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Abstract: 

Creative approaches are essential to fight against bacterial infections while the worldwide issue of 

antibiotic resistance keeps growing. To combat the persistent biofilms that bacteria create, which are a 

major reason for treatment failure, this study presents a novel Antibiofilm Marvel (ABM). We provide an 

in-depth analysis of the makeup and mode of action of ABM, demonstrating its capacity to rupture and 

destroy biofilms, increasing the sensitivity of bacteria to traditional antibiotics. Furthermore, the work 

demonstrates the synergistic impact of ABM when used with currently available antibiotics, leading to a 

significant recovery in antibacterial efficacy. The present work highlights the need to prioritize biofilm-

targeted strategy in the battle against antibiotic resistance and provides a possible path forward for the 

development of next-generation antibacterial medicines. An important turning point was the introduction 

of ABM. This review article is focusing on the various antibiofilm agent (synthetic, chelating agents, and 

antibiotics) along with their mechanisms of inhibition (AHL-mediated quorum sensing inhibition, 

Extracellular Polysaccharide Substance of Biofilm Dispersion by Enzymes, Inhibition of biofilm by 

polysaccharides, Inhibition of cell division and survival, Cleavage of peptidoglycan, Inhibition of c-di-

GMP signaling system, Neutralization or disassembly of lipopolysaccharides) This article updates the 

recent findings on the other active antibiofilm agents.  
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Introduction  

It is quite likely that pathogenic bacterial or fungal species are present in biofilms. These may target 

receivers who are immunocompromised, among other people. These infections can also cause food 

poisoning (S. aureus, Bacillus cereus) or contribute to disorders like gastroenteritis (Escherichia coli, S. 

enterica). The increased durability of biofilms to chemical disinfection, human immunological response, 

and anti-microbial treatment presents another difficulty. Because of all these difficulties, biofilms are 

becoming a major worry in clinical, industrial, and environmental settings. Despite much investigation, 

no antibiotic or antimicrobial agent has been created to date to remove or treat biofilms [1,2]. Given this, 
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scientists throughout the world are left with little choice but to find novel ways to prevent the growth of 

biofilm or to create a more advanced class of natural antibiotics. In this regard, it is well known that 

phytochemicals exhibit anti-microbial and anti-biofilm properties against a wide range of pathogenic 

species. Because of their multi-targeted nature, they may be crucial in slowing the emergence of drug 

resistance [3]. The purpose of this study was to determine if sulfated polysaccharides derived from green 

algae could effectively combat biofilms generated by Vibrio harveyi and Salmonella enterica. By using 

the agar cup diffusion assay with increased concentrations of Cr-SPs, it was demonstrated in this study 

that Cr-SPs exhibited effective anti-microbial activity against both S. enterica and V. harveyi.  

There was a gradual increase in the clear zones, indicating that Cr-SPs are effectively inhibiting the growth 

of both S. enterica and V. harveyi. Furthermore, the time-kill experiment demonstrated that beginning at 

3 hours, bacterial growth was gradually reduced with increasing doses of Chlamydomonas Reinhardtian 

(Cr-SPs), and total growth suppression was shown from 12 hours to 48 hours respectively [4]. 

The term "biofilm" describes complex communities of microorganisms that are tightly embedded in an 

extracellular matrix (ECM) and can be found hanging to a surface or forming aggregates without adhering 

to a surface, as shown in Pseudomonas aeruginosa, Staphylococcus aureus, and some other bacteria [5-7]. 

The bacteria can survive harsh environmental circumstances including hunger and desiccation because of 

their biofilm lifestyle, which also enables them to cause a variety of chronic illnesses. For patients with 

weakened immune systems, it is thus thought to be a significant contributor to recurring nosocomial 

infections [8, 9]. Approximately half of all nosocomial infections are limited to patients who have 

indwelling medical devices, such as cardiac pacemakers, joint prostheses, contact lenses, dentures, and 

prosthetic heart valves [10,11]. Bacterial cells may attach themselves perfectly to these foreign 

body surfaces. Consequently, the presence of implants has been linked to a notable increase in biofilm 

production [12]. Many times, using antibiotics such as imipenem, colistin, and others only results in a 

reduction of the biofilms—they cannot completely eradicate the biofilm. It is impossible to achieve the 

minimum concentration of antibiotics in vivo due to their toxicity and adverse effects. Antibiotic therapy 

has consequently become less effective due to the elevated minimum inhibitory concentration (MIC) and 

minimum bactericidal concentration (MBC) values for the biofilm bacterial cells [13–15]. 

Additionally, biofilms shield invasive bacteria from the host's immune system by preventing phagocyte 

and complement system activation [16–18]. They also boost the bacterium's resistance to standard 

antibiotics by a factor of 1000 [19-24]. This antimicrobial tolerance could be explained by a few more 

reasons. Previous experiments have identified several causes for the resistance, including the composition 

and structure of the biofilm, the availability of nutrients and oxygen to the bacterial cells, and the presence 

of both innate and acquired bacterial resistance. A study on P. aeruginosa revealed the role of biofilm in 

resistance, as the mucoid structure of the biofilm was found to be responsible for high resistance against 

tobramycin [25]. 

