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ABSTRACT: 

Floating point multiplication is one of the crucial operations in many application domains such as image 

processing, signal processing etc. But every application requires different working features. Some need 

high precision, some need low power consumption, low latency etc. The multiplication process requires 

more hardware resources and processing time when compared with addition and subtraction. This paper 

presents, Design and Implementation of FPGA based Complex Floating Point Multiplier using 

Combined Integer and Floating point Multiplier (CIFM). The Processing speed of the multipliers decides 

the execution time of the system as it consumes most of the time. The design is implemented in VHDL 

and design is synthesized on FPGA to know the performance. The architectures for the three multiplier 

solutions of complex multiplier for 32 x 32 bit complex numbers multiplication are coded in VHDL and 

implemented through Xilinx ISE 13.4 navigator and Modelsim 5.6 and their performance is compared. 

The complex floating point multiplication with single precision using CIFM multiplier has 

comparatively less amount of delay and power consumption with respect to Vedic and Array multiplier. 

 

KEYWORDS: Vedic Real Multiplier, FPGA, CIFM, Array Multiplier. 

 

I. INTRODUCTION 

Multiplication involving complex numbers is of great importance in Image Processing (IP) and Digital 

Signal Processing (DSP). To implement the hardware module of Discrete Sine Transformation (DST), 

Discrete Cosine Transformation (DCT), Discrete Fourier Transformation (DFT), FIR filters, and modem 

broadband communications; requires large numbers of complex multipliers [1]. Four real number 

multiplications and two additions/ subtractions are used to perform complex number multiplication. 

Carry must be propagated from the least significant bit (LSB) to the most significant bit (MSB) when 

binary partial products are added. Therefore, the overall speed is limited by addition and subtraction 

after binary multiplications. 

 

Floating point (FP) multiplication is an essential component required in a large set of FPGA based 

hardware acceleration application [2]. So, efficient implementation of FPGA based floating point 

multipliers are highly desirable. Floating point multiplication units are essential Intellectual Properties 

(IP) for modern multimedia and high performance computing such as graphics acceleration, signal 

processing, image processing etc [3]. There are lot of effort is made over the past few decades to 
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improve performance of floating point computations. Floating point units are not only complex, but also 

require more area and hence more power consuming as compared to fixed point multipliers. And the 

complexity of the floating point unit increases as accuracy becomes a major issue [4]. Even a minute 

error in accuracy can cause major consequences. These errors are possible in floating point units mainly 

because of the discrete behavior of the floating point representation.  

 

Due to the high computational requirements of scientific applications such as computational geometry, 

climate modeling, computational physics, etc., it is necessary to have extreme precision in floating point 

calculations [5]. And these increased precision may not be provided with single precision or double 

precision format. That further increases the complexity of the unit. But some applications do not require 

high precision. Even an approximate value will be sufficient for the correct operation. For applications 

which require lower precision, the use of double precision or quadruple precision floating point units 

will be a luxury. It wastes area, power and also increases latency [6]. 

 

The speed of the processor is majorly determined by the processing speed of multipliers [7]. Hence, 

parallel and reconfigurable Field Programmable Gate Array (FPGA) based hardware architectures are 

needed to be designed. Moreover, due to the complex nature of wireless channel, complex multiplication 

process recently has received a significant importance in the area of broad band wireless communication 

techniques [8]. 

 

A collection of the ancient Indian mathematical tools and techniques called Vedic Mathematics , 

comprises of 16 Sutras (Formulae) [9]. "Urdhva-tiryakbyham" is a Sanskrit word which means "vertical 

and crosswise" formula, which is used as general case of multiplication [10]. "Nikhilam 

Navatascaramam Dasatah" also a Sanskrit term indicating "all from 9 and last from 10", formula is used 

for large number multiplication which are near to the base (i.e. 10, 100, 1000 etc.). The proposed 

multiplier is designed using "Urdhva-tiryakbyham" adopted from 16 sutras of ancient Indian Vedic 

Mathematics. 

 

Using Vedic mathematics, high speed ASIC design of a complex multiplier is proposed [11] and 

implemented using the four real multipliers solution. However, FPGA implementation of a complex 

multiplier has not been discussed. Further, path delay analysis of Vedic real multiplier architectures, 

which will enable to choose architecture with minimum delay [12]. 

