

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

Advancing Security: Machine Learning-Based Signature Forgery Detection in Document Authentication Systems

Sandesh Kandel

Data Analyst, VIT University

Abstract

Handwritten signatures play a vital role in our lives. From banks to institutions to organizations, signatures are a way of identifying a person. However, signings come with a lot challenges because any two signatures can look very similar with slight differences written the same person. Therefore, the identification of real and fake signatures is very difficult. To avoid similar identity related crimes committed in banks and many others companies, the counterfeit detection system is the solution to this problem along with the help concepts of machine learning and CNN. For better performance and time efficiency, Parallelization concepts are used in software implementation. This software can be used to verify signatures on many platforms such as loans, signing legal documents, applications signing, applications and much more.

Keywords: Crucial, Banks, Organization, Forgery, CNN, Forgery, Signature, Frauds.

Introduction

The aim of this project is to improve the detection of offline signature forgeries. In this project we analyzed and used machine learning concepts to classify, identify and also differentiate between the fake and the original signature. In this project implemented on Jupyter, we ensured the implementation of convolution neural network model using TensorFlow and created the model rather than traditional ways building a CNN model. We have uniquely implemented feature extraction based on various geometric factors of the signature image originating from the image dataset. Nowadays, a handwritten signature is one of the most widespread personal attributes proofs of identity, whether from the banking or business sector. People from lower society prefer to write their signatures in free handwriting due to lack of education and knowledge. Therefore, these types of signatures can be easily forged under certain circumstances. In this In this case, four types of fakes are possible.

Simulation Forgery

In which the forger has a sample of the signature to be forged. The quality of a simulation depends on how much the forger practices before attempting the actual forgery, the ability of the forger, and the forger's attention to detail in simulating the signature. Based on a forger's experience, known forgeries are classified as unskilled and skilled forgeries

Unknown/Random/Blind Forgery:

This is when the forger has no idea what the signature to be forged looks like. This is the easiest type of forgery to detect because it usually does not have the appearance of a genuine signature. This type of forgery will sometimes allow an examiner to identify who made the forgery based on the handwriting habits that are present in the forged signature.

Tracing:

The third type of forgery is tracing. Tracing can be done by holding the model document and the questioned document up to light and using a pen to trace the lines of the model signature onto the questioned document. A tracing can also be done by using a blunt stylus on the questioned document to create an impression of the model signature on the paper. This impression is then filled in with a pen to create the appearance of the model's signature. If the model signature used by the forger is not found, this type of forgery is sometimes difficult to detect from a photocopy.

Optical Transfer:

It is one in which a genuine signature is transferred onto a document by the use of a photocopier, scanner, facsimile machine, or photography. With this type of forgery, an examiner cannot positively identify a signature genuine without having the Original for comparison.

Objective

The objective of the software is:

- to verify if a signature is forged or original.
- to ensure the authorized use of confidential information.
- to detect any impostor trying to access any important information.

Background:

For this system, the key concept will be the convolutional neural network (CNN). The CNN will be trained against a dataset containing many signatures such that it will have the skill to predict certain features and find out whether a forgery has been committed. or not. We aim to bring up software that verifies signatures and makes sure the software is more reliable, efficient, and 5% accurate than existing systems. Signatures vary with time when a person becomes old. There are certain factors which lead to changes in the signature, and these changes cannot be identified by ordinary people. One major concern that must be kept in mind is that the system should not be given to people randomly. Only those who have permission and are authorized to use this system should be taken care of since it is very confidential. This software can be used to validate signatures across many platforms, like loans, legal document signing, application signing, applying and a lot more. There are many organizations that have lost tremendous amounts of money due to a single forgery, and being able to detect even a single forgery can save money, time, and the reputation of the organization. The system will be run through a web page since it is more efficient and easier to use. Keeping in mind the people who have low technical skills or knowledge, the system should be easy to use and not require a lot of tasks to be done since it is time-consuming.