Another possible cause of antibiotic resistance in biofilm-associated bacteria is their metabolic status. 

Because they divide so seldom, bacteria in the nutrient-depleted zones of the biofilm may enter a dormant 

condition similar to that of the stationary phase, rendering them resistant to antibiotics [26, 27]. Because 

dividing cells are susceptible to some antibiotics, such as beta-lactams, they should not be used. According 

to Walters et al., P. aeruginosa showed evidence of antibiotic resistance in the presence of restricted 

oxygen supply, with antibiotics only working at the air-biofilm interface (the portion of the biofilm 

exposed to oxygen, which is between 50 and 90 μm in length) [28]. Furthermore, research shows that 

when biofilm is exposed to a sub-lethal concentration of an antibiotic, the rate of mutation in biofilm cells 
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is higher than in planktonic counterparts, which increases the efficiency of plasmid (including antibiotic 

resistance gene) transfer by ten times [29]. 

❖ Process of Biofilm Formation  

On every surface, the production of biofilms primarily occurs in three phases. Cells adhere to a surface in 

the first stage, assemble to create microcolonies, and then differentiate into a mature structure called a 

biofilm. Both mechanical and active techniques are used to disassemble or disperse biofilm once it has 

finished developing [31]. While Lifshitz–Van der Waals, acid–base, hydrophobic, and electrostatic contact 

forces control bacterial adherence to the substratum, sedimentation, Brownian motion, and hydrodynamic 

forces specifically influence bacterial deposition [32]. The development of biofilms, especially during the 

early attachment phases, is aided by some surface-related proteins, including Outer membrane protein A 

(OmpA), fibronectin-binding proteins, protein A, SasG, biofilm-associated protein (BAP), and several 

other elements [33-37]. 

Certain species may anchor themselves to the matrix or to the previous colonies directly, but they are 

unable to adhere to a surface. Cell-cell communication networks work with small signaling molecules to 

facilitate this invasion. Most people refer to this phenomenon as "quorum sensing" [38,39]. Quorum-

sensing controlled phenotypes include biofilm development [40]. Bacterial cells in biofilms are encased 

in an extracellular matrix, a complex combination of highly polar biomolecules comprising proteins, 

polysaccharides, lipids, and nucleic acids [41].  

The matrix offers defense against antimicrobial exposure and immune cell assault, among other stressors. 

But the antibacterial ingredient is not mechanically protected by the biofilm's matrix. This was verified by 

a study that demonstrated ampicillin could penetrate the biofilm formed by a K. pneumoniae strain lacking 

β-lactamase, while ampicillin was unable to do so in a wild-type strain of the bacteria that had β-lactamase 

[42]. This suggests that in the latter case, ampicillin was quickly broken down by β-lactamase prior to 

infiltrating the wild type biofilm. As soon as the bacteria begin to secrete extracellular polysaccharide 

material (EPS), the second, irreversible stage of biofilm creation begins. Up to the third stage of 

development, EPS is continuously secreted, guaranteeing that bacteria can safely adhere to the surface 

inside of a densely packed biomolecular layer [43]. 

The fully developed biofilm now has a three-dimensional, tower-like structure. These towers are made up 

of tiny channels that transport waste, water, and nutrients. The planktonic bacteria are housed in the towers' 

tiny cavities. Studies also show that various bacteria have quite varied biofilm architectures and 

organizational systems. The precise cause of this mutation is yet unknown. On the other hand, 

exopolysaccharides Pel and Psl control the development of biofilms in other pseudomonads, such as P. 

aeruginosa [47–49], whereas the adhesive protein LapA controls the formation of biofilms in P. putida 

[44–46].  

Therefore, differences in the extracellular matrix (ECM) component may be the cause of the variations in 

biofilm structure. Eventually, the holes holding bacteria that are not adhered to the surface are emptied 

when these towers either erode (small portions) or are sloughed off (big areas) and become detached. The 

discharge of new germs into the environment comes next [50, 51]. Increases in c-di-GMP levels, an 

intracellular secondary messenger, signal the start of biofilm formation and virulence in a number of 

bacterial species, including Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas fluorescens, 

Yersinia pestis, Escherichia coli, Vibrio cholerae, Burkholderia cenocepacia, Salmonella enterica, 

Clostridium difficle, Klebsiella pneumoniae, Vibrio cholerae, and Bacillus subtilis [44, 45, 52-60]. c-di-

GMP was first discovered as a distinct secondary messenger upon allosteric activation of cellulose 
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synthase in Gluconacetobacter xylinus [59]. By attaching to a variety of receptors, such as enzymes, 

adaptor proteins, transcription factors, and riboswitches, c-di-GMP performs its role [62]. Different c-di-

GMP circuits include the participation of various bacterially produced phosphodiesterases and diguanylate 

cyclases [63]. Additionally, it has been documented that a variety of environmental stimuli and transducer 

processes raise the cell's cdi-GMP level. This promotes the synthesis of adhesins and facilitates the 

extracellular matrix's secretion [64, 65]. The formation of extracellular matrix components in P. 

aeruginosa, including CdrA adhesin, alginate exopolysaccharide, Pel, and Psl, is favorably regulated by 

the amount of c-di-GMP [55, 66]. Small regulatory RNAs (sRNA) also control the development of biofilm 

in a number of bacterial species in addition to c-di-GMP [67]. 

