

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

Phytoremediation Process of Textile Industry Effluent by Eichhornia Crassipes and Pistia Stratiotes

Chonde Sachin G¹, Chonde Sonal G²

¹Department of Applied Sciences and Humanities, AMGOI, Vathar, Kolhapur, Mahrashtra, India ²Department of Environmental Science & Technology, Department of Technology, Shivaji University, Kolhapur

Abstract:

In the world, a large part of the wastewater is not previously treated, resulting in the contamination of water resources. Textile wastewater contains large volume of pollution load. In the present study, the removal of pH, COD, TS, TDS, TSS, Sulphate and Chloride has been studied by using Eichhornia crassipes and Pistia stratiotes. A lab scale study was conducted to test the feasibility of Eichhornia crassipes and Pistia stratiotes for treating textile wastewater. pH was reduced from alkaline to nearly neutral in all dilution. The maximum percentage reduction was observed after treatment with Eichhornia crassipes and it was 25.62% for pH, 69% for COD, 25.71% for TS, 34.61% for TDS, 68% and 45% for Sulphate and Chloride respectively. Aftrer treatment with *Pistia stratiotes* percentage removal efficiency was pH 23%, COD 45%, TS 20%, TDS 17.53%, Sulphate 64% and Chloride 39.51%. Hence, the efficiency for removal of pollutants of textile wastewater by Eichhornia Crassipes is more than Pistia stratiotes.

Keywords: Phytoremediation, textile waste water, Eichhornia Crassipes, Pistia stratiotes.

1. Introduction:

In the world, more than 80% of wastewater is discharged directly into the river or the sea without giving it a previous treatment producing pollution of water resources (WWAP, 2017). This pollution is mainly caused by chemical substances that are dumped by mining industries, and is a debatable issue due to the effects it causes on human health, ecology and the environment (Yadav S. 2011, Latorre and Tovar, 2017; Canaza Choque, 2018).

Phytoremidiation is an emerging technology and rapidly gaining interest and promises effectively and inexpensively cleanup of hazardous waste sites contaminated with metals, hydrocarbons, pesticides and chlorinated solvents (Macek et al 2000, Susarla et al 2002, zia et al 2003). The use of plant to degrade, assimilate, metabolize or detoxify contaminants is cost effective and ecologically sound (Schnoor et al., 1995). Phytoremidiation used for removing heavy metals and pollutants by MATS (aquatic macrophytes treatment system) is a well established environmental protective techniques (Mahmood et al., 2005) Four mechanisms are involved in phytoremidiation of organic compound. a) Direct uptake and accumulation of contaminants by plant tissues. b) Transpiration of volatile organic hydrocarbons through the leaves. c) Release of exudates that stimulate microbial activity and biochemical transformation around root system

(Schnoor *et al*, 1995). The uptake and accumulation of pollutants vary from plant to plant and also from specie to specie within a genus (Singh et al., 2003). The economic success of phytoremediation largely depends on photosynthetic activity and growth rate of plants (Xia and Ma, 2006) and with low to moderate amount of pollution (Jamuna and Noorjahan, 2009). Many researchers have used different plant species like water hyacinth (Eichhornia crassipes (Mart.) Solms) (Muramoto and Oki, 1983; Trivedy and Pattanshetty, 2002; Mahmood et al., 2005; Dhote and Dixit, 2007; Jamuna and Noorjahan, 2009; Lissy et al., 2010; Valipour et al., 2010; Valipour et al., 2011; Dar et al., 2011;)

2. Material and Methods:

2.1 Collection of plant sp.:

The plants used for project were collected from a natural pond near Kolhapur. Two types of plants used for study are *Echhornia crassipes* and *Pistia stratiotes*. The plants are very common in Maharashtra state inhibiting vast marshy areas, propagating by stolen and multiplying very rapidly.

2.2 Preparation of live plants:

Plants of *Eichhornia crassipes* and *Pistia Stratiotes* were collected from local pond of Kolhapur city, Maharashtra. The plants were grown under laboratory condition.

2.3 Collection of textile effluent and treatment with water hyacinth and Pistia :

Effluent was collected from Common Effluent Treatment Plant (CETP) of Cluster Private Limited, Ichalkaranji, District, Kolhapur. Sample was collected in plastic can from the inlet of common effluent treatment plant. before treatment with phytoremediation treatment the waste water was analysed for physicochemical parameters. pH, COD, TS, TDS, TSS, Sulphate and Chloride parameters of waste water were tested before and after the treatment with *Eichhornia crassipes* and *Pistia Stratiotes* spp.