 

The organization of this paper is arranged as follows: Section II explains the literature survey, Section 

III explains the Complex Floating Point Multiplier, Section IV explains implementation details and 

finally paper is concluded with Section V.  

 

II. LITERATURE SURVEY 

Z. Gu and S. Li, et. al. [13] proposes a method of division-free Toom-Cook multiplication based 

Montgomery modular multiplication, which makes it possible for Toom-Cook multiplication to be 

applied in practical and efficient hardware implementations. We also provide a hardware 

implementation of modular multipliers of 256 bits and 1024 bits with advantages on area-time-product 

over previous researches.  
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P. Wang et al., [14] propose using the 3-D vertical channel NAND array architecture to implement the 

vector-matrix multiplication (VMM) with for the first time. Based on the array-level SPICE simulation, 

the bias condition including the selector layer and the unselected layers is optimized to achieve high 

computation accuracy of VMM. Since the VMM can be performed layer by layer in a 3-D NAND array, 

the read-out latency is largely improved compared to the conventional single-cell read-out operation. 

The impact of device-to-device variation on the computation accuracy is also analyzed. 

 

R. Salarifard, S. Bayat-Sarmadi and H. Mosanaei-Boorani, et. al. [15] two low-complexity (LC) and 

low-latency (LL) architectures for the regular point multiplication using fixedbase comb method have 

been proposed. In this paper, a fixed-base comb point multiplication method has been used to perform 

regular point multiplication. The point multiplication architectures have been implemented using field-

programmable gate array and application-specific integrated circuit (ASIC). Moreover, ASIC results 

show 100% energy improvement for the LC architecture implementation results over GF(2 163 ). In 

addition, the LL architecture has 99% reduction in point multiplication required time, respectively, using 

a pentanomial. 

 

H. Saadat, H. Bokhari and S. Parameswaran, et. al. [16] proposes a novel error-configurable minimally 

biased approximate integer multiplier (MBM) design. The proposed MBM design is devised by coupling 

a unique error-reduction mechanism with an approximate log based integer multiplier. Then, we propose 

a set of new approximate FP multipliers and we show that these FP multipliers lie on the Pareto front on 

the design spaces of area versus error and power versus error. We synthesize the designs using the 

TSMC 45-nm standard-cell library. We also perform application-level evaluations of the proposed 

approximate integer and FP multipliers, showing that our proposed multipliers enable significant power 

and area reduction with minimal degradation in applications' output quality. 

 

M. Kumm, M. Hardieck and P. Zipf, et. al. [17] Constant matrix multiplication (CMM), i.e., the 

multiplication of a constant matrix with a vector, is a common operation in digital signal processing. 

Like multiple constant multiplication (MCM), CMM can be reduced to additions/subtractions and bit 

shifts. Finding a circuit with minimal number of add/subtract operations is known as the CMM problem. 

While this leads to a reduction in circuit area it may be less efficient for power consumption or 

throughput. This paper addresses the optimization of CMM circuits which considers both adder depth 

and pipelining for the first time. For that, a heuristic is proposed which evaluates the most attractive 

graph topologies. It is shown that the proposed method requires 12.5% less adders with min. AD and 

38.5% less pipelined operations. Synthesis results for recent FPGAs show that these reductions also 

translate to superior results in terms of delay and power consumption compared to the state-of-the-art. 

 

S. -R. Kuang, C. -Y. Liang and C. -C. Chen, et. al. [18] presents a simple compression scheme and 

circuit to remove the data dependence in the accumulation process and accomplish one-cycle latency 

without quotient pipeline. To achieve low latency, existing radix-4 scalable architectures for word-based 

Montgomery modular multiplication usually suffer from high design and hardware complexities. The 

complex computation and encoding of quotient digits are thus avoided, leading to up to 10.6% and 

17.7% reductions in area and power than previous work while maintaining very high performance. 
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Consequently, the proposed radix-4 scalable architecture appears to be very suited for low-complexity 

and low-power cryptographic applications. 

 

S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park and N. S. Kim, et. al. [19] propose multiplier 

architectures that can tradeoff computational accuracy with energy consumption at design time. The 

need to support various digital signal processing (DSP) and classification applications on energy-

constrained devices has steadily grown. Such applications often extensively perform matrix 

multiplications using fixed-point arithmetic while exhibiting tolerance for some computational errors. 

