International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Kinetic Equations for Time Correlation Functions Mori-Zwanzig Chain

Samir Alghannay
Physics Department, Faculty of Science, Benghazi University, Benghazi Libya

Abstract:

In a number of problems, it is more convenient to follow the evolution of the dynamic variable $A(t)$ in time t of an instantaneous fluctuation

$$
\delta A_{0}(t)=A(t)-<A_{0}(t)>
$$

where the brackets $\langle\cdots\rangle$ denote the statistical averaging over the equilibrium Gibbs ensemble

$$
<A(t)>=\int d \Gamma_{N} f_{N}^{(0)}\left(\Gamma_{N}\right) A\left(\Gamma_{N}: t\right)
$$

and arrive at an infinite chain of linking kinetic equations.
Keywords: fluctuation, Gibbs ensemble, Lioville equation, correlation, split operator

INTRODUCTIO

In the absence of an explicit time dependence, $\delta A_{0}(t)$ obeys the Liouville equation

$$
\begin{equation*}
\frac{d \delta A_{0}(t)}{d t}=i \hat{Z} \delta A_{0}(t) \tag{1}
\end{equation*}
$$

with a formal solution

$$
\begin{equation*}
\delta A_{0}(t)=\exp (i \hat{z} t) \delta A_{0} \tag{2}
\end{equation*}
$$

THEORITICAL APPROACH

Knowledge of (2) is difficult, and gives limited information about the behavior of the fluctuation which is contained in the behavior of the time correlation function

$$
\begin{equation*}
a(t)=\frac{\left\langle\delta A_{0}(0) \delta A_{0}(t)\right\rangle}{\left.\left.\langle | \delta A(0)\right|^{2}\right\rangle} \tag{3}
\end{equation*}
$$

with properties

$$
\begin{equation*}
\lim _{t \rightarrow 0} a(t)=1, \lim _{t \rightarrow \infty} a(t)=0 \tag{4}
\end{equation*}
$$

The entry of the normalized $a(t)$ can be represented as the result of the operation of projecting fluctuations $\delta A_{0}(t)$ onto its initial value $\delta A_{0}(0)$

$$
\begin{gather*}
\delta A_{0}(t)=\delta A_{0}{ }^{\prime}(t)+\delta A_{0}^{\prime \prime}(t), \delta A_{0}^{\prime}(t)=\Pi \delta A_{0}(t), \\
\delta A_{0}^{\prime \prime}(t)=P \delta A_{0}(t) \\
\Pi+P=1, \Pi^{2}=\prod_{2}, P^{2}=P, \Pi P=P \Pi=0 \\
\Pi=\frac{\left\langle\delta A_{0}(0)\right\rangle\left\langle\delta A_{0}^{*}(0)\right\rangle}{\left.\left.\langle | \delta A_{0}(0)\right|^{2}\right\rangle} \tag{5}
\end{gather*}
$$

where

Using [4] , [5] and based on the Liouville equation (1), we first write the equation in two subspaces

$$
\begin{align*}
& \frac{d}{d t} \delta A_{0}^{\prime}(t)=i z_{11} \delta A_{0}^{\prime}(t)+i z_{12} \delta A_{0}^{\prime \prime}(t) \\
& \frac{d}{d t} \delta A_{0}^{\prime \prime}(t)=i z_{21} \delta A_{0}\left({ }^{\prime}\right)+i z_{2} \delta A_{0}^{\prime \prime}(t) \tag{6}
\end{align*}
$$

where $z_{i j}$ are matrix elements of the split operator \hat{z}.
Solving together the system (4) for the irreducible part of fluctuations, we get

$$
\begin{array}{r}
\frac{d}{d t} \delta A_{0}(t)=i \hat{z}_{11} \delta A_{0}(t)+i \hat{z}_{12} e^{+i \hat{z}_{22} t} \delta A_{0}(t)- \\
-\int_{0}^{t} d \tau \hat{z}_{12} e^{+i \hat{z}_{2} \tau} \hat{z}_{21} \delta \hat{A}_{0}(t-\tau)
\end{array}
$$

By virtue of (4) we have $\delta A_{0}(0)=0$, so that the inhomogeneous contribution(7) disappears. Passing in (7) from fluctuations to their cross correlation function, we find

$$
\begin{equation*}
\frac{d a(t)}{d t}=i \omega_{0} a(t)-\Omega^{2} \int_{0}^{t} d \tau M(\tau) a(t-\tau) \tag{8}
\end{equation*}
$$

Here we have introduced the following notation

$$
\begin{align*}
& \omega_{0}=\frac{\left\langle\delta A_{0}(0) \hat{z} \delta A_{0}(0)\right\rangle}{\left.\left.\langle | \delta A_{0}(0)\right|^{2}\right\rangle}, \Omega^{2}=\frac{\left.\left.\langle | A_{1}\right|^{2}\right\rangle}{\left.\left.\langle | A_{0}\right|^{2}\right\rangle} \\
& A_{0}=\delta A_{0}(0), A_{1}=\left(\hat{z}-\omega_{0}\right) A_{0} \\
& M(\tau)=\frac{\left\langle A_{1}^{*}(0) \exp \left(i z_{2} \tau\right) A_{1}(0)\right\rangle}{\left.\left.\langle | A_{1}(0)\right|^{2}\right\rangle} \tag{9}
\end{align*}
$$

for the Liouvillian natural frequency ω_{0}, the principal relaxation frequency Ω and the memory function $M(\tau)$. It is easy to see that the new dynamic variable A_{1} is orthogonal to the initial $A_{0}=\delta A_{0}(0)$

