a repunit. Witno defined this function as 𝑃𝑘,𝑛 = ∑ {10𝑘𝑖}
𝑛−1

𝑖=0
 

[3]. However for our purposes, we maintain the repunit symbol 𝑅𝐴 instead of 𝑃𝑘,𝑛 for the number of ones, 

as well as assigning the subscript 𝑧 ∈ ℕ   to represent the number of zeros. For instance, the modified 

repunit 𝑅2|0 remains 𝑅2 = 11 , however 𝑅4|2 = 1001001001 .In general, the modified 𝑅𝐴|𝑧 for 𝐴, 𝑧 ∈ ℕ 

is given by: 

𝑅𝐴|𝑧 =
𝑅{𝐴(𝑧+1)}

𝑅(𝑧+1)
.                                                                  (2.21) 

 

3. On the concatenation of constant sub-numbers  

When Carl Gauss anecdotally added the numbers 1 up to 100, his result was the product 101(50), which 

is the sum 5050 [4]. From proposition 2.2, the coefficient of 50 in the product can be thought of as the 

https://www.ijfmr.com/
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modified repunit we defined in 2.21 i.e. 𝑅2|1 = 101. As such, some of the equations in our method of 

concatenation contain the modified repunit.  Looking at the sum 5050 through a new lens, Gauss’ sum is 

also the concatenation of two values of the same sub-number 50.  

A vital aspect of our method is to make sure that the introduction of any new notation or operators must 

not compromise the arithmetic and algebraic integrity of numbers. For instance, even though the number 

987987987 exhibits a pattern of 3 concatenated units of 987, the numerical value of 987987987 i.e. nine 

hundred eighty-seven million nine hundred eighty-seven thousand nine hundred eighty-seven ought to be 

preserved after the operation.  

3.1. Definition We introduce an amalgamation function ↕ (𝐴, 𝑛) to concatenate 𝑛 terms whose value are 

the number 𝐴1 , resulting in the concatenated number𝐴1𝐴1𝐴1 … 𝐴𝑛 ∈ ℕ . We also define 𝑞𝐴1
  as the 

number of digits in 𝐴1, 𝑞𝐴2
  as the number of digits in 𝐴2  and so forth.   

3.2. Example. Considering a natural sub-number say 307 which has 3 digits, we decide to concatenate 

that number with 3 other sub-numbers (making  𝑛 = 4) with that same value and digit count; then the 

result 307307307307 should also be a natural number. Similarly, the concatenation of 3 units of the natural 

sub-number 26976 should yield a larger natural number 269762697626976.   

3.3. Corollary The amalgam function for the concatenation of 𝑛 units of the same (constant) sub-number 

𝐴1 can be calculated using the formula, where 𝐴1, 𝑞𝐴, 𝑛 ∈ ℕ: 

↕ (𝐴1, 𝑛)  = 𝐴1

R(nqA1
)

RqA1

.                                                                                      (3.31)  

3.4. Corollary For the concatenation of an amalgam (itself an amalgam that concatenates 𝑎 ∈ ℝ units of 

the same sub-number 𝐴1 ) to produce a higher amalgam of 𝑏 ∈ ℝ units of that same 𝐴1, then the operation 

requires
 
b

a
   units of the smaller amalgam. Mathematically, for  𝑎 < 𝑏 ∈ ℝ 

↕ {↕ (𝐴1, 𝑎),
b

a
} =↕ (𝐴1, 𝑏).                                                                                    (3.41)  

3.5. Corollary The number of digits of an amalgam described by ↕ (𝐴1, 𝑎), where 𝐴1, 𝑞𝐴 ∈ ℕ and 𝑎 ∈ ℝ 

, is 

q↕(𝐴1,𝑎) = 𝑎q↕(𝐴1,1) = 𝑎qA1.                                                                                     (3.51)  

 

4.  The Amalgamation Formula for arithmetic-progressive concatenation 

4.1. Claim Based on Gauss’ sum 5050 again [4], we consider other numbers 5051, 505560 or 50525456. 

These are concatenated sub-numbers obeying an A.P with 1st term 𝐴1 = 50, variable common difference 

𝑑 and an 𝑛𝑡ℎ term. Assuming 𝑞A1
=  𝑞A2

=  … 𝑞A𝑛
∈ ℕ  , it follows that for 𝐴1, 𝑛 ∈ ℕ 

 𝑑(𝑞𝐴 − 1) = 𝐴𝑛 −  𝐴𝑛−1. 