 

❖ Models to Study Biofilms   

Biofilm model study: The understanding of biofilm biology is improved by the study of many biofilm 

model systems. Both in-vivo and in-vitro model systems are used to study the biofilms. There are three 

main categories of in-vitro biofilm model systems: microcosms, open or dynamic models, and closed or 

static models. Microtitre plate-based closed model systems are the most widely used closed model systems 

which employ batch and static growth conditions,[68]. Because there is no movement of media, product, 

or waste materials into or out of the reactor in this model, the experimental circumstances in the wells 

progressively change. For example, signalling components accumulate, the bacterial population grows, 

and the medium's nutrients eventually run out. 

Many tests may be run simultaneously because it is affordable and just requires a modest number of 

reagents [69]. Furthermore, biofilm deficient mutants and biofilm-forming wild type strains can be 

distinguished using microtitre plate-based models [70, 71], the antimicrobial and anti-biofilm effects of 

various antimicrobial compounds can be ascertained, and biofilm initiation factors, including adhesins, 

pili, flagella, enzymes involved in cyclic-di-GMP metabolism, and genes responsible for extracellular 

polysaccharide production, can be identified [72, 73]. 

The flow displacement biofilm model is the most widely used open and dynamic model for studying 

biofilms. In this model system, addition and release of nutrients and waste products can happen, in contrast 

to the microtitre plate approach [68, 74]. Since it closely mimics in-vivo circumstances, the dynamic 

model of biofilm development utilizing perfused silicone tubes is one of the most useful models for 

investigating biofilms. In a silicone tube system, biofilms are created under dynamic conditions, and then 

the tube is broken into small pieces for additional research and treatment [75].   

Another in-vitro model system for investigating biofilms that replicate in-situ conditions in a controlled 

setting is the microcosm [76–78]. This system is used to examine dental, wound, oral, and stream biofilms. 

By utilizing the same medium and constructing an artificial environment, it is possible to transform both 

in-vitro and in-vivo systems into microcosms in order to evaluate the behavior and metabolism of the cells. 

In addition, there is an ex-vivo model system that works with organs and tissues taken from living things 

for additional research and testing in a lab setting. This approach can be helpful in tracking the colonization 

and spread of germs within a certain tissue or organ. There should be some in-vivo model system research 

conducted to validate the simplified results that the in-vitro model studies produced. 

Mammalian 8 models that are closer to humans must be studied to address a variety of therapeutic and 

diagnostic issues. The primary topics of investigation for these tissue-associated model systems include 

wound infections, urinary tract infections, and lung infections [72, 79]. The study of these infections has 

made use of a variety of other models, including those for central venous catheters, subcutaneous foreign 
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body infections, intraperitoneal foreign body infections, urinary tract infections, infections of the ear, nose, 

and throat, respiratory tract infections, and osteomyelitis infections [72]. Due to some challenges with 

using mammalian models, researchers have shifted to using non-mammalian model systems, such as 

Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans [80]. 

These model's shorter generating times and cheaper costs are their main advantages. Furthermore, because 

of their tiny sizes, they are simple to maintain in microtitre plates, which facilitates high throughput 

screening for the development of biofilms. 

 

❖ Anti-biofilm agents and their mechanism of action 

The term "anti-biofilm molecules" refers to a group of compounds that have been identified as having the 

ability to inhibit the formation of biofilms. These compounds have been primarily isolated from natural 

sources [108], but they can also be synthetic, chelating agents, and antibiotics. The various anti-biofilm 

molecules and the microorganisms they target are listed in table 1. The various anti-biofilm molecules, 

along with their mechanisms of inhibition, are listed in table 2. 

