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Abstract:  

In this paper we propose  memory model for magnetization of magnetic fluid - a colloidal suspension of 

magnetic nano particles in a liquid carrier.The idea originates from the mathematical formulation of 

constitutive equations of solids with memory given by Boltzmann. 
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1. INTRODUCTION 

In continuum mechanics we find a class of materials which possess memory [1]. For this class of 

materials, the present state of deformation cannot be determined completely unless the entire history of 

loading is known. In other words, these materials remember how they have been loaded to the present 

state and respond accordingly. Mathematical formulation of constitutive equations of solids with memory 

was given by Boltzmann [1]. To incorporate memory in the constitutive equations of elastic solids, 

Boltzmann assumed that the linear relationship between load and deflection depends on a third parameter, 

time. Thus, for solids with memory the deflection u(t) is proportional to the force F(t) but the constant of 

proportionality c is a function of time t. For solids which do not possess memory the constant of 

proportionality c is a simple constant, independent of time. 

In sec.2, we give Boltzmann’s formulation of solids with memory as it is necessary to understand 

the memory model of magnetization of magnetic fluid. 

In sec.3, we summarize Langevin’s approach to find magnetization of magnetic fluid. In his work 

magnetic fluid is subject to constant magnetic field H at a given absolute temperature T and magnetization 

of the magnetic fluid is obtained in terms of energy ratio mH/kT(where m is magnetic moment of magnetic 

particle and k is Boltzmann’s constant). 

In sec.4, we propose a memory model for magnetization of magnetic fluid. It is shown that if 

magnetic fluid is subject to a time varying magnetic field it will acquire memory. That is, in this case 

magnetization of magnetic fluid at time t will not depend on the energy ratio at time t but  it will  depend 

on the time history of energy ratio up to the time t. 
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In sec.5, we take a numerical example and calculate magnetization of magnetic fluid using 

equations of the proposed memory model. 

In the last section we calculate magnetization of magnetic fluid by Langevin’s formula for the 

example of sec 5. It is found that the magnetization obtained by equations of memory model is more than 

that calculated by using Langevin’s formula. The increase in magnetization is the effect of memory 

acquired by the magnetic fluid.   

 

2. Mathematical Formulation of Elastic Solids with Memory given by Boltzmann. 

A class of materials for which the load-deflection relationship is linear but this linear relationship 

depends on a third  parameter, the time,  possess memory. For these materials, the present state of 

deformation cannot be determined completely unless the entire history of loading is known. 

Mathematically, the load-deflection relationship for these materials can be written as [1]. 

u(t) = c(t) F(t),                                                                                       (2.1) 

Where u(t) is the elongation produced by the time varying force F(t) and c is the constant of proportionality 

and is supposed to be a function of time. 

If a simple bar fixed at one end is subject to a time varying force F(t) in the direction of the axis at the 

other end, then in a small time interval dτ at time t = τ, the increment in loading is ( )d𝜏 at 𝑡 = 𝜏. 

 .  This increment remains active on the bar and contributes an element du(t) to the elongation at 

time t, with a proportionality constant c depending on the time interval  (t-τ.) Hence 

                                                                         du(t) = c(t - τ)F՛( τ) dτ,                                               (2.2) 

 where F՛(τ) denotes derivative of F(τ).                                        

Integrating this, we get 

u(t) = ∫
𝑡

0
 𝑐(𝑡 − 𝜏) F՛( 𝜏) 𝑑𝜏 ,  where t=0 is the time at which force F(t) starts acting.                     (2.3) 

If F(t)=I(t), the unistep function then eq (2.3) gives  

u(t)=c(t) 

Thus, physically the constant of proportionality c(t) in eq (2.1) is the elongation produced by application 

of the force F(t)=I(t) at time t=𝜏. 

                                                                                       

3. Langevin’s Approach to find Magnetization of Magnetic Fluid 

Magnetic fluid is a colloidal suspension of magnetic nano particles in a liquid carrier. The 

important property of this fluid is that it can be made to flow by applying magnetic field and its flow can 

be controlled by controlling the magnetic field. Because of this peculiar property, this fluid finds many 

applications in technology including Nanotechnology and Biomedical applications. Hence  in-depth study 

of its properties is necessary. The first author of this paper has published papers on Magnetic fluid 

properties and other areas[3-5].  