Problem Description:

Online (dynamic) signature verification uses signatures that are captured by pressure-sensitive tablets that extract dynamic properties of a signature in addition to its shape. Dynamic features include the number and order of the strokes, Typical Signature Verification System, the overall speed of the signature, the pen pressure at each point, etc. and make the signature more unique and more difficult to forge. In an online signature verification system (Figure),

Figure : Typical Signature Verification System

Fig 1: Typical signature Verification System

The users are first enrolled by providing signature samples (reference signatures). When a user presents a test signature claiming to be an individual, this test signature is compared with the reference signatures for that individual. If the dissimilarity is above a certain threshold, the user is rejected. During verification, the test signature is compared to all the signatures in the reference set, resulting in several distance values. One must choose a method to combine these distance values into a single value representing the dissimilarity of the test signature to the reference set, and compare it to a threshold to decide. The single dissimilarity value can be obtained from the 6 minimum, maximum, or average of all the distance values. Typically, a verification system chooses one of these and discards the others. In evaluating the performance of a signature verification system, there are two important factors: the FRR of genuine signatures and the FAR of forgery signatures. As these two errors are inversely related, the EER where FAR equals FRR is often reported.

Section to describe or introduce new terms to the readers:

convolution neural network (CNN): A convolutional neural network (CNN) is a type of artificial neural network used in image recognition and processing that is specifically designed to process pixel data. equal error rate (EER): The EER is the location on a ROC or DET curve where the false acceptance rate and false rejection rate are equal. Tensorflow: TensorFlow is a free and open-source software library for machine learning and artificial intelligence. It can be used across a range of tasks but has a particular focus on training and inference of deepneural networks.

LITERARY REVIEW:

According to recent studies, check fraud alone costs banks about \$900 million annually, with 22% of all checkfraud attributed to signature fraud. Clearly, with more than 27.5 billion checks written each year in the United States, visually comparing signatures with manual effort on the hundreds of millions of checks processed daily proves impractical.Myth: Authentic signatures of the same person will be exactly alike in all transactions

Reality: The physical act of signing requires brain, eye, arm, finger, muscle and nerve coordination. With all thefactors at play, it's no wonder people don't sign exactly the same every time: some elements can be left out or altered. Personality, emotional state, health, age, conditions under which individual characters, space for signature and many other factors all affect the variation between signatures. Types of signature forgery:

In real life, signature forgery is an event in which the forger focuses primarily on accuracy rather than fluency. The range of signature forgeries falls into the following three categories:

- 1. Random/Blind Forgery Usually bears little or no resemblance to genuine signatures. This type of forgery occurs when the forger does not have access to an authentic signature.
- 2. Unqualified (tracing) forgery: The signature is traced and appears as a faint indentation on the sheet of paperbelow. This indentation can then be used as a guide for the signature.
- 3. Skilled forgery Made by an offender who has access to one or more specimens of a genuine signature and can imitate it after much practice. A qualified forgery is the most difficult to verify of all forgeries.

The goal of an accurate verification system is to minimize both types of errors. Characteristic features: Let's understand the signature features for a human examiner to distinguish fraud from genuine. The following is a non-exhaustive list of static and dynamic characteristics used for signature verification:

- Shaky handwriting (static)
- Pen lift (dynamic)
- Retouch marks (static and dynamic)
- Letter proportions (static)
- Signature shape/size (static)
- Slope/Angle (static)
- Very close similarity between two or more signatures (static)
- Speed (dynamic)
- Pen pressure (dynamic)
- Patterns of pressure change (dynamic)
- Acceleration pattern (dynamic)
- Smoothness of curves (static)

Based on the verification environment and sampling conditions, not all features are available for analysis. After reading these articles, we were clear about the following topics and how to implement an optimal signature forgery detection model.

Our studies included:

Techniques such as four different CNN feature extractors have been created. Each CNN consisted of 2 convolution layers and 2 maximum pooling layers. Convolutional Neural Network (CNN) for