4.2. Conjecture The concatenation of sub-numbers obeying an arithmetic progression of first term 𝐴1, a 

common difference d and a final  nth term, 𝐴1𝐴2𝐴3 … 𝐴𝑛is given in two parts: first the amalgamation 

function ↑ (𝐴, 𝑛, 𝑑) for the incremental case to the 𝑛𝑡ℎ term; and  ↓ (𝐴, 𝑛, 𝑑)denoting the corresponding 

detrimental.  The incremental & detrimental amalgam equations in repunit form for 𝐴1, 𝑞𝐴, 𝑛, 𝑑, 𝑘 ∈ ℕ,  

↑ (𝐴1, 𝑛, 𝑑)  =  
𝑅

(𝑛𝑞A1
)

𝑅𝑞A1

[𝐴1 −  
𝑅

(2𝑞A1
)

𝑅𝑞A1

]  +  ∑ {
𝑛+1

𝑘=2

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

 } +  (𝑑 − 1) ∑ {
𝑛−1

𝑘=1

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

}          (4.21) 

↓ (𝐴1, 𝑛, 𝑑) =  
𝑅

(𝑛𝑞A1
)

𝑅𝑞A1

[𝐴1 +  
𝑅

(2𝑞A1
)

𝑅𝑞A1

] −  ∑ {
𝑛+1

𝑘=2

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

 } −  (𝑑 − 1) ∑ {
𝑛−1

𝑘=1

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

}.        (4.22) 

These are their equivalents in omega functional form (introduced in section 6) for all 𝐴1, 𝑞𝐴, 𝑛, 𝑑, 𝑘 ∈ ℕ:  

https://www.ijfmr.com/
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↑ (𝐴1, 𝑛, 𝑑)  = [
𝑛Ω𝑞A1

Ω(𝑛𝑞A1)
] [𝐴1 −  

2Ω𝑞A1

Ω(2𝑞A1)
]  +  ∑ {

𝑛+1

𝑘=2

𝑘Ω𝑞A1

Ω(𝑘𝑞A1)
} + (𝑑 − 1) ∑ {

𝑛−1

𝑘=1

𝑘Ω𝑞A1

Ω(𝑘𝑞A1)
}         (4.23) 

↓ (𝐴1, 𝑛, 𝑑) = [
𝑛Ω𝑞A1

Ω(𝑛𝑞A1)
] [𝐴1 +

2Ω𝑞A1

Ω(2𝑞A1)
] −  ∑ {

𝑛+1

𝑘=2

𝑘Ω𝑞A1

Ω(𝑘𝑞A1)
} − (𝑑 − 1) ∑ {

𝑛−1

𝑘=1

𝑘Ω𝑞A1

Ω(𝑘𝑞A1)
}.         (4.24) 

Combining equations 3.31 with 2.21, we arrive at the relation:  

↕ (𝐴1, 𝑛) = 𝐴1𝑅
[𝑛|(𝑞A1

− 1)]
.                                                                (4.25)  

Hence the equivalents of 4.21 & 4.22 in modified repunit form for all 𝐴1, 𝑞𝐴, 𝑛, 𝑑, 𝑘 ∈ ℕ:  

↑ (𝐴1, 𝑛, 𝑑)  =  𝑅[𝑛|(𝑞A1−1)] [𝐴1 −  𝑅[2|(𝑞A1−1)]]  +  ∑ {
𝑛+1

𝑘=2
𝑅[𝑘|(𝑞A1−1)] } +  (𝑑 − 1) ∑ {

𝑛−1

𝑘=1
𝑅[𝑘|(𝑞A1−1)]}          

(4.26) 

↓ (𝐴1, 𝑛, 𝑑) =  𝑅[𝑛|(𝑞A1−1)] [𝐴1 +  𝑅[2|(𝑞A1−1)]] −  ∑ {
𝑛+1

𝑘=2
𝑅[𝑘|(𝑞A1−1)] } −  (𝑑 − 1) ∑ {

𝑛−1

𝑘=1
𝑅[𝑘|(𝑞A1−1)]}.           