In this section we summarize Langevin’s approach[1] to find magnetization of magnetic fluid. In 

the absence of an applied magnetic field the magnetic particles of magnetic fluid are randomly oriented 

and the fluid has no net magnetization. When a magnetic field is applied, the magnetic particles try to 

align with the field. This tendency of alignment is overcome by thermal agitation. The Probability p(ϴ) 

that magnetic particle has orientation ϴ is proportional to Boltzmann factor [2] and is given by 

p(ϴ) = c𝑒−𝛼(1−𝑐𝑜𝑠𝛳 )            (3.1) 

Where c is constant of proportionality and α is energy ratio given by 
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 α = 
𝑚𝐻

𝑘𝑇
                                                                                                                                        (3.2) 

Where m is the magnetic moment of the magnetic particles, H is the applied magnetic field, k is 

Boltzmann’s constant and T is absolute temperature. 

The number of particles lying in the configuration space between ϴ and ϴ + dϴ is given by [2] 

 n(ϴ)dϴ = 
𝑁

2
𝑠𝑖𝑛𝛳 . 𝑐𝑒−𝛼(1−𝑐𝑜𝑠𝜃 ) 𝑑𝛳                                                                                      (3.3) 

 

The constant of proportionality c must satisfy the condition 

 ∫
𝜋

0
𝑛(𝜃) 𝑑𝜃 = 𝑁                                                                                                                            (3.4) 

Where N is the total number of magnetic particles in the magnetic fluid. 

Using the condition (3.4), we get 

 c = 
2𝛼

1− 𝑒−2𝛼              (3.5)   

In Langevin’s work, magnetic fluid is subject to a constant magnetic field H at a given absolute 

temperature T. Hence the energy ratio α (given by equation (3.2)) is constant. This implies that the constant 

of proportionality c given by equation (3.5) is also constant. Hence, according to Boltzmann, Langevin’s 

approach to find magnetization of magnetic fluid does not involve the memory concept. 

 The effective dipole moment of a particle is its component along the field direction and is equal 

to mcosϴ. Langevin calculated average value  of mcosϴ by using the formula 

  = ∫
𝜋

0
𝑚 𝑐𝑜𝑠𝜃 𝑛(𝜃) 𝑑𝜃/ ∫

𝜋

0
𝑛 (𝜃) 𝑑𝜃 

and obtained 

  = mL(α)                                                                                                                            ….(3.6) 

Where L(α) denotes Langevin’s function and is given by 

 L(α) = cothα - 
1

𝛼
            (3.7) 

 The magnitude of magnetization M of the magnetic fluid is the total of the effective dipole 

moments of the magnetic particles in its unit volume and is given by 

 𝜇0M = n             (3.8) 

Where is given by equation (3.6) and n is the number of magnetic particles per unit volume of the 

magnetic fluid. The direction of magnetization  is in the direction of the applied magnetic field. 

 

4. Memory Model for Magnetization of Magnetic Fluid 

 As explained in sec. 3, when magnetic fluid is subject to constant (independent of time) magnetic 

field H(t) at a given absolute temperature T, its magnetization does not involve memory. But if the applied 

magnetic field H and/or the absolute temperature T are functions of time t, the energy ratio α is a function 

of time. Hence the constant of proportionality c (given by eq. 3.5)and appearing in the (eq. 3.1) for the 

probability of orientation ϴ of magnetic particles also becomes function of time t. According to Boltzmann 

[1] this implies that probability of orientation ϴ is a memory function of time t. That is, probability of 

orientation of the particle at time t does not depend on the value of energy ratio α at time t but it depends 
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on the time history of energy ratio α. In the proposed memory model for magnetization, magnetic fluid is 

subject to magnetic field Ht at a given absolute temperature 𝑇0. Hence the energy ratio α becomes a 

function of time t and we denote it by 𝛼1. Thus,  

  𝛼1 = mH(t)/k𝑇0                                                                                                         (4.1) 

The eq. (3.1) for probability of orientation ϴ of magnetic particle in magnetic fluid modifies to  

  𝑝1(ϴ) = 𝑐1(t).𝑒−𝛼1(1− 𝑐𝑜𝑠𝜃)                                                                                               …(4.2) 

 

Where, 𝑐1(t) is the constant of proportionality and is obtained by using the condition given by eq.3.4.  