Table-1: antibiofilm agents and their target 

S.No. Antibiofilm agents  Sources  Their targets  References  

1. Epigallocatechin gallate 

(EGCG) 

Camellia sinesis 

(Green tea) 

Acinetobacter baumannii, 

Pseudomonas aeruginosa, 

Staphylococcus aureus, 

Escherichia coli 

154 

2. Ellagic acid  Camellia sinesis Streptococcus dysgalactia 149 

3. Reserpine  Rauwolfia 

vomitoria, 

Rauwolfia 

serpentine 

Klebsiella pneumoniae 155 

4. Polymyxin B  - P. aeruginosa, S. aureus, 

E. coli 

157 

5. Berberine  Berberis aquifolium, 

B. vulgaris, B. 

aristata 

K. pneumoniae 155 

6 Chitosan Chitin K. pneumoniae 155 

7 Eugenol Ocimum plants, 

Syzigium 

aromaticum 

K. pneumoniae 155,156 

8 Curcumin Curcuma longa K. pneumoniae 155 

9 Lantibiotics:  

Nisin  

Subtilin  

Epidermin  

 

Lactococcus lactis 

B. subtilis strain 

ATCC6633 

Staphylococcus 

epidermidis Tu3298 

S. aureus, Staphylococcus 

epidermis 

Lactococcus lactis 

Lactococcus lactis 

159,160 
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 Gallidermin  Staphylococcus 

gallinarum Tu3928 

S. aureus  

S. epidermidis  

159,160 

10 Antimicrobial peptide 

(AMP):  

LL-37  

Human cationic host 

defense peptide 

P. aeruginosa, S. aureus, 

E. coli 

157,158, 

164-166 

11 Lytic peptide (PTP-7) Synthetic analogue 

from Gaegurin 5 

P. aeruginosa, S. aureus, 

E. coli 

157,158, 

164-166 

12 Sushi peptides Derived from sushi-

3 domain of Factor 

C, which is a LPS-

sensitive serine 

protease of 

horseshoe crab 

coagulation cascade 

P. aeruginosa, S. aureus, 

E. coli 

157,158, 

164-166 

13 Chelating agents:  

(a)Sodium citrate  

(b)Tetrasodium EDTA 

 (c) Disodium EDTA  

- Staphylococcus species, 

P. aeruginosa 

158 

14 Enzymes: 

Deoxyribonuclease I,  

glycoside hydrolase 

(dispersin B)  

- Staphylococcus and 

Enterococcus 

158,177 

15 Silver  - P. aeruginosa, S. 

proteamaculans 

109 

 

Table 2- Mechanisms of action of different Anti-biofilm agents 

S.No. Mechanism of action Agents associated  References  

1 Cleavage of peptidoglycan  

 

Tannic acid, Endolysins (PlyC), 

Epigallocatechin gallate (EGCG) 

123, 127, 136 

2 Biofilm disassembly A cyclic autoinducing peptide 

(AIP), Nuclease, extracellular 

proteases (eg. sarA, sigB, Esp), 

antiamyloid molecules (AA-861, 

parthenolides), D-Tyrosine, 

Ethyl-pyruvate 

75, 171, 172, 174 

3 Neutralization/disaggregation of 

LPS 

Polymyxin (B and E), 

Gramicidin S, Sushi peptides, 

PMAP-23 

118, 121, 158 

4 Inhibition of AHL-mediated 

quorum sensing pathway  

 

Halogenated furanone 

compounds, Quercetin 

81 
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5 Inhibition of (p)ppGpp regulated 

stringent response 

Peptide-1018, Peptide-1038 175, 176 

6 Dispersion of Extracellular 

Polymeric Substance (EPS) of 

biofilm 

Deoxyribonuclease I and 

glycoside hydrolase dispersin B 

157 

7 Alteration of membrane 

permeabilization 

Lantibiotics  

(Nisin, gallidermin), Lytic 

peptides (PTP-7), Sophorolipids, 

Polyhexamethylene biguanide, 

Chlorhexidine, Penta silver 

hexaoxoiodate 

120, 161,162,163 

8 Inhibition of cell division or cell 

survival 

Pyrrhocoricin, Microcin B17 110,114 

9 Inhibition of macromolecule 

synthesis and adhesion of cells 

Buforin II, PR-39, Indolicidin, 

LL-37, Bacteriocins, Cadexomer 

iodine, Mannosides, Pilicides 

164-170 

10 Inhibition of biofilm by 

polysaccharides 

EPS273, Psl and Pel, K2, PAM 

galactan, A101, PslG, 

Polysaccharides of algae, plants 

and animals 

96,97,99,100,102,107 

11 Inhibition of c-di-GMP signaling 

system 

LP 3134, LP 3145, LP 4010, LP 

1062, ebselen, ebselen oxide 

Desformylflustra bromine 

139,140 

12 Inhibition of curli biosynthesis  Analogs of FN075 and BibC6 of 

ring-fused 2- pyridones 

132 

 

1. AHL-mediated quorum sensing inhibition 

Quorum sensing mediated by AHL inhibition During quorum sensing by many bacteria, particularly 

Gram-negative bacteria, employ N-acyl homo-serine lactones (AHLs) as signaling molecules to regulate 

their population density and promote motility during swarming. The lengths of these signaling molecules 

vary, and they are produced by a LuxI-type synthase with alterations on the acyl side chains [81]. The 

target gene's expression is regulated when these chemicals bind to a corresponding LuxR-type 

transcriptional activator protein at certain critical concentrations [82, 83]. The Australian macroalga Dilsea 

pulchra produces natural furanone, which is the source of the synthetic halogenated furanone chemical, a 

secondary metabolite derivative. This substance has the power to obstruct bacterial signaling pathways 

and swarm cell motility. Additionally, it was proposed that the structural similarity between AHL 

molecules and D. pulchra furanones influences how a putative regulatory protein interacts with AHL 

molecules by binding to the receptor in a competitive manner. At ecologically relevant concentrations, 

furanones suppress surface aggregation characteristics in bacteria that are relevant to the environment 