Compared with a precise multiplier, the proposed multiplier can consume 58% less energy/op with 

average computational error of ∼1 %. Finally, we demonstrate that such a small computational error 

does not notably impact the quality of DSP and the accuracy of classification applications. 

 

X. Peng et al., [20] developing a large-scale reconfigurable data path (LSRDP) based on single-flux-

quantum (SFQ) circuit technology for high-performance computing systems. In the SFQ LSRDP, a large 

number of SFQ floating-point adders (FPAs) and floating-point multipliers (FPMs) are directly 

connected to each other through routing networks to reduce a memory access rate. We show our recent 

results about the SFQ FPAs and FPMs. Utilization of the National Institute of Advanced Industrial 

Science and Technology's 10-kA/cm 2 Nb process makes it possible to accelerate the clock frequency to 

more than 50 GHz. We estimate the performance and energy efficiency of SFQ FPAs and FPMs based 

on the designed circuits. 

 

III. COMPLEX FLOATING POINT MULTIPLIER 

The architecture of the proposed multiplier based on four multipliers solution to multiply two complex 

floating point numbers a and b is shown in Fig. 1. In Fig. 1, 𝑝𝑟 and 𝑝𝑖  are the real and imaginary parts, 

respectively of the floating point result of multiplication of a and b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  1: ARCHITECTURE OF THE PROPOSED COMPLEX FLOATING POINT 
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The architecture of 32 bit floating point real multiplier is shown in Fig. 2. The architecture of floating 

point adder and subtractor is shown in Fig. 3. The floating point multiplier has three parts namely i) Sign 

bit ii) Exponent bit iii) Mantissa bit.  

1. Sign bit: In the 32-Bit format, the MSB i.e the 31st bit is the sign bit, which is 0 for positive numbers 

and 1 for negative numbers. 

2. Exponent Part: In the 32-Bit format the next 8 bits after the sign bit, i.e [30:23] bits are the exponent 

part, the exponent is from −127 to 128, which is in integer form of 8 bits and accepted as the biased 

form.  

3. Mantissa Part: The Mantissa is about 23 bits and a leading bit with 1 at MSB, unless an exponent is 

stored with all zeros. Mantissa of 23 bits appears, but the total precision is 24 by concatenating 1 bit 

and multiplication is done by different multiplier algorithms. 

 
 

 

Fig. 2: 32 BIT FLOATING POINT REAL MULTIPLIER ARCHITECTURE 
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Fig. 3: FLOATING POINT ADD/SUB 

 

The main parts of an floating point adder and subtractor are as follows:  

1. Alignment of the mantissas to make the exponent equal (exponents compared from subtracting each 

other).  
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3. Normalizing the result if required.  
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The value of the exponents which is larger among the two is taken for final output before the 

normalization. Leading zeroes are detected and shifted till the MSB becomes leading 1. 

 

Complex floating point multiplication architecture is designed using Vedic multiplier, Array multiplier, 

CIFM multiplier are implemented with single precision floating point. 

 

CIFM 
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Fig. 4: 24X24 BIT CIFM MULTIPLIER 

 

The 24-bit multiplication block is classified into four 12-bit multiplication modules which are working 

in parallel. The four 12 bits are AH, AL, BH and BL respectively used for 12x12 multiplication. The 12-

bit multiplication modules are further divided using 4-bit optimized multipliers. The complete 24x24 bit 

multiplication is classified into 4x4 multiplier blocks. Checkers working as control signals for 24-bit 

multiplication module. 

 

CHECKER 

12*12 

(AH*BL) 

12*12 

(AH*BL) CHECKER 

12*12 

(AH*BL) 

12*12 

(AH*BL) 

ADDER 1 ADDER 2 

P47 P36 P35 P12 

P0-P11 

B 

BH 

CONTRO

L SIGNAL 

AH 
A 

AL 

BL 

12 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR230610397 Volume 5, Issue 6, November-December 2023 8 

 

Using CIFM, 24-bit multiplication of mantissa can be done and it produces the required product using 

4x4 bit optimized multiplier. 4-bit multiplier generates 4 partial products which will be added in parallel. 