Figure no. 1 Set of Eichhornia crassipes

3. Result and Discussion:

The physicochemical parameters of waste water were analyzed before and after treatment and following results were obtained.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Plant species used		% Removal Efficiency										
	2 nd	2nd day4th day6th day8th day								ıy		
Dilution percentage	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Treatment with												
Eichhornia crassipes	11	0.75	1.51	23.24	5.94	6.59	23.56	17.4	21.62	25.62	19.45	23.24
Treatment with pistia												
Sratiotes	11	5.94	0.84	22.27	6.48	2.27	23.02	20.64	9.4	23.56	21.4	20.86

Table No 1: Table of percentage removal efficiency of pH after treatment

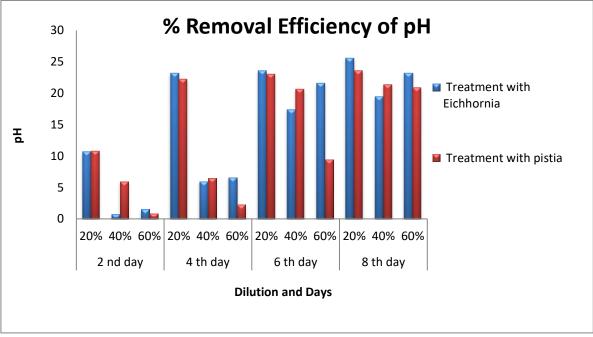


Fig No 1: Graph of Percentage removal efficiency of pH

Plant species used		% Removal Efficiency										
	2^{nd} d	¹ day 4 th day 6 th day 8 th day										
	20	40	60	20			20	40		20	40	60
Dilution percentage	%	%	%	%	40%	60%	%	%	60%	%	%	%
Treatment with												
eichhornia												
crassipes	27	36.5	5	31.5	41.5	24	38	51	39	69	64.5	53.5
Treatment with												
pistia stratiotes	32	23.5	2	36	26	3	41.5	29.5	6	45	35	19

Table No 2: Table of percentage removal efficiency of COD after treatment

E-ISSN: 2582-2160 • Website: www.ijfmr.com

- Email: editor@ijfmr.com

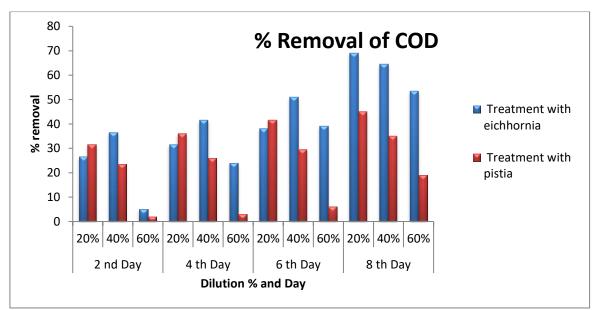


Fig No 2: Graph of percentage removal efficiency of COD

Plant species												
used				%	Remov	al Effici	ency					
	2 nd 6	lay		4 th da	у		6 th da	у		8 th da	у	
Dlution	20	40										
percentage	%	%	%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Treatment												
with												
Eichhornia		5.7	5.7	14.2	14.2		22.8			24.2	25.7	24.2
Crassipes	5.7	1	1	8	8	14.28	5	20	20	8	1	8
Treatment												
with Pistia		2.8	2.8				10.8	11.4	10.8		17.1	17.1
stratiotes	2.9	5	5	8.57	8.57	8.57	5	2	5	20	4	4

Table	No '	3. "	Fable	٥f	percentage	removal	efficiency	of	TDS	after	treatment
1 ant	110.	J • .	ant	UI.	percentage	i cino vai	cincicity	UI.	ID D	anu	ucaununi

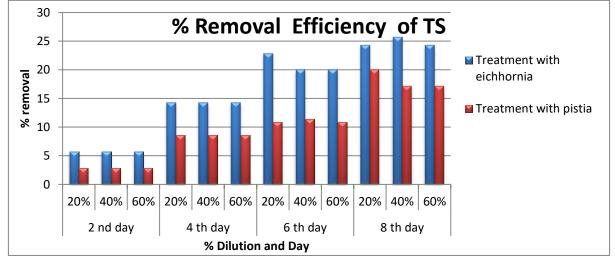


Fig No 3: Graph of Percentage removal efficiency of TS

Plant species used		% Removal Efficiency										
	2 nd (day		4 th da	ıy	6 th d	ay		8 th day			
	20	40	60				20	40	60	20	40	60
Dlution percentage	%	%	%	20%	40%	60%	%	%	%	%	%	%
Treatment with Eichhornia				21.1	21.1	21.1	33.	33.	33.	5.5	5.5	5.5
crassipes	0	0	0	1	1	1	3	3	3	5	5	5
							16.	16.	16.	33.	33.	33.
pistia stratiotes	0	0	0	5.55	5.55	5.55	6	6	6	3	3	3