[84]. Furanone 56 inhibits the quorum sensing-regulated transcription of lasB-gfp (ASV) reporter fusion 

by reducing extracellular chitinase and elastase activity, while having almost little effect on bacterial 

growth or protein synthesis. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23068821 Volume 5, Issue 6, November-December 2023 8 

 

According to studies, furanone affects the regulation of genes linked to quorum sensing biofilm maturity 

by targeting the Ahl system, which is involved in quorum 12 sensing, and by penetrating P. aeruginosa's 

biofilm matrix. This chemical modifies the biofilm's structure, accelerating the pace at which bacteria 

detach from the substrate and causing the bacterium's biomass to be lost [81]. Furthermore, it was shown 

that furanone causes the displacement of AHL molecules from Lux R, indicating that furanone is 

competent to bind to the appropriate AHL signal for the LuxR receptor site. 

Currently, a number of experimental findings corroborate the findings regarding furanones. These include 

the suppression of bioluminescence expressed in response to AHL [85], the inhibition of the pathogenesis 

and synthesis of virulence factors controlled by AHL [81, 86], and the inhibition of luminescence regulated 

by quorum sensing [87].  

Certain polyphenols, such as ellagic acid, tannic acid, and EGCG, are thought to work through a similar 

mechanism to prevent the formation of biofilms; however, because they are less effective than furanones, 

larger concentrations of these polyphenols are needed [40]. 

Flavonoid functions as an anti-biofilm agent against S. aureus via influencing quorum sensing as well. It 

causes a concentration-dependent inhibition of alginate synthesis, which lowers adhesion during the 

development of biofilms. Additionally, it induces swarming movement and decreases the formation of 

exopolysaccharides (EPS), which are necessary for the first adhesion of bacteria [88]. In addition to 

quercetin, two more synthetic flavanoids have been discovered that have the ability to function as 

antibacterial agents against S. aureus biofilm and scattered cells [89]. 

According to a few other investigations, usinic acid may also have an inhibitory impact on the S. aureus 

biofilm and modify the shape of the P. aeruginosa biofilm. It is yet unknown exactly how exactly this 

interferes with quorum sensing, however researchers have speculated that this could be the case [90]. 

Curcumin is a phytochemical derived from the rhizome of Curcuma longa that has a strong antibiofilm 

impact by modifying the expression of genes linked to swarming motility and alginate formation, as well 

as quorum sensing [91]. 

 

2. Extracellular Polysaccharide Substance of Biofilm Dispersion by Enzymes 

The biofilm's Extracellular Polysaccharide Substance (EPS) shields the microbes from several antibiotic 

substances. These substances would come into contact with the liberated biofilm cells as well as any 

leftover ones due to the disarray of the EPS. Exo-polysaccharides can be broken down by certain enzymes, 

including DNases and polysaccharide 14 lyases [92]. Similarly, the two main enzymes that can act as anti-

biofilm agents are DNase I and Dispersin B [93, 94]. Extracellular DNA (eDNA) included in the biofilm 

structure may be broken down by DNase I, while a glycoside hydrolase called Dispersion B breaks down 

polymers of β1-6 N-acetylglucosamine (PNAG), an extracellular polysaccharide that promotes bacterial 

aggregation. It can also spread the EPS layers found on medical equipment [143, 144]. When antimicrobial 

drugs are combined with these biofilm-dispersing enzymes, the bacteria established in the EPS are killed 

more effectively [95]. 

 

3. Inhibition of biofilm by polysaccharides 

Biofilms require extracellular polysaccharides as a fundamental component. It has recently been 

discovered that certain exopolysaccharides exhibit antagonistic effects on the production of biofilms. They 

can cause the produced biofilm to disperse in addition to inhibiting the production of new biofilms [96, 

97]. Exo-polysaccharide EPS273, derived from the marine bacteria P. stutzeri, has been shown in a recent 
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experiment to inhibit P. aeruginosa biofilm development by targeting virulence factors such as rhamnose, 

pyocyanin, and exoprotease. By interfering with the synthesis of pyocyanin, which in turn reduces the 

generation of H2O2, EPS273 eventually prevents the release of eDNA, which is necessary for the 

development of stable biofilms [98]. 

Additionally, this molecule is shown to decrease infection associated to biofilm in lung cells and zebrafish 

embryos. Furthermore, it functions as a strong antioxidant, which lowers superoxide and hydroxy radicals. 