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

implementing offline authentication methods, CEDAR Signature dataset for neural network training Convolutional Siamese Network (CSN), pooling layer, triple loss classification. I personally liked the CSN algorithm because it is the most optimal and efficient. Another important aspect was the assessment methods The number of hidden layers was 3 for the first paper and the number of nodes was 30, 20 and 30 for each layer. The training epoch was 500. The equal error rate (EER) is used as an evaluation metric for signature verification. All machine learning models were implemented using Theano library, a wellknown open-source machine learning library. MLP revealed a weakness in the qualified forgery test in the case of the second paper due to the fact that it is a2-class model. AE and CNN_B-AE did not work well. This result shows that the S-vector generated by the trained CNN is more efficient than the raw signature data. CNN D-AE showed the best result and CNN AC- AE showed the second best accuracy. However, note that CNN_D-AE is not a practical model. In the third document, the Dataset contains 30 users, all of which have 15 signatures, the test starts with learning 0.00000 infrequently, and the margin is set to 0.2 0.2, the best test result is low loss and high accuracy, we end the analysis at step 180, because we perceive the target result. So the accuracy is 84. There are two types of pool: maximum pool and average pool. Max Pooling returns the maximum value from the image split reported by the kernel. But average returns the average of all values from the part of the image that the kernel covers. To improve the accuracy of signature verification, some studies [8,9,10] use machine learning techniques, which are one of the most notable technologies. Buriro et al. [3] used a multilayer perceptron (MLP), a two-class classifier, to verify a finger-drawn signature with dynamic features involving finger and phone movements. Their method showed a verification accuracy of 94.8% for subject and other object classification. However, this technique does not represent the ability to distinguish forged signatures. Two-class classifiers such as MLP are at greater risk of misclassifying a forged signature as a subject because forged signatures closely resemble the subject [10,14]. Although the signature marked on the smartphone screen disappears immediately after verification, it is easy for an adversary to imitate the signature through shoulder surfing and smearing, which involves tracking the smudge left on the screen [11]. Therefore, it is necessary to improve the authentication for distinguishing forged signatures to provide secure services. An important issue is also the difference in time between the registration of a signature and the verification of a new signature. Unlike biometrics such as fingerprints and irises, behavioral patterns can change over time. Although [15] focused on the problem of this time difference, they worked on PIN verification and not dynamic finger-drawn signatures. In the first paper, we propose a new dynamic approach to fingerprint signature verification that provides better accuracy against forged signatures and time-delayed signatures. The proposed method uses two deep learning algorithms: a convolutional neural network (CNN) [16,17] for feature extraction and an autoencoder (AE) [18] as a classifier. CNNs are trained to distinguish forged signatures from genuine signatures, and the trained CNNs are used for feature extraction, not as a classifier. Specifically, the output of the CNN intermediate layer, which we call the S-vector, is used as input to the AE to create the subject model. Since CNN is known to be able to extract features for classification by itself [17], we hypothesize that a CNN trained for a specific purpose could extract features effective for that purpose. For example, a CNN trained on forged signatures can extract features that are common in forgery, such as hesitation and delay before drawing a complicated part of the signature. The proposed method uses AE as a classifier due to its high accuracy in solving single-class discrimination problems such as user authentication. Our previous work [19] and M. Fayyza et al. [10] showed that the one-class AE model is better at

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

distinguishing simulated signatures than the two-class model. However, AE is also highly dependent on the accuracy of the input data [14]. The S-vector is valuable as an AE input and could subsequently lead to an increase in the accuracy of dynamic signature verification. Although the main problem is forgery signature discrimination, the proposed method should consider other problems, i.e. time difference problem and classification of subject/others. They are also important issues for a signature verification service, and a single-purpose model could reduce the performance of other issues. The proposed method achieves better performance for time-varying signatures and subject/other classification using an experimental approach.

The main contributions of this post are as follows.

- To the best of our knowledge, the proposed scheme is the first CNN-AE model for hand-drawn signatureverification in mobile environments.
- Experiments using real user signatures show that S-vector achieves better accuracy for dynamic signature verification. The proposed scheme reduces the same error rate (EER) by 1.1% (subject/other), 3.2% (time difference) and 13.7% (qualified forgery) compared to previous work.