Table No 4: Table of percentage removal efficiency of TSS after treatment

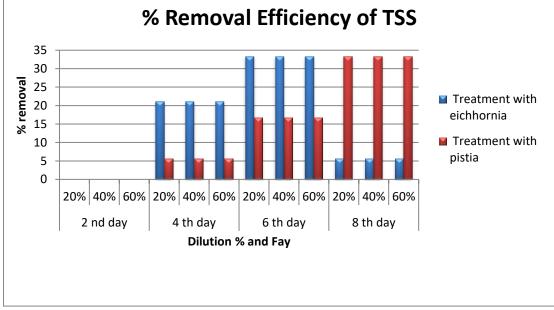


Fig No 4: Graph of percentage removal efficiency of TSS

Plant												
species used				% R	emoval	Efficien	су					
	2 nd Da	ay		4 th Day	y		6 th Da	у		8 th Da	у	
Dlution		40	60									
percentage	20%	%	%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Treatment												
with												
Eichhornia												
crassipes	3.8	3.84	3.84	11.92	11.92	11.92	11.23	15.38	23.07	34.61	30.76	30.76
Treatment												
with <i>pistia</i>												
stratiotes	3.8	3.84	3.84	5.76	5.76	5.76	8.46	9.61	8.84	17.53	11.53	11.53

Table No5: Table of percentage remov	val efficiency of TDS After treatment
Table 1403. Table of percentage remo	var enterency of 1D5 After treatment

- E-ISSN: 2582-2160 Website: www.ijfmr.com
- Email: editor@ijfmr.com •

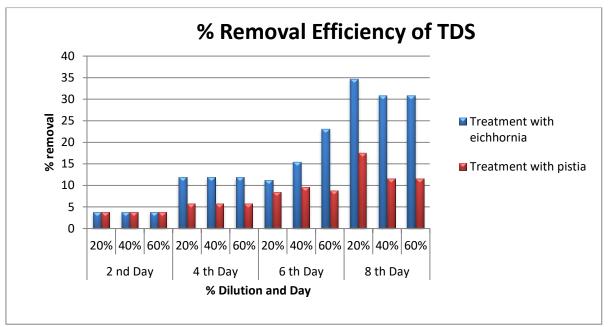
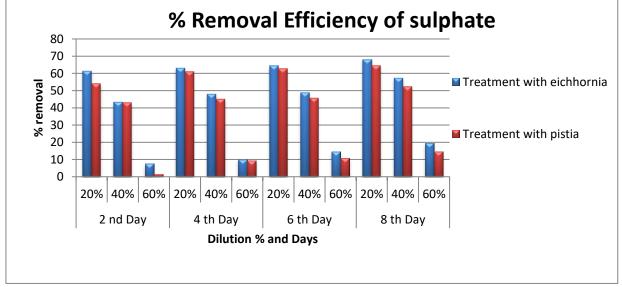
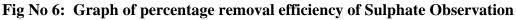




Fig No 5: Graph of Percentage removal efficiency of TDS

Table No.6: Graph	Of Percentage Remova	l Efficiency Of Sulphate	After Treatment
······································			

Plant species used		% removal efficiency										
	2 nd	nd Day 4 th Day 6 th Day 8 th Day										
	20	40	60	20	40	60	20	40	60	20	40	60
Dlution percentage	%	%	%	%	%	%	%	%	%	%	%	%
Treatment with Eichhornia		43.	7.5	63.	47.		64.	48.	14.	68.	57.	19.
crassipes	61	33	7	01	86	10	65	81	48	07	12	45
Treatment with <i>pistia</i>		43.	1.4	60.	45.	9.2	62.	45.	10.	64.	52.	14.
stratiotes	54	02	5	9	12	1	82	78	78	6	21	42

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Table No.7 Table No.7: Table of percentage removal efficiency of Chloride after treatment