(4.27) 

4.3. Examples applying equations 4.26 and 4.27. 

↑ (305,4,6)  =  𝑅[4|2][305 − 𝑅[2|2]] + ∑{

5

𝑘=2

𝑅[𝑘|2] } + 5 ∑{

3

𝑘=1

𝑅[𝑘|2] } 

= 1001001001(305 − 1001) + (1001 + 1001001 + 1001001001 + 1001001001001 + 5(1 + 1001 + 1001001) 

= 305311317323. 

↓ (7659,3,2) =  𝑅[3|3][7659 + 𝑅[2|3]] − ∑{

4

𝑘=2

𝑅[𝑘|3]} − 1 ∑{

2

𝑘=1

𝑅[𝑘|3] } 

= 100010001 (7659 + 10001) - (10001 + 100010001 + 1000100010001) - 1(1 + 10001) 

= 765976577655. 

Here we have shown the incremental concatenation of 4 units starting with the sub-number 305 with each 

term increasing by a value of 6, as well as the detrimental concatenation of 3 sub-numbers starting with 

305 and each term decreasing by a value of 2.  

Note. When we add the incremental amalgam 4.21 and detrimental amalgam 4.22 amalgams of 𝐴1 for 

exactly the same nth term, but removing the common difference i.e. when 𝑑 = 0 . 

↑ (𝐴1, 𝑛, 0) + ↓ (𝐴1, 𝑛, 0)  =  
𝑅

(𝑛𝑞A1
)

𝑅𝑞A1

[𝐴1 +  
𝑅

(2𝑞A1
)

𝑅𝑞A1

]  +  ∑ {
𝑛+1

𝑘=2

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

 } +  (𝑑 − 1) ∑ {
𝑛−1

𝑘=1

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

} +

                                       
𝑅

(𝑛𝑞A1
)

𝑅𝑞A1

[𝐴1 +  
𝑅

(2𝑞A1
)

𝑅𝑞A1

] −  ∑ {
𝑛+1

𝑘=2

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

 } −  (𝑑 − 1) ∑ {
𝑛−1

𝑘=1

𝑅
(𝑘𝑞A1

)

𝑅𝑞A1

}      

= 2{𝐴1

𝑅(𝑛𝑞A1)

𝑅𝑞A1

} 

And from 3.31,                                           𝐴1

R(nqA1
)

RqA1

=↕ (𝐴1, 𝑛) 

∴     ↑ (𝐴1, 𝑛, 0)+↓ (𝐴1, 𝑛, 0) =  2{↕ (𝐴1, 𝑛)}.                                                  (4.31) 

This validates the reasoning that the incremental and detrimental amalgams reduce to exactly the same 

function (when there is no arithmetic spacing between sub-numbers i.e. 𝑑 = 0); and that function is also 

the constant amalgam for all values of 𝐴1, 𝑞𝐴, 𝑛, 𝑘 ∈ ℕ .  

4.4 Corollary It follows that terms of common sequences like the Back Concatenated Even Sequence 

from A038396 in OEIS [5] can be generated by the detrimental, for  𝐴1, 𝑞𝐴, 𝑛, 𝑘 ∈ ℕ only for 𝑞A1
= 𝑞A2

=

… 𝑞A𝑛
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↓ (𝐴1, 𝑛, 2) = 𝑅[𝑛|(𝑞A1−1)] [𝐴1 +  𝑅[2|(𝑞A1−1)]] −  ∑ {
𝑛+1

𝑘=2
𝑅[𝑘|(𝑞A1−1)] } − ∑ {

𝑛−1

𝑘=1
𝑅[𝑘|(𝑞A1−1)]}   (4.41)                                                               

 

Example For instance, the first 12 terms of the sixteenth A038396 can be generated by the detrimental: 

↓ (32,12,2) = 323028262422201816141210. 