Therefore, EPS273 can be used to combat P. aeruginosa, which causes nosocomial infections and food 

spoiling, in both the healthcare and food industries. Studies on its structure showed that EPS273 had traits 

common to polysaccharides. The main monosaccharide molecules of EPS273 are 35.4% glucosamine, 

28.6% rhamnose, 27.2% glucose, and 8.7% mannose. According to HPGPC analysis, this molecule has a 

molecular weight of 190 kDa [99]. There have also been reports of other different types of anti-biofilm 

polysaccharides. In dual-species biofilm in-vitro settings, Psl and Pel from P. aeruginosa PAO1 inhibit S. 

epidermidis' capacity to build biofilm [100, 101]. The E. Coli capsule's K2 polysaccharide and the K. 

kingae strains' PAM galactan control the biofilm architecture of their colonies by creating water channels 

or preventing the biofilm from spreading, respectively, suppressing the biofilm in response to their 

surroundings [102, 103]. P. aeruginosa biofilm is dispersed by another polysaccharide, A101 from V. 

cholerae QY101 [96]. It has also been found that PAM galactan, an exopolysaccharide from the biofilm 

of K. kingae, disperses the S. epidermidis biofilm [102].   

Only a few of these anti-biofilm polysaccharides can disperse biofilms in their early phases before they 

reach maturity, but most of them, particularly bacterial ones, exhibit broad-spectrum anti-biofilm action. 

In industrial and clinical settings, where antibiotic-resistant biofilms are a major cause of a range of 

nosocomial infections, various oligosaccharides or polysaccharides with antibiofilm capabilities can be 

employed. They can be used with existing antibiotics to lower the minimum dose needed to eradicate 

biofilms [96], as an adjuvant to reduce the risk of medical device-related infections [102–105], or as a 

means of delivering saccharide prebiotics with probiotics [106]. One of the most significant 

polysaccharides in P. aeruginosa biofilm matrix, Psl, is biosynthesized in part by another protein, PslG. 

According to studies, endogenous delivery of PslG disperses premade-developed biofilm and prevents 

biofilm development by targeting the Psl in the matrix. Structural investigation of PslG indicated that it is 

an endoglycosidase. Studies conducted in vivo have demonstrated that PslG therapy improves biofilms' 

sensitivity to antimicrobials and the host immune system [107]. 

 

4. Inhibition of cell division and survival 

The survival of bacteria in biofilms and their subsequent migration to new locations depend heavily on 

cell division. Silver builds up in intracellular vacuoles, causing damage to the plasma membrane and an 

adjustment in the electric potential that stops cell division [108, 109]. Certain antimicrobial peptides work 

by preventing cytoplasmic proteins from doing their job, which is essential for cell division and survival. 

These peptides enter the bacterial cytoplasm through the flip-flop mechanism or by creating a channel in 

the protein that makes up the outer membrane. Proline content is high in pyrrhocoricin, apidaecin, and 

drosocin, three antimicrobial peptides [110,111,112].  

All of these peptides can attach to the multi-helical lid region of the bacterial heat shock protein DnaK, 

which can obstruct the chromosomal DNA replication process at its beginning. Additionally, they obstruct 

the DnaK-DnaJ interaction, which results in bacterial mortality. Pyrrhocoricin enters the bacterial 

cytoplasm through the C-terminus, and the N-terminus is in charge of preventing the DnaK protein's 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23068821 Volume 5, Issue 6, November-December 2023 10 

 

ATPase function from becoming active [110]. Furthermore, proline-rich AMPs aggressively penetrate 

bacterial cells and obstruct the beginning of translation by binding to the ribosome tunnel [113]. An 

antibiotic peptide from Enterobacteriaceae called microcin B17 is produced ribosomally and inhibits DNA 

gyrase, which in turn slows DNA replication. This peptide is also the first to be able to block a type II 

DNA topoisomerase [114]. In addition, chelating chemicals such as EDTA can strengthen the cell wall, 

which in turn causes the biofilms to become unstable by retaining iron, zinc, magnesium, and calcium. 

They are hence appropriate for managing biofilms [115]. Because it is cationic, the natural polymer 

chitosan may break down negatively charged cell membranes as soon as microorganisms attach 

themselves to the surface [116]. 

 

5. Neutralization or disassembly of lipopolysaccharides  

A viable substitute for traditional antibiotics, the antimicrobial peptide (AMP) is thought to be a potent 

anti-biofilm agent. Low molecular weight proteins that have undergone evolutionary conservation and 

possess antibacterial properties against bacteria, viruses, and fungi are known as AMPs. They may 

penetrate the lipid bilayer and dissolve in an aquatic environment because they are typically positively 

charged and have both hydrophilic and hydrophobic sides [117]. Lipopolysaccharides (LPS) and 

antimicrobial peptides often bond electrostatically through the interaction of two cationic amino acids 