This document is organized as follows. Section 2 introduced the proposed method. In Section 3, the proposed model is evaluated based on experimental results, where the CNN was trained with four different classification datasets to determine the most efficient S-vector. Section 4 concludes the paper.

this includes methods for acquiring, processing, analyzing and understanding images and, in general, high- dimensional data from the real world to produce numerical or symbolic information, e.g. in the form of decisions [5]. Computer vision covers the basic technology of automated image analysis, which is used in many fields [6]. Computer vision as a scientific discipline deals with the theory behind artificial systems that extract information from images. Image data can take many forms, such as video sequences, views from multiple cameras, or multidimensional data from a medical scanner. As a technological discipline, computer vision tries to apply its theories and models to the construction of computer vision systems [5].

signatures can be used to identify and authenticate the subscriber. An automated verification process would allow banks and other financial institutions to significantly reduce check and money order forgeries, which represent large monetary losses every year. Reliable signature verification can be of great help in many other application areas such as law enforcement, industry, security control, and so on. Handwritten signatures appear on many types of documents, such as bank checks and credit slips, etc. [7][12]. A large number of such documents require automatic signature verification. A signature verification system requires high reliability.

Images are collected for training and stored in a database. Images are collected by scanning from a physical paper source. The database used is a self-created database that contains the signatures of three different people. The database consists of fifteen signatures belonging to each person, for a total of forty-five signatures. More signatures can be easily added to the database and the number of signatures per person can be increased or decreased.

After the image has been pre-processed, various features are extracted from the image. The extracted features from each image are then stored in a MATLAB file. The following unique features are extracted from each image: [1] Height to Width Ratio: After cropping the image, the height to width ratio of the signature is calculated. [2] Centroid of Signature: The center of gravity or barycenter of the image is calculated. The centroid indicates the central point of the signature, which is a unique characteristic of

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

the signature. The signature is divided vertically into two halves and the centroid of each half is calculated. [3] First derivative: The first derivative of the image matrix is calculated rowwise and columnwise. [4] Second derivatives: After the calculation of the first derivatives, the second derivatives of the image matrix are calculated by rows and columns. [5] Quadrant areas: The image is divided into four quadrants and then the area of the signature pixels in each quadrant is calculated. This area is the area of the signature strokes in that quadrant and does not include the background area. [6] COM Matrix: COM Matrix or Co-Occurrence Matrix refers to the distribution of co- occurring values at a given offset. It is used to measure texture in an image. Since our image is black and white after preprocessing, this means that the image matrix has values of either 0 or 1. It looks for a pattern distribution of these values and looks for where the patterns 00, 01, 11, and 10 occur. The co-occurrence matrix is also calculated for the signature. [7] Calculation of edge points: The number of edge points in the signature is calculated, which gives a distinctive characteristic of the signature. [8] Horizontal and vertical histogram: Each row and each column of the signature is traversed and the number of black pixels is calculated. The row and column with the maximum number of black pixels are recorded and used as a function. All of these properties provide unique signature characteristics and are used for signature classification.

A convolutional neural network (CNN) is a multi-layer neural network with a deep supervised learning architecture known to extract features for classification by itself [17]. A CNN consists of two parts: an automatic feature extractor and a trainable classifier. The feature extractor extracts features from the input data using two operations: convolutional filtering and downsampling. Based on these features, a trainable classifier is trained using a fully connected layer backpropagation algorithm to produce classification results.

The proposed method uses CNN only as a feature extractor, not as a classifier.

Fig 1.2: CNN Classifier

The *S-vector* extracted by the CNN feature extractor is used as the input of an AE. An AE is a type of deep neural network that has the same dimensions for input and output [14]. In the training phase, the AE is trained by using the same data (sample signatures) as input and output. In the test phase, the

trained AE generates an output corresponding to an input (test signature). An AE can generate highly similar output for trained data patterns, whereas it does not for unfamiliar data. Therefore, a test signature is verified by a similarity comparison between the test signature and the output of the AE. Consequently, an AE is used in modeling a subject for authentication.

Paper-4 Abstract:

Hand signatures are very important in our social and legal life for verification and authentication. A signature can only be accepted if it is from the intended person. The probability that two signatures of the same person are the same is very less. Many characteristics of a signature can differ even if two signatures are created by the same person. Detecting a forgery thus becomes a challenging task.[4] In this paper, a convolutional neural network (CNN)-based solution is presented where a model is trained using a dataset of signatures and predictions are made whether a given signature is genuine or forged.