It is worth noting that the remaining 4 lower terms cannot be properly calculated by this formula as they 

have 𝑞𝐴 = 1 instead of 2. In general, any values of  𝐴1, 𝑛 ∈ ℕ can be varied to generate similar even 

sequences. 

  

5. On the concatenation of any two quantities and alternating sequences  

An important question would be, just how can one literally join any two different numbers 𝐴, 𝐵 ∈ ℕ by 

concatenation? In this section we show this to be a special case of either the arithmetic-progressive 

incremental or detrimental amalgams (depending on which of the two numbers is required to come first).   

Corollary 5.1 The concatenation of any two quantities 𝐴, 𝐵 ∈ ℕ where 𝐴 < 𝐵 and 𝑞𝐴 = 𝑞𝐵 = 𝑞 can be 

given in two cases in this section. 

Case 1 Where the smaller number 𝐴 must come first, the incremental amalgam containing 𝑛 = 2 terms, 

and a common difference 𝑑 = 𝐵 − 𝐴 ; then the concatenation of 𝐴, 𝐵, 𝑞 ∈ ℕ is calculated as follows,  

↑ (𝐴, 2, 𝐵 − 𝐴) =
R(2q)

Rq
[𝐴 −

R(2q)

Rq
] + ∑{

3

𝑘=2

R(kq)

Rq
} + (𝐵 − 𝐴 − 1) ∑{

1

𝑘=1

R(kq)

Rq
} 

= 𝐵 − 𝐴 − 1 +
R(3q)

Rq
+

R(2q)

Rq
[1 + 𝐴 −

R(2q)

Rq
].                                                                 (5.11) 

Case 2 Where it is required for the larger number 𝐵 to come first, the equation for the concatenation of 

two numbers 𝐴   and 𝐵 is given by the following equation; as before 𝑛 = 2 , 𝑑 = 𝐵 − 𝐴 and 𝐴, 𝐵, 𝑞 ∈ ℕ . 

↓ (𝐵, 2, 𝐵 − 𝐴) =
R(2q)

Rq
[𝐴 +

R(2q)

Rq
] − ∑{

3

𝑘=2

R(kq)

Rq
} − (𝐵 − 𝐴 − 1) ∑{

1

𝑘=1

R(kq)

Rq
} 

= 𝐴 − 𝐵 + 1 −
R(3q)

Rq
+

R(2q)

Rq
[𝐵 − 1 +

R(2q)

Rq
].                                                                 (5.12) 

Example Suppose we wish to concatenate two natural numbers 456 and 699 such that the smaller number 

456 comes first in the result. We use equation 5.11 to compute the incremental amalgam:  

↑ (456,2,243) = 699 − 456 − 1 +
R9

R3
+

R6

R3
(1 + 456 −

R6

R3
) 

 = 456699.  

Example Likewise if we want to concatenate two other natural numbers 𝐴 = 1070 and 𝐵 = 5000 so that 

this time, the larger number 5000  comes first in the result. We use equation 5.12 to compute the 

detrimental: 

↓ (5000,2,1070) = 1070 − 5000 + 1 −
R12

R4
+

R8

R4
[5000 − 1 +

R8

R4
] 

                                                                                                         =50001070.  

 Hence for all 𝐴, 𝐵, 𝑞 ∈ ℕ, 5.11 and 5.12 can compute the concatenation of any two different natural 

numbers. 

Corollary 5.2 The constant amalgamation of the resultant amalgams from 5.11 or 5.12 up to 𝑚 values are 

equivalent to the alternating constant amalgams for each case, of 𝐴   and 𝐵 for 𝑚 values of both 𝐴  and 𝐵, 

i.e.  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR230610239 Volume 5, Issue 6, November-December 2023 6 

 

↕ {↑ (𝐴, 2, 𝐵 − 𝐴), 𝑚} = {↑ (𝐴, 2, 𝐵 − 𝐴)}
R{𝑚𝑞↑(𝐴,2,𝐵−𝐴)}

R𝑞↑(𝐴,2,𝐵−𝐴)

. 