Using this condition, we get  

   𝑐1(t) = 
2𝛼1

1− 𝑒−2𝛼1
                                                                                                 …(4.3) 

 

The change in probability 𝑝1(ϴ) of orientation ϴ of the magnetic particle at time t=τ in a small time 

interval dτ is  

   d𝑝1(ϴ) = 𝑐1(t – τ) [
𝑑

𝑑𝑡
𝑒−𝛼1(1− 𝑐𝑜𝑠𝜃) ]𝑡=𝜏dτ 

    = 𝑐1(t - τ) [𝑒−𝛼1(1− 𝑐𝑜𝑠𝜃) .(𝑐𝑜𝑠 𝜃  - 1) 
𝑑

𝑑𝑡
𝛼1]𝑡=𝜏dτ                         …(4.4) 

 

On integrating this, we get probability of orientation ϴ at time t as  

  𝑝1(ϴ) = 𝑝0(ϴ) + (cos ϴ -1) ∫
𝑡

0
𝑐1(𝑡 −  𝜏) 

[[𝑒𝛼1( 𝑐𝑜𝑠𝜃−1) (
𝑑

𝑑𝑡
𝛼1)]𝑡=𝜏dτ                             …(4.5) 

 

Where 𝑝0(ϴ) is the probability of orientation ϴ at time t=0. If at time t=0, the applied magnetic field is 0 

then 𝑝0(ϴ) = 1.  

 

 The number of particles lying at time t in the configuration space between ϴ and 𝛳 + 𝑑𝛳 is given 

by [2] pp.(56-57). 

  𝑛1(ϴ) dϴ = 
𝑁

2
 (sin ϴ).𝑝1(ϴ) dϴ                                                                                       …(4.6) 

Where, N is the total number of magnetic particles in magnetic fluid and 𝑝1(ϴ) is given by eq. (4.5). 

 

 The average value of effective dipole moment mcosϴ of a magnetic particle along the field is  

  1 = 
∫

𝜋
0

𝑚𝑐𝑜𝑠𝛳 .𝑛1 (𝛳) 𝑑𝛳

∫
𝜋

0 𝑛1(𝛳) 𝑑𝛳
 = 

∫
𝜋

0 𝑚𝑐𝑜𝑠𝛳 .𝑛1(𝛳) 𝑑𝛳

𝑁
                                                                        …(4.7) 

Where 𝑛1(ϴ) dϴ is given by eq. (4.6) and 𝑝1(ϴ) is given by eq. (4.5). 

 The eq. (3.8) for magnetization of magnetic fluid modifies to  

  𝜇0M = n

1                                                                                                                                  …(4.8) 
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Where, n is the number of magnetic particles per unit volume of the magnetic fluid and 1 is given by eq. 

(4.7). 

 

5. Illustrative Numerical Example 

 In this section we calculate magnetization of magnetic fluid at time t=4 sec. The magnetic fluid is 

subject to time-varying magnetic field and equations of the memory model derived in section 4 are used 

to calculate magnetization of the magnetic fluid. The integrals involved in the equations are calculated by 

using Simpson’s one third rule. 

 We write the energy ratio 𝛼1 given by eq. (4.6) as 

  𝛼1 = 
𝑚

𝑘𝑇0
 H(t) = λH(t) ,                                                                                                 …(5.1) 

Where, 

                             λ= 
𝑚

𝑘𝑇0
                                                                                                                                       … 

(5.2) 

If we take 

  H(t)=
1

2𝜆
𝑡2 ,                                                                                                                   … (5.3)            

Then 

  𝛼1= 
1

2
𝑡2                                                                                                                                     … 

(5.4)    

Substituting for  𝛼1 from eq. (5.4) in eq. (4.3) we get 

  𝑐1(t) = 
𝑡2

1−𝑒−𝑡2                                                                                                                           … 

(5.5) 

 

From eq. (5.3), the applied magnetic field H(t) at time t=0 is zero. Hence 

  𝑝0(ϴ) = 1                                                                                                                       … . 

(5.6) 

Using eq. (5.6), eq. (5.4) and eq. (5.5) in eq. (4.5), we get 

  𝑝1(ϴ) = 1 + (cosϴ -1) ∫
𝑡=4

0
𝐹(𝜏)dτ                                                                                  … 

(5.7) 

Where, 

  F(τ) = 
𝜏(𝑡−𝜏)2

1− 𝑒−(𝑡−𝜏)2 𝑒
1

2
(𝑐𝑜𝑠 𝜃−1 )𝜏2

                                                                                         … 

(5.8) 

By Simpson’s one third rule 

  ∫
4

0
𝐹(𝜏)𝑑𝜏 = 

1

3
[ {F(0) + F(4)} + 4{F(1) + F(3)} + 2F(2)]                                          …(5.9) 

Substituting the values of F(0), F(4),…. In eq. (5.9), we get 

  ∫
4

0
𝐹(𝜏)𝑑𝜏 = 

4

3
 [  𝑎1 𝑒

1

2
(𝑐𝑜𝑠 𝜃−1 ) +  𝑎2 𝑒

9

2
(𝑐𝑜𝑠 𝜃−1 )