$$
\begin{equation*}
<A_{0}^{*}(0) A_{1}(0)>=0 \tag{10}
\end{equation*}
$$

The most interesting thing is that the procedure (3)-(9) can be repeated indefinitely for new normalized cross correlation functions ($n \geq 0$)

$$
\begin{equation*}
M_{n}(t)=\frac{\left\langle A_{n}^{*}(0) \exp \left(i \hat{z}^{(n)} t\right) A_{n}(0)\right\rangle}{\left.\left.\langle | A_{n}(0)\right|^{2}\right\rangle} \tag{11}
\end{equation*}
$$

and for $n=0$ we have

$$
\begin{gather*}
M_{0}(t)=a(t), A_{0}(0)=\delta A_{0}(0), \hat{z}^{(0)}=\hat{z}, \hat{z}^{(1)}=\hat{z}_{22}, \omega_{0}^{(0)}=\omega_{0} \\
\hat{z}^{(n)}=\hat{z}_{22}^{(n)}=P_{n-1} P_{n-2} \ldots P_{0} \hat{z} P_{0} \ldots P_{n-2} P_{n-1}, \mathrm{n} \geq 1 \tag{12}
\end{gather*}
$$

Here projection operators of the n-th level are introduced [6]

$$
\begin{gather*}
P_{n}=1-\Pi_{n}, \Pi_{n} \Pi_{m}=\delta_{n, m} \prod_{n}, P_{n}^{2}=P_{n}, \Pi_{n} P_{n}=P_{n} \Pi_{n}=0 \tag{13}\\
\Pi_{n}=\frac{\left.A_{n}(0)\right\rangle\left\langle A_{n}^{\prime}(0)\right.}{\left.\left.\langle | A_{n}(0)\right|^{2}\right\rangle} \tag{14}
\end{gather*}
$$

where $\delta_{n, m}$ is the Kronecker symbol.
Projectors (12) act on an arbitrary dynamic variable Y as follows :

$$
\begin{equation*}
\prod_{n} Y=A_{n}(0) \frac{\left\langle A_{n}^{*}(0) Y\right\rangle}{\left.\left.\langle | A_{n}(0)\right|^{2}\right\rangle}, Y \prod_{n}=A_{n}^{*} \frac{\left\langle Y A_{n}(0)\right\rangle}{\left.\left.\langle | A_{n}(0)\right|^{2}\right\rangle} \tag{15}
\end{equation*}
$$

Dynamic variables are constructed like this

$$
\begin{equation*}
A_{n}=A_{n}(0)=\left(\hat{z}-\omega_{0}^{(n-1)} A_{n-1}-\Omega_{n-1}^{2} A_{n-2}, \mathrm{n}>1\right. \tag{16}
\end{equation*}
$$

where the designations are introduced for the main Ω_{n} and natural ($\omega_{0}^{(0)}$) relaxation frequencies

$$
\begin{equation*}
\omega_{0}^{(n)}=\frac{\left\langle A_{n}^{*} \hat{A} A_{n}\right\rangle}{\left.\left.\langle | A_{n}\right|^{2}\right\rangle}, \Omega_{n}^{2}=\frac{\left.\left.\langle | A_{n}\right|^{2}\right\rangle}{\left.\left.\langle | A_{n-1}\right|^{2}\right\rangle} \tag{17}
\end{equation*}
$$

Repeating the procedure (3)-(10) many times and successively using (11) - (17), we arrive at an infinite chain of linking kinetic equations

$$
\begin{equation*}
\frac{d M_{n}(t)}{d t}=i \omega_{0}^{(n)} M_{n}(t)-\Omega_{n+1}^{2} \int_{0}^{t} d t M_{n+1}(\tau) M_{n}(t-\tau) \tag{18}
\end{equation*}
$$

Formal solution of (18) using the Laplace transform

$$
\begin{equation*}
\tilde{a}(s)=\int_{0}^{\infty} d t e^{-s t} a(t) \tag{19}
\end{equation*}
$$

leads to an infinite system of algebraic equations

$$
\begin{equation*}
\widehat{M}_{n}(s)=\left\{s-i \omega_{0}^{(n)}+\Omega_{n+1}^{2} \widehat{M}_{n+1}(s)\right\}^{-1} \tag{20}
\end{equation*}
$$

CONCLUSION

Although the resulting system of equations (18) almost completely coincides with the well-known Mori-Zwanzig equations [1] , [3]. The method presented here [6] differs in two respects. First, an orthogonal set of dynamic variables is used here

$$
<A_{n}^{*}(0) A_{m}(0)>=\delta_{n, m}<\left|A_{n}(0)\right|^{2}>
$$

form in various subspaces are and an orthogonal set of projectors (13). Second, the exact matrix representation (6) and the Liouvillian splitting in matrix used.

International Journal for Multidisciplinary Research (IJFMR)
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

REFERENCES

1. Zwanzig R. Memory effects in irreversible thermodynamics / Phys. Rev. 1961 - V 124, N5, p. 983 992.
2. Mori H. Transport collective motion and Brownian motion / Progr. Theor. Phys. - 1965 V 33, N3, p. 423-455.
3. Mori H. Continued fraction representation of the time correlation functions / Progr. Theor. Phys. 1965, V 34, N3-p. 765-776.
4. Yulmetyev R. M. Application of methods of the scattering theory to the statistical theory of liquids / Phisica - 1976-V 84 A, N1 p. 82-100.
5. Yulmetyev R. M. The structure of the kinetic equations for time correlation functions / Phys. Lett. A. - 1973. V 43, N2 p. 115-116.
6. Yulmetyev R. M., Khusnutdinov N. R. The statistical spectrum of the non-markovity parameter for simple model system / J. Phys. and Math. Gen. - 1994 V. 27, p. 5363-5373.