Method Proposed:

Keras library with Tensorflow backend is used to implement CNN. The directory of processed images is loaded and then we train the model with different training and testing ratios to evaluate the performance.[4]

Evaluation Methods:

The first raw RGB images are converted to grayscale and binarized. File management operations are then performed to split the images into batches based on the split ratio. Training and validation accuracies are plotted for all split ratios, and the split that gives the best results is considered.[4]

Paper-5

Abstract:

The signature capture and recognition system takes a signature image as input and trains the image by extracting various features and stores it in a database, then it will be compared with the original source signature using convolutional neural networks and recognize whether it is the original signature. Algorithms such as grayscale and binarization are used for feature extraction. Once the image is captured, it will be converted to a black and white image and then processed. This system needs to be trained very well in order to have better results. Sample signatures will be fed into the system for identification tests to maintain high accuracy in the system.[5]

Method Proposed:

The signature image is passed to image processing, where image enhancement, geometric transformation, etc. are applied. During feature extraction, local and global features are extracted. After extracting the feature, the CNN is applied to the image for comparison and then to the image with the image in the database. The image passes through a convolutional layer, a pooling layer and a fully connected layer. In this system, given a set of genuine signatures, the goal is to learn a model that can distinguish between genuine signatures and forgeries. The most common classification of forgeries in the literature is accidental forgery, where a person uses his signature to impersonate another person. Data acquisition Preprocessing Feature extraction Comparison using the CNN algorithmFile management[5]

Evaluation Methods:

First, a test signature is recognized with a given input training set using both CNN and Crest-Trough methods. Then, forgery detection algorithms (Harris Algorithmic followed by Surf Algorithm) are enforced on this classified image. The results from each algorithm are then compared. The signature capture and recognition system will take the signature image as input and train the image by extracting various features and store it in the database, then it will be compared with the original source signature using convolutional neural networks and recognize whether it is the original signature. Algorithms such as grayscale and binarization are used for feature extraction. Once the image is captured, it will be converted to a black and white image and then processed. This system needs to be trained very well in order to have better results. Sample signatures will be fed into the system for identification tests to maintain high accuracy in the system. Feature extraction is an important stage where the features of each signature are captured using a CNN algorithm. The idea behind this step is to identify every little detail of the signature. Subsequent identification of features and their proper extraction will lead to better or more accurate verification. A centralized database of correct customer signatures will be available. This particular database may be used by many systems that require customer information and signatures. This proposed system is focused on bank check signature verification system using artificial neural network. Signatures are verified based on parameters extracted from the signature using various image processing techniques. In detecting the exact person and providing more accuracy of signature verification for the implementation above, this paper uses convolutional neural networks to recognize and verify signatures of individuals.[5]

Paper-6

Abstract:

This paper presents an innovative approach for signature verification and forgery detection based on fuzzy modeling. The signature images are binarized and resized to a fixed size window and are then thinned. The thinned image is then partitioned into a fixed number of eight sub-images called boxes. Signature verification and forgery detection relate to the process of verifying signatures automatically and instantly to determine whether the signature is genuine or forged. There are two main types of signature verification: static and dynamic. Static, or off-line verification is the process of verifying an electronic or paper signature after it has been made, while dynamic or on-line verification takes place as a subject creates his signature on a digital tabletor a similar device.[2]

Method Proposed:

After the binarization and thinning of images, the thinned image is then partitioned into a fixed number of eight sub-images called boxes. This partition is done using the horizontal density approximation approach. Each sub- image is then further resized and again partitioned into twelve further sub-images using the uniform partitioning approach. The features of consideration are normalized vector angle (alpha) and distance (gamma) from each box. Each feature extracted from sample signatures gives rise to fuzzy sets. Since the choice of a proper fuzzification function is crucial for verification, the authors have devised a new fuzzification function with structural parameters, which is able to adapt to the variations in fuzzy sets. This function is employed to develop complete forgery detection and verification system.