Adjoining partial products are grouped into 2-bit blocks and sum of 2-bit is produced by a parallel adder 

by selecting the correct combination of adders, which forms the level 1 operation. Previously generated 

partial sums are added in block 5&6 by choosing the correct combination of adders, which forms the 

level 2 operation. Second level partial sums are used in level 3 operation. 

 

Array multiplier: 

Array multiplier is best known and simplest multiplier which uses add and shift method. By examining 

the multiplier bits and generating the partial products which take sequential operation and requires add 

and shift method. Addition is implemented row by row. An adder is required to generate the sum of 

partial products and carry combinations. (a*b) AND gates and (a-1) b bit adders are requires to produce 

the product of (a + b) bits for a multiplier bits and b multiplicand bits. The combinational circuit with 

24-bit has been designed using a basic cell of an array which contains 23 cells in each row and shifted 

accordingly. 

 

 
Fig. 5: BASIC CELL IN AN ARRAY MULTIPLIER 

 

Vedic multiplier: 

There are total sixteen sutras in ancient Vedic multiplication. In this paper 24x24bit Vedic multiplication 

is implemented using UrdhvaTiryakbhyam (U-T) sutra. The 24-bit VM (Vedic Multiplier) is 

implemented using nine 8-bit VM which also consists of Ripple carry adders. 
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Fig. 6: ARCHITECTURE OF THE 24 X 24 BIT VEDIC MULTIPLIER USING 8X8 BIT VEDIC  

MULTIPLIERS 
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IV. IMPLEMENTATION DETAILS 

The 32x32 bit complex multiplier using three multipliers is implemented using VHDL and functionally 

verified using Xilinx ISE 13.4 and Modelsim 5.6 simulators. The 32-bit complex multiplication using 

Vedic, Array and CIFM multiplier is implemented in Verilog and analyzed based on performance 

factors such as delay and power. Simulation is shown in Fig. 7. The device Utilization of these three 

multipliers is summarized in Table 1. 
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Table 1: COMPARATIVE PERFORMANCE ANALYSIS 

Parameter CIFM multiplier Array multiplier Vedic multiplier 

Path Delay (ns) 19.45 40.12 38.13 

Number of Slice LUTs 10416 8954 11124 

Logic Power (mW) 187.06 209.93 191.5 

Number of bonded 

IOBs 

228 102  320 

 

 
Fig. 7: SIMULATION WAVE OF COMPLEX FLOATING POINT MULTIPLIER 

 

Fig. 8 and Fig. 9 are shows three multipliers delay analysis and logic power analysis respectively. 
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Fig. 9: LOGIC POWER ANALYSIS 

 

It is summarized from the results that, the floating point CIFM complex multiplier is much faster 

(19.45ns) as compared to the Vedic multiplier (38.13ns) and array multiplier (40.12ns). The floating 

point CIFM complex multiplier has low power (187.07mW) than other two multipliers.  

 

From these three designs we can draw the conclusion that, the complex floating point multiplication with 

single precision using CIFM multiplier has comparatively less amount of delay and power consumption 

with respect to Vedic and Array multiplier which proves to be advantageous for fast multiplication 

operation which can be used for DSP applications. 

 

V. CONCLUSION 

In this paper, Design and Implementation of FPGA based Complex Floating Point Multiplier using 

Combined Integer and Floating point Multiplier (CIFM). The architecture of Complex Floating Point 

Multiplier consists two main blocks as floating point real multiplier and floating point adder and 

subtractor. A design of Vedic real multiplier based on Urdhva Tiryakbhyam sutra of ancient Indian 

Vedic Mathematics. The 32x32 bit complex multiplier using three multipliers is implemented using 

VHDL and functionally verified using Xilinx ISE 13.4 and Modelsim 5.6 simulators. The performance 

of three multipliers is differentiated in parameters as tabulated. In Single Precision floating point 

multiplier for mantissa multiplication, different multipliers have been used for implementation in which 

CIFM consumes low power and delay to execute compared to Vedic and array multiplier. From these 

three designs we can draw the conclusion that, the complex floating point multiplication with single 

precision using CIFM multiplier has comparatively less amount of delay and power consumption with 

respect to Vedic and Array multiplier which proves to be advantageous for fast multiplication operation 

which can be used for DSP applications. 
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