Plant species used		% Removal Efficiency										
	2 nd	day		4 th day			6 th d	ay		8 th day		
	20	40	60	20	40	60	20	40	60	20	40	60
Dlution percentage	%	%	%	%	%	%	%	%	%	%	%	%
Treatment with Eichhornia		6.3	2.0		13.	11.7	39.5	12.9	22.9	45.6	20.7	28.3
crassipes	28	7	4	31.8	8	3	1	7	5	9	5	1
		2.7	0.5	28.5	6.3		30.5			39.5		
Treatment with pistia	27	6	3	3	7	2.04	5	7.83	4.91	1	9.05	5.95

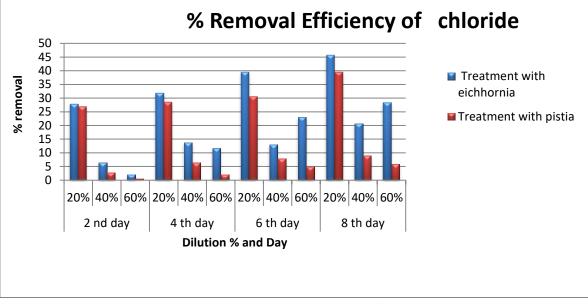


Fig No 7: Graph of Percentage removal efficiency of Chloride

Domomot	Before	AFTE	AFTER TREATMENT													
Paramet	treatme	2 nd da	ıy		4 th da	ıy		6 th da	ıy		8 th da	ıy				
er	nt	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%			
pН	9.25	8.26	9.18	9.11	7.1	8.7	8.64	7.07	7.64	7.25	6.88	7.45	7.1			
				190	137	117	152	124								
COD	2000	1470	1270	0	0	0	0	0	980	1220	620	710	930			
				330	300	300	300	300	270		265	260				
TS	3500	3300	3300	0	0	0	0	0	0	2800	0	0	2650			
TSS	900	800	800	800	710	710	710	600	600	600	450	450	450			
				229	229	229	210	220	200			215				
TDS	2600	2500	2500	0	0	0	0	0	0	2000	220	0	2200			
Sluphat			384.7	627.	251.		611.		347.		216.	291.	546.8			
e	678.95	261.9	5	5	1	354	9	240	5	580.6	7	1	5			
Chlorid	1025	740.7	959.7	100	699	882.	904.	620.	892.	789.7	556.	812.	734.7			

Table No 8: Table of parameter before and after treatment with Eichhornia crassipes

IJ	FN	٨F	2

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

e	4	4	 2	7	6	2	5	6	2	5

Table No 9 : Table of parameter before and after treatment with Pistia stratiotes										
	AFTER									
	TDEATMENT									

		AFTER											
		TREATMENT											
Parame	Befo											8 TH	
ter	re	2 ND DAY			4 TH DAY			6 TH DAY				DAY	
							60						60
		20%	40%	60%	20%	40%	%	20%	40%	60%	20%	40%	%
							9.0						7.3
pН	9.25	8.25	8.7	9.71	7.19	8.65	4	7.14	7.34	8.38	7.07	7.3	2
							194						172
COD	2000	1370	1530	1960	1280	1480	0	1170	1410	1880	1100	1300	0
							320						290
TS	3500	3400	3400	3400	3200	3200	0	3120	3100	3120	2800	2900	0
TSS	900	900	900	900	850	850	750	750	750	750	600	600	600
							245						230
TDS	2600	2500	2500	2500	2450	2450	0	2380	2350	2370	2300	2300	0
Sluphat	678.	312.	386.	669.	265.	372.	616	252.	368.	605.	240.		
e	95	08	8	05	45	55	.4	41	07	7	3	224.45	581
Chlorid		748.	996.	1019	732.	559.	100	711.	944.	974.	760.		964
e	1025	56	67	.5	56	7	4	77	7	65	59	932.17	.7

Conclusion

The main objective behind this research was to treat the textile wastewater by phytoremediation treatment with *Eichhornia crassipes* and *Pistia Stratiotes* spp. From the above experiment it can be concluded that efficiency of absorbent of toxicants increases from 2 to 8 days of phytoremediation treatment. The waste water parameters like pH, COD, Sulphate, Chloride, TS, TDS was found to be more reduced while treatment with *Eichhornia crassipes* than *Pistia stratiotes*. The maximum percentage reduction was observed after treatment with *Eichhornia crassipes* and it was 25.62% for pH, 69% for COD, 25.71% for TS, 34.61% for TDS, 68% and 45% for Sulphate and Chloride respectively. Aftrer treatment with *Pistia stratiotes* percentage removal efficiency was pH 23%, COD 45%, TS 20%, TDS 17.53%, Sulphate 64% and Chloride 39.51%. Hence, the efficiency for removal of pollutants of textile wastewater by *Eichhornia Crassipes* is more than *Pistia stratiotes*. Hence, ability of *Eichhornia crassipes* to absorb pollutants was more than *Pistia stratiotes* and this is found to be effective plant for phytoremediation treatment of textile waste water.