Since the main thrust here is to establish the genuineness of the signature thereby detecting the forgeries, we go in for fuzzy modeling of angle features. For the purpose of signature verification and detection of forgeries, we have employed the Takagi-Sugeno model. In this, we are following the same concept as outlined in for considering each feature as forming a fuzzy set over large samples. This is because the same feature exhibits variation in different samples giving rise to a fuzzy set. So, our attempt is to model the uncertainty through a fuzzy model such as the TS model.[2]

Evaluation Methods:

Inherent variation is used to judge the test signatures. For a particular feature, if the membership value lies within the range of variation, which is given by the difference of minimum and maximum thresholds, it is counted as 'true'. The total number of 'true' cases for a particular signature is divided by the total number of features to get the percentage. The skill-forged and unskilled forged signatures have corresponding figures of 88.5% and 82.3% respectively. The minimum limit or acceptable percentage for genuine signature is set at 91% referring to the output result of signature of signer. Signatures that have percentage less than 91% are treated as forged signatures. modified SPTA thinning algorithm- a proposed **algorithm** for **thinning** binary patterns, Pseudo- Bacterial Genetic Algorithm (PBGA) - The PBGA was proposed by the authors as a new approach combining a genetic algorithm (GA) with a local improvement mechanism inspired by a process in bacterial genetics. The proposed fuzzy modeling based on TS model discussed above has been applied on a signature database, developed in the Graphics Visualization & Games Development (GVGD) lab at the Multimedia University, Cybejaya, Malaysia. The efficacy of this system has been tested on a large database of signatures. The verification system is able to detect all types of forgeries: random, unskilled andskilled with utmost precision.[5]

From our work, we have an operating convolutional network that can successfully recognize signatures from 40 different individuals in 54% of the cases. Although the accuracy is not satisfactory for a real application, we attained a result that is significantly better than a random draw (which would have an accuracy of 2.5%). Based on these results, we consider our model to have learned a fair amount from the data provided. The low accuracy obtained in the training set relative to that of the test set is an evidence of overfitting. This result motivated us to try a few alternatives to reduce the gap between accuracies of training and test sets. These measures include: Optimizing the regularization term in the loss function, which did help to slightly improve the accuracy of the algorithm. We reached a point, however, where any increase of the hyperparameter lambda led to lower training and test set accuracies, and a decrease of it led to an increase in the gap between both accuracies[18]. Modifying the size of the network. Increasing the size of the network by expanding the number of neurons in the hidden layers only increased overfitting. On the other hand, decreasing the number of neurons in hidden layers did reduce overfitting, but at the cost of reducing the accuracy of the whole algorithm. We then chose to maintain the network structure. Stopping early. We also thought of stopping the training earlier (by epoch ~25, for example), to try to prevent the model from overfitting.[19] However, this did not have the desired effect and the accuracy of both the training and test sets decreased when attempting thi9s algorithm. Although the testing accuracy is not satisfactory for real signature recognition application, we consider our model to have learned a fair amount from the data provided and performs significantly better than a random draw. As a future work, a further exploration of the overfitting challenge identified would be key to improving the training accuracy of the CNN network. Additionally, additional modifications to the algorithm such as adding Batch Normalization or additional pre-processing steps could be explored, to

investigate the impact on the model performance. Finally, memory limitations should be addressed to incorporate more training data to the model.[12][19]

Inherent variation is used to judge the test signatures. For a particular feature, if the membership value lies within the range of variation, which is given by the difference of minimum and maximum thresholds, it is counted as 'true'. [4][5]The total number of 'true' cases for a particular signature is divided by the total number of features to get the percentage. The skill-forged and unskilled forged signatures have corresponding figures of 88.5% and 82.3% respectively. The minimum limit or acceptable percentage for genuine signature is set at 91% referring to the output result of signature of signer. Signatures that have percentage less than 91% are treated as forged signatures. [2][4]

Each signature will have a rule so we have as many rules as the number of features. The fuzzy set Ak is represented by the above exponential membership function where x, is the mean sigma is the variance of kth fuzzy set. The inclusion of parameters will help track the variations in the handwriting.