(lysine and arginine) and their corresponding head groups. The peptide's hydrophobic amino acids and the 

fatty acyl chains of LPS interact hydrophobically to stabilize the complex [118, 119]. This destabilizes the 

lipid head groups by causing numerous pore development, which compromises the integrity of the cellular 

membrane. PTP-7 is a synthetic counterpart of Gaegurin 5, a lytic peptide. Despite being a cationic 

peptide, large metal ion concentrations, negatively charged extracellular polysaccharides in the biofilm 

matrix, and acidic pH did not affect its action. Instead, it can efficiently destroy bacteria by penetrating 

deep into the biofilm [120]. Gram-negative bacteria's outer membrane becomes permeable when 

polymyxins, particularly polymyxin B (pentabasic decapeptide antibiotic) and polymyxin E (colistin), 

attach to lipid A of the LPS. Furthermore, Gramicidin S disrupts the integrity of both Gram-positive and 

Gram-negative bacteria's membranes. The precise targets that these two cationic cyclic peptides have in 

the cell membrane cause disruptions in the hydrophobic interactions at the enzymes' ligand binding sites. 

Toxicological improvement, structural analysis, and clinical testing have to be carried out in order to use 

it in a therapeutic setting [121]. Similarly, the way that sushi peptides, a by-product of Factor C (the 

horseshoe crab coagulation cascade's LPS-sensitive serine protease), break apart LPS aggregates is similar 

to that of detergents. They also exhibit LPS-neutralizing properties. With palmitoyl-oleoyl-

phosphatidylglycerol (POPG), they have extremely particular effects. The lipid bilayer is rendered more 

fluid by unsaturated POPG, which also promotes peptide entrance, so entirely upsetting the stability of the 

membrane [118, 122]. 

 

6. Cleavage of peptidoglycan 

The majority of bacteria's cell walls contain peptidoglycan, which may be broken down to prevent the 

formation of biofilms. In Staphylococcus aureus, the polyphenolic substance tannic acid prevents the 

production of biofilms while having no effect on bacterial growth [123]. It was discovered that the 

immune-dominant Staphylococcal Antigen A (IsaA), a potential lytic transglycosylase that cleaves 

peptidoglycan, is responsible for the mechanism of action [124]. The enzymes known as transglycolases 

resemble lysozymes and are responsible for breaking the β-1,4-glycosidic link that connects N-acetyl 
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muramic acid (MurNAc) to N-acetyl glucosamine (GlcNAc) [125]. By raising IsaA's extracellular level, 

tannic acid prevents the development of biofilms [123]. 

Peptidoglycan cleavage decreases the production of biofilms in a number of ways, including by changing 

the makeup of the proteins and teichoic acids on the cell wall. Additionally, signaling molecules that might 

control the expression of genes relevant to biofilms may be released as a result of peptidoglycan 

breakdown [126]. Bacteriophages are known to encode endolysins, a special type of peptidoglycan 

hydrolases that break down bacterial cell walls and release bacteriophage offspring [127]. Endolysins 

often have a species-specific mode of action. In the end, they connect to and break the cell wall, causing 

hypotonic lysis and bacterial death [128]. Multiple antibiotic-resistant strains can be treated with 

endolysins. A particular streptococcal bacteriophage endolysin known as PlyC [129–133] works by 

upsetting the in vitro biofilms. 

Understanding the microorganisms causing illnesses is necessary for this bacteriophage treatment since 

correct design of bacteriophages depends on this knowledge. Another chemical that inhibits bacteria is 

called epigallocatechin gallate, a polyphenol that binds to peptidoglycan to cause cell wall damage [134, 

135]. This interferes with the first docking phase of biofilm formation, which is mostly caused by 

hydrophobic contacts [136]. 

 

7. Inhibition of c-di-GMP signaling system 

There are three different types of bacteria: the planktonic state, which causes acute infections and is readily 

treated with the appropriate dosage of antibiotics; the biofilm state, which causes persistent infections and 

is more difficult to treat with antibiotics. The scattered state, a discrete step in the transition from the 

biofilm to the planktonic state, is the third type. Both the internal spread of diseases by biofilms inside 

hosts and the transfer of germs across hosts are facilitated by the process of dispersion. C-di-GMP, or 

cyclic di-GMP, is a secondary messenger involved in the production of biofilms. Changes to the c-di GMP 

signaling pathways in bacteria can affect how biofilms grow and spread in a clinical setting [137]. 

Bacterial cells reduce the quantity of c-di-GMP under stress situations like famine, nitrosative 

environments, etc. by activating phosphodiesterase, which causes the biofilm to disperse. This study also 

shown how the physiology and pathogenic potential of biofilm-dispersed cells differ significantly from 

those of biofilm and planktonic cells. Because distributed cells express more virulence-related genes at 

higher levels than biofilm and planktonic cells, they are shown to be more virulent against C. elegans and 

immune cells. The biofilm-dispersed cells exhibit decreased rsmY and rsmZ expression in addition to a 

decreased c- 24 di-GMP concentration, which results in poor siderophore synthesis by bacterial species 

[138]. Through their ability to chelate iron from the surrounding environment, siderophores have been 

discovered to play a role in preventing the development of biofilms by decreasing the survival of scattered 

cells. The dispersal-based anti-biofilm action is induced upon chemical administration. The injection of 

an antimicrobial agent is desired in addition to the dispersing agents since it would prevent the 

development and spread of the scattered cells, which can evade the macrophage-mediated phagocytosis. 