References:

1. Ali M.M and Soltan M.E (1995) heavy metals in aquatic macrophytes, water and hydrosoils from the river Nile, Egypt, J.Union Arab Biol (Page no. 99-115).

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

- 2. Dar S.H.,Kumawat D.N.,Singh N.,Wani K.A.(2011).Sewage treatment potential of water hyacinth.Jouranl of Environmental science pp 377-385
- 3. Dhote, S. and Dixit, S. (2007); Water Quality Improvement Through Macrophytes: A Case Study., Asian J. Exp. Sci., 21(2): 427-430.
- 4. Gupta. P.,Roy S.,Mahindrakar A.,(2012). Treatment of water using water hyacinth,Water lettuce and Vetiever Grass.Scintific and academic publishing.
- 5. Jamuna, S. and Noorjahan, C.M. (2009); Treatment of Sewage Waste Water Using Water Hyacinth Eichhornia sp and Its Reuse for Fish Culture., Toxicol. Int., 16(2): 103-106.
- 6. Kumari S M.,(2010) Treatment of dying industry effluents by using diverse bioadsorbent. An international quarterly scientific journal.vol-9,pp 157-160.
- 7. Lissy, A.M.P.N. and Madhu, B.Dr.G. (2010); Removal of Heavy Metals from Waste Water Using Water Hyacinth., In: Proc. of the International Conference on Advances in Civil Engineering, 42-47
- Lu, Q., He, Z.L., Graetz, D.A., Stoffella, P.J. and Yang, X. (2010); Phytoremediation to Remove Nutrients and Improve Eutrophic Stormwaters Using Water Lettuce (Pistia stratiotes L.)., Environ. Sci. Poll. Res., 17: 84-96. 59.
- 9. Macek T, Mckova M, Kas J (2000)"Exploitation of plants for the removal of organics in environmental remediation" Archives of Environmental health 57 (Page no. 516-518).
- Mahmood Q, Ping Z, Siddq M.R Islam E. M.Rashid and Hayat (2005) Anatomical studied on water Hyacinth (Eichornia Crassipes mark solms) under the influence of textile waste water, J-Zhejang, Uni-Sci (2005-06) (Page No. 991-998).
- Mahmood, Q., Zheng, P., Islam, E., Hayat, y., Hassan, M.J., Jilani, G. and Jin, R.C. (2005); Lab Scale Studies on Water Hyacinth (Eicchornia crassipes mart solms) for Biotreatment of Textile Waste Water. Caspian J. Env. Sci., 3(2): 83-88.
- 12. Singh, O.V., Labana, S., Pandey, G., Budhiraja, R., Jain, R.K. (2003); Phytoremediation: An Overview of Metallic ion Decontamination From Soil., Appl. Microbiol. Biotechnol., 61: 405-412
- 13. Trivedy, R.K. and Pattanshetty, S.M. (2002); Treatment of Dairy Waste by Using Water Hyacinth., Water Sci. Technol., 45(12): 329-334.
- 14. Valipour, A., Raman, V.K. and Ghole, V.S., (2011): Phytoremediation of Domestic Wastewater Using Eichhornia crassipes., J. Environ. Sci. Eng., 53(2): 183-190
- 15. Valipour, A., Raman, V.K. and Motallebi, P. (2010): Application of Shallow Pond System Using Water Hyacinth for Domestic Wastewater Treatment in the Presence of High Total Dissolved Solids (TDS) and Heavy Metal Salts., Environ. Eng. Manage. J., 9(6): 853-860. 107.
- 16. Yadav S. B., Jadhav A. S., Chonde S. G. and Raut P. D., 2011, Performance Evaluation of Surface Flow Constructed Wetland System by Using Eichhornia crassipes for Wastewater Treatment in an Institutional Complex, Universal Journal of Environmental Research and Technology , Volume 1, Issue 4: 435-441.