When sk = 1 and tk = -1, the membership function is devoid of structural parameters

$$\mu_{k}(x_{k}) = \exp \left[\frac{(1-s_{k})+s_{k}^{2}\left|x_{k}-\overline{x_{k}}\right|}{(1+t_{k})+t_{k}^{2}\sigma_{k}^{2}}\right]$$

PROPOSED MODEL:-Architecture:

Fig 2: Architecture

In this work, signature images are preprocessed batch by batch and split into training and test sets based

on the split ratio (which is chosen) as shown in Fig 2. This is done in Jupyter using functions from the image processing toolkit. After these signatures are preprocessed, they are stored in a file directory structure that the Keras Python library can work with. Then the CNN is implemented in Python using Keras with a TensorFlow backend to learn the patterns associated with the signatures. Then, the derived model was validated using accuracy and loss metrics to see how well the model fit the data. Finally, the model was tested using the signature from the challenge set to see if the predictions were correct. The figure shows a detailed architecturalscheme of the implementation.

EVALUATION/EXECUTION:-

DATASET:-

The dataset which has been used in this project work is a collection of 120 signatures, with 60 genuine and 60 forged signatures per subject. This dataset was carefully prepared by us, with one person making the originals and two others making the forgeries. All the images are in RGB format.

Forged:

Co.f.	Pari	Davi	Dor	Barri	Bit	S.J.	- St	S.J.	But op	It	time
021001_000	021001_001	021001_002	021001_003	021001_004	021002_000	021002_001	021002_002	021002_003	021002_004	021003_000	021003_001
Ha	生まれ	Attal	Manohan -	Monaha Z.	Moushau	Manohay	Monohay	F.	458	8fel	S
021003_002	021003_003	021003_004	021004_000	021004_001	021004_002	021004_003	021004_004	021005_000	021005_001	021005_002	021005_003
021005_004	021006_000	021006_001	021006_002	AB4 021006_003	San 021006_004	Ave)/44	Arishik 021007_001	A.S.L.C. 021007_002	Avirtuel4/ 021007_003	A+024.ek	30) Nurt 021008_000
3-10/ 15 5-00-fr 021008_001	2000 y dewedy 021008_002	21008_003	1 Faitz 021008_004	Dr. Q.	B4	<u>گندیت</u> <u>اند</u> 021009_002	Birth 2	B444	921010_000	021010_001	021010_002
1230001-	12000	Ket 021011_000	021011_001	021011_002	021011_003	021011_004	021012_000	021012_001	Junan 021012_002	Jerry 021012_003	Sur_ 021012_004

Fig 3: Forged Signatures

Real:

Caf.	Cof.	Conf.	C.J.	Co.t.	Et.	Sert	Any.	AT.	- Fait	stral	Aling
001001_000	001001_001	001001_002	001001_003	001001_004	002002_000	002002_001	002002_002	002002_003	002002_004	003003_000	003003_001
the	attings	the	<u>Ианина</u> Э	He ho hav	Hanshall	Mana hay 2	Manaka J.	\$J	\$.j	\$1	\$
003003_002	003003_003	003003_004	004004_000	004004_001	004004_002	004004_003	004004_004	005005_000	005005_001	005005_002	005005_003
And	Shul	Guy	Jarry _	Chung	Saug	And	Awster	Austrely	Austile	, duchde	Hander J.
005005_004	006006_000	006006_001	006006_002	006006_003	006006_004	007007_000	007007_001	007007_002	007007_003	007007_004	008008_000
Jan Star	Standy Y	T	Fath	Brough	Ster	Bring	Burg	Brung	Rolans	Boul	Canal State
008008_001	008008_002	008008_003	008008_004	009009_000	009009_001	009009_002	009009_003	009009_004	010010_000	010010_001	010010_002
170 mg	(100010 004	Ant		Keet		Allow And	Dimensions;	G File 0120012 001	Juna,	Asona Charles	() () () () () () () () () () () () () (

Fig 3.1: Real Signatures

METHODOLOGY WITH THE DATASET:-

The handwritten signature is a behavioural biometric that is not based on any physiology characteristics of the individual signature but on the behaviour that changes over time. Since an individual's signature alters over time, the verification and authentication of the signature may take a long period of time, which includes the potential for the errors to be higher in some cases. An inconsistent signature leads to higher false rejection rates for an individual who did not sign in a consistent way.