But from 3.51, 𝑞↑(𝐴,2,𝐵−𝐴) = 2𝑞 

↕ {↑ (𝐴, 2, 𝐵 − 𝐴), 𝑚} =
R(2𝑚𝑞)

R2q
↑ (𝐴, 2, 𝐵 − 𝐴) 

=
R(2𝑚𝑞)

R2q
{𝐵 − 𝐴 − 1 +

R(3𝑞)

Rq
+

R(2𝑞)

Rq
[1 + 𝐴 −

R(2𝑞)

Rq
]}.                                (5.21)  

Which is the alternating constant amalgamation of 𝑚 values of the incremental amalgam ↑ (𝐴, 2, 𝐵 − 𝐴). 

Similarly, for  𝑚 units of the detrimental amalgam ↓ (𝐵, 2, 𝐵 − 𝐴) , the alternating constant amalgam is 

given by:  

↕ {↓ (𝐵, 2, 𝐵 − 𝐴), 𝑚} = {↓ (𝐵, 2, 𝐵 − 𝐴)}
R{𝑚𝑞↓(𝐵,2,𝐵−𝐴)}

R𝑞↓(𝐵,2,𝐵−𝐴)

 

 Also from 5.33↓ (𝐵, 2, 𝐵 − 𝐴) = 2𝑞  

   ↕ {↓ (𝐵, 2, 𝐵 − 𝐴), 𝑚} =
R(2𝑚𝑞)

R2q
↓ (𝐵, 2, 𝐵 − 𝐴) 

=
R(2𝑚𝑞)

R2q
{𝐴 − 𝐵 + 1 −

R(3𝑞)

Rq
+

R(2𝑞)

Rq
[𝐵 − 1 +

R(2𝑞)

Rq
]}.                                 (5.22) 

Example Using the result of our example for ↑ (456,2,243), whereby we want the smaller number 456 

to appear before the larger 699; we hereby show that the constant amalgamation of 5 units of 456699 is 

equal to 5 units of the numbers 456 and 699 alternating between each other by concatenation. Using 

equation 5.21:  

↕ {↑ (456,2,243), 5} =
R30

R6
↑ (456,2,243) = 456699456699456699456699456699 

Example Using our other example for the detrimental concatenation of two numbers 5000 and 1070 

wherein we require the larger 5000 to appear first in the sequence ↓ (5000,2,3930), we also show that 

the constant amalgamation of 4 units of 50001070 is equal to 4 units of the numbers 5000 and 1070 

concatenated such that they alternate between each other up to 4 terms each. Using equation 5.22, it 

follows that:  

↕ {↓ (5000,2,3930), 4} =
R32

R8
↑ (5000,2,3930) = 50001070500010705000107050001070 

 

6. On iterations of mono-digit pedigree 

6.1. Definition We assign an omega function as the ratio of a number 𝐴 ∈ ℕ to its repunit 𝑅𝐴: 

Ω(𝐴 ) =
9𝐴

10𝐴 − 1
.                                                                                 (6.11) 

It is worth noting that Ω(0 ) is undefined for 𝐴 ∈ ℝ, however the omega of negative values of  𝐴 is positive 

Ω(−𝐴 ) = 10𝐴Ω(𝐴 )                                                              

            = 9𝐴 +  Ω(𝐴 ).                                                                        (6.12) 

6.2. Proposition Extending 6.1 to the omega operation on 𝐴 for higher orders, we can perform further 

iterations 𝑣 = 2,3,4 … ∈ ℕ such that the output of the function is fed back into the input, from 𝐴 =

1,2 … ∈ ℕ, 

𝐴 =  Ω0(𝐴) 
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𝐴

𝑅𝐴
= Ω1(𝐴) 

(
𝐴
𝑅𝐴

)

𝑅
(

𝐴
𝑅𝐴

)

= Ω2(𝐴) = Ω{Ω(𝐴)} 

{
𝐴

𝑅𝐴𝑅
(

𝐴
𝑅𝐴

)

}

𝑅
{

𝐴
𝑅𝐴𝑅

(
𝐴

𝑅𝐴
)

}

=
𝐴

𝑅𝐴𝑅
(

𝐴
𝑅𝐴

)
𝑅

{
𝐴

𝑅𝐴𝑅
(

𝐴
𝑅𝐴

)

}

= Ω{Ω[Ω(𝐴)]} = Ω3(𝐴). 