+ 

𝑎3 𝑒
2(𝑐𝑜𝑠 𝜃−1 )]                                                        … (5.10) 

Putting this in eq. (5.7), we get 
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  𝑝1ϴ = 1 + 
4

3
 (cos 𝜃 -1)[    𝑎1 𝑒

1

2
(𝑐𝑜𝑠𝑐𝑜𝑠 𝜃−1 ) +  𝑎2 𝑒

9

2
(𝑐𝑜𝑠 𝜃−1 )

+ 𝑎3 𝑒
2(𝑐𝑜𝑠 𝜃−1 )]                         

   … (5.11)          

Where,  

  𝑎1  = 
9

1−𝑒−9
 = 9.001 

  𝑎2  = 
3

1−𝑒−1
 = 4.745 

  𝑎3  = 
4

1−𝑒−4
 = 4.0746 

 

 The number of particles in the configuration space between ϴ and ϴ+dϴ at time t=4 is 

  𝑛1(ϴ)dϴ = 
𝑁

2
 (sin ϴ).𝑝1(ϴ) dϴ                                                                               … (5.12) 

Where 𝑝1(ϴ) is given by eq. (5.11). 

The average value of the effective dipole moment of a magnetic particle along the field is  

 

1  = 
∫

𝜋
0 𝑚𝑐𝑜𝑠𝜃 .𝑛1(𝜃)𝑑𝜃

∫
𝜋

0 𝑛1(𝜃)𝑑𝜃
 = 

∫
𝜋

0 𝑚𝑐𝑜𝑠𝜃 .𝑛1(𝜃)𝑑𝜃

𝑁
                                                                                …(5.13) 

Substituting for n1(ϴ)dϴ from eq. (5.12), writing ∫
𝜋

0
n1(𝜃)𝑑𝜃 = N, the total number of particles in the 

magnetic fluid, eq. (5.13) can be written as 

 1  = 
𝑚

2
∫

𝜋

0
𝐹1 (𝛳)𝑑𝛳  ,                                                                                                          …(5.14) 

Where,  

 𝐹1(ϴ) = sinϴ cosϴ [ 1 + 
4

3
(𝑐𝑜𝑠𝛳 − 1){9.001 𝑒

1

2
(𝑐𝑜𝑠𝜃−1)

 + 4.745 𝑒
9

2
 (𝑐𝑜𝑠𝛳−1)

 + 4.0746 𝑒2(𝑐𝑜𝑠𝜃−1)}] 

                                                                                                                                                             …(5.1

5) 

Using Simpson’s one-third rule 

  

 ∫
𝜋

0
𝐹1 (𝛳)𝑑𝛳   = 

𝜋

12
 [(𝐹1(0) + 𝐹1(𝜋)) + 4(𝐹1(

𝜋

4
) + 𝐹1(

3𝜋

4
)) + 2 𝐹1(

𝜋

2
)] 

   = 3.505                                                                                                    …(5.16) 

 

Putting this in eq. (5.14), we get 

  1 = 1.752m                                                                                                          …(5.17) 

 

 Substituting for 1from eq. (5.17) in eq. (4.8), we get magnetization of magnetic fluid as 

  µ0M = n 1=(1.752m)n                                                                                                   …(5.18) 

Where n is the number of magnetic particles per unit volume of the magnetic fluid. 
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6. Comparison of the value of magnetization obtained by the proposed memory model and the value 

obtained by Langevin’s Formula  

 In the previous section, we calculated magnetization of magnetic fluid using the memory model. 

The magnetization of magnetic fluid at time t=4 sec. was found to be 

µ0M = (1.752m)n                                                                                                                    …(6.1) 

 If we calculate the magnetization of magnetic fluid using Langevin’s formula for the applied 

magnetic field given by eq. (5.3), the energy ratio 𝛼1 given by eq. (5.1) at time t=4sec is  𝛼1 = 8. Hence 

the average value  of the effective dipole moment given by Langevin’s formula is = mL(α)= 0.875m 

Hence the magnetization of the magnetic fluid is 

 µ0M = (0.875 n)m                                                                                                                         …(6.2) 

Where, n is the number of magnetic particles per unit volume of the magnetic fluid. 

Thus, the magnetization of magnetic fluid obtained by using a memory model is more than that calculated 

by Langevin’s formula. This is the effect of memory acquired by the magnetic fluid (when a time varying 

magnetic field is applied to magnetize the fluid). The magnetic fluid remembers how the magnetizing field 

is changing and its response (magnetization of the magnetic fluid) is based on the time history of the 

magnetizing field. 
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