It is possible to completely remove the biofilm by combining an iron chelator with the dispersing and 

antibacterial agents [138]. The small molecules that prevent P. aeruginosa and Acinetobacter baumannii 

from forming biofilms include LP 3134, LP 3145, LP 4010, and LP 1062. Diguanylate cyclase (DGC) is 

the enzyme that causes the creation of c-di-GMP. There have been reports that all of these compounds 

prevent P. aeruginosa from spreading its biofilm. Of them, only two were non-toxic to eukaryotic cells 6, 

making them viable candidates for biofilm inhibition [139]. Other compounds that underwent tests 
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including the differential radial capillary action of ligand assay were also shown to be inhibitors of the 

allosteric binding of c-di-GMP. Administration of ebselen, a synthetic organoselenium medication, 

decreased DGC activity, and ebselen oxide hindered c-di GMP binding. Consequently, P. aeruginosa's 

ability to produce biofilm can be controlled by these two molecules [140]. 

Many pathogenicity-related bacterial characteristics, including virulence, acid tolerance, biofilm 

formation, and antibiotic resistance, are thought to be caused by the indole signaling route, which is 

regarded as one of the most significant signaling pathways [141–144]. According to research by Bunders 

et al., biofilm formation in S. aureus and E. coli is inhibited by derivatives of desformylflustra bromine 

(dFBr) through modification of the indole signaling pathway [145]. 

 

8. Molecules with unknown mechanism 

 
Figure 1: Structures of the antibiofilm molecules with unknown mechanism of action. 

 

a) Esculetin [146], b) Fisetin [147], c) Octenidine hydrochloride [148] 

The mechanism of action of several antibiofilm compounds is yet unknown, reports of their effectiveness 

are rather high. Biofilm inhibition has been seen for the secondary metabolites fisetin and esculetin. 

Biofilm thickness decreases as a result of esculletin treatment's impact on structural development. 

Nevertheless, fisetin decreases the thickness of the mature biofilm and also prevents the biofilm from 

forming, hence decreasing the area covered. Therefore, it is thought that fisetin is a more effective 

antibiofilm agent than esculetin [149].  While octenidine hydrochloride, a positively charged 

bispyridinamine, is also proposed as a potent anti-biofilm agent, its exact method of action is yet unknown. 

Empirical research indicates that this substance has promise as a sanitizer and antibacterial lock solution 

for both therapeutic and preventive purposes [150]. 

 

Conclusions and Future Prospective  

Bacterial biofilm production has been extensively researched and understood thus far. A major obstacle 

in the medical industry is the rise of severe biofilm infections and their resistance to antimicrobial therapy. 

The major sources of resistant bacteria include fruits, vegetables, dairy products, seafood, poultry 

products, farm animals, and people. Therefore, it is crucial to look into the best approaches to deal with 

this issue and identify an antibiotic substitute. Biofilm imaging methods have advanced significantly in 

response to today's enormous challenge. Three approaches that use super-resolution microscopy include 

fluorescence photo-activated localization microscopy (FPLAM), photo-activated localization microscopy 

(PLAM), and stochastic optical reconstruction microscopy (STORM) [151–153]. Compared to CSLM, 

they generate pictures with far greater resolution by using fluorescent proteins or probes. 

Therefore, it is possible to investigate biofilm more often using these approaches. In the search for a 

meaningful and potent biofilm-busting alternative, several anti-biofilm compounds are being discovered, 
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and alterations to the various quorum sensing-related signaling pathways are also being considered. 

Because the cyclic-di GMP (c-di-GMP) signaling pathway is absent in higher eukaryotes, it is a desirable 

target for the development of naïve anti-biofilm drugs. In addition to this, amyloids' function in bacterial 

biofilms has gained popularity. By reducing the adhesion of bacterial cells, targeting these amyloids has 

an impact on the development of biofilms [10]. The current study offers details on the many small 

compounds with anti-biofilm capabilities and their mechanisms of action. 

Each anti-biofilm molecule has a distinct method of action, but a single molecule may have more than 

one. For instance, EGCG can act by membrane rupture and peptidoglycan breakdown, or it can block the 

AHL-mediated quorum sensing pathway. A deeper understanding of the nature of biofilms is possible 

with knowledge of the mechanism of action, which may then be used to the development of novel, 

effective therapeutic molecules that have the previously identified target of action. The previously known 

medications' effectiveness may improve as a result. This can be accomplished by appropriate modification 

or combinatorial treatment, which increases the action of the antibiotics by combining a robust anti-biofilm 

agent with a previously reported less effective medication against bacterial infections [108]. 
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