Continuing this for higher values of 𝑣 ∈ ℕ, we hereby define the  𝑣𝑡ℎorder omega function Ω𝑣(𝐴). 

6.3. Conjecture The value of the 𝑣𝑡ℎ order omega function, when the output of the function is fed back 

into the input, will converge to the irrational number 𝑯𝒐  = 𝟎. 𝟎𝟎𝟒𝟓𝟐𝟔𝟐𝟗𝟔 … as the number of iterations 

𝑣 tends to odd infinity and 𝑯𝒆 = 𝟑. 𝟖𝟖𝟖𝟑𝟏𝟕𝟑𝟖𝟑 … as 𝑣 tends to even infinity, independently of 𝐴, for all 

𝑣, 𝐴 ∈ ℕ, 

lim
𝑣→∞

Ω𝑣𝐴 = {
𝐻𝑒, iff 𝑣 ≡ 0 mod 2

𝐻𝑜, iff 𝑣 ≡ 1 mod 2.
                                                   (6.31) 

6.4. Corollary It follows that at some point in the infinitude of  𝑣 ∈ ℕ, the value of Ω𝑣(𝐴) tends to the 

exact values of 𝐻𝑒 and 𝐻𝑜 . If  Ω𝑣(𝐴)   converges to  𝐻𝑒 first, then automatically the value of the next 

iterate will be 𝐻𝑜  and vice versa. This is analogous to how every Collatz sequence eventually collapses to 

a value of 1 independently of the initial value fed into the dynamical system [6].  Therefore the following 

equations hold,                               

          Ω𝐻𝑜 = 𝐻𝑒                                                                             (6.41) 

Ω𝐻𝑒 = 𝐻𝑜 .                                                                            (6.42) 

6.5. Corollaries. Along with 6.41 and 6.42, these equations are identities of 𝐻𝑒 and 𝐻𝑜 from Conjecture 

6.3: 

10𝐻𝑜+𝐻𝑒 = 10𝐻𝑜 + 10𝐻𝑒 + 80                                                                    (6.51) 

𝑅(𝐻𝑜+𝐻𝑒) = 𝑅𝐻𝑜
+ 𝑅𝐻𝑒

+ 9                                                                   (6.52) 

𝑅𝐻𝑜
=

𝐻𝑜

𝐻𝑒
                                                                                          (6.53) 

𝑅𝐻𝑒
=

𝐻𝑒

𝐻𝑜
                                                                                          (6.54) 

𝑅𝐻𝑜
𝑅𝐻𝑒

= 1.                                                                                          (6.55) 

 

7. Conclusion 

In this paper we have demonstrated how the simple repunits of natural numbers can yield equations that 

describe the concatenation of numbers of the same digit count. Our method of concatenation makes use 

of an amalgam function, which describes the relationship between the initial natural sub-number 𝐴 ∈ ℕ, 

the number of units of the sub-numbers to be concatenated, the digit count of all these sub-numbers (the 

number of digits must in fact be the same for all sub-numbers in question), and finally the arithmetic 

spacing between consecutive sub-numbers to be concatenated into the final number pattern. Employing 

again the repunit of a natural number 𝑅𝐴, we also presented a conjecture that if the ratio of a number to its 

repunit is presented as a function, and the output is fed back into the input for iterations approaching 
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infinity, the value of that function tends to two irrational constants depending on whether the number of 

iterations is even or odd. Hence we gave our approximate values for 𝐻𝑜  and 𝐻𝑒  by numerical computation. 
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