Evaluation Measures:

First raw RGB images are converted to grayscale and binarized. Then file management operations are arecarried out to split the images into batches based on the split ratio. Training and Validation accuracies areplotted for all the split ratios and the the split which gives the best results is considered.

The above accuracy and loss formulae are used to plot the accuracy and loss for the test splits. Accuracy is the total number of correct predictions divided by the total number of predictions. In loss, p is the true distribution and q is the coding distribution.

U U		
Operation	Formula	
Accuracy	$\Sigma n_{correct}/N$	Ī
Loss	$H(p, q) = -\Sigma p(x) \log q(x)$	
1000	11(P, 4) =P(0) 10B 4(0)	

Evaluation methods section:

One of the most common evaluation technique used in signature forgery detection is plotting accuracy and validation graphs of various test split ratios and finding the best possible ratio. The dataset is divided into batches using several split ratio and accuracy and validation graphs are plotted and the split ratio with the best results is taken. The accuracy% and loss% are plotted against epoch. One unique way that we found was taking, a test signature is recognized with a given input training set using both CNN and Crest-Trough methods.

Custom variation is used to assess test signatures. For a particular function, if the membership value lies within the range of variation given by the difference of the minimum and maximum thresholds, it counts as "true". The total number of "real" occurrences for a particular signature is divided by the total number of features to get a percentage. Skilled forged and unskilled forged signatures have corresponding figures of 88.5% and 82.3%. The minimum limit or acceptable percentage for a genuine signature is set to 91% with respect to the output result of the signer's signature. Signatures that have a percentage of less than 91% are considered forged signatures[11].

Performance Measures:

In this work, the signature images are preprocessed in a batch manner and divided into training and test sets based on the split ratio (which is chosen). This is done in MatLab with functions from the Image Processing Toolkit. After these signatures are preprocessed, they are stored in a file directory structure that the keras pythonlibrary can work with. Then the CNN was implemented in python using Keras with a TensorFlow backend to learn the patterns associated with the signatures. Then, the derived model was validated using accuracy and loss metrics to see how well the model fit the data. Finally, the model was tested using the signature from the challenge set to see if the ns predictions were correct.

In our implementation, the image goes through 3 convolutional and max pooling layers that alternate. When an image goes through the convolution process, a predefined number of feature maps are created, which are fed into a maximum pooling layer, which creates pooled feature maps from the feature maps

received from the convolutional layer that precedes it. This pooled feature map is sent to the next convolutional layer and this process continues until we reach the third maximum pooling layer. The pooled feature map from the last maximum pooling layer is merged and sent to the fully connected layers. After several rounds of forward and back propagation, the model is trained and now a prediction can be made.

One of the most common evaluation technique used in signature forgery detection is plotting accuracy and validation graphs of various test split ratios and finding the best possible ratio. The dataset is divided into batches using several split ratio and accuracy and validation graphs are plotted and the split ratio with the best results is taken. The accuracy% and loss% are plotted against epoch. One unique way that we found was taking, a test signature is recognized with a given input training set using both CNN and Crest-Trough methods.

For a particular function, if the membership value lies within the range of variation given by the difference of the minimum and maximum thresholds, it counts as "true". The total number of "real" occurrences for a particular signature is divided by the total number of features to get a percentage. Skilled forged and unskilled forged signatures have corresponding figures of 88.5% and 82.3%. The minimum limit or acceptable percentage for a genuine signature is set to 91% with respect to the output result of the signer's signature. Signatures that have a percentage of less than 91% are considered forged signatures[11].

In our work, we will first convert raw RGB images to grayscale. We then add salt and pepper noise with a density of 0.01 and remove all the noise using the mean and median filters. We then binarize the images and store them appropriately. We then perform the required processing and file management operations to split the image batches based on the desired split ratio. After the models are built, accuracy and loss graphs are created.

We created models for valous splits of data and plotted the training and validation accuracies to get an idea of the presence of any overfitting or underfitting

	Paper-1	Paper-2	Paper-3
Database/Corpa	 https://paperswithcode.com/dataset/cedar- signature 2. https://www.kaggle.com/datasets/robinreni/sig nature-verification-dataset 	Used their own dataset	The signature recovery method follows comparable levels for
			most common data sets. The user takes a template

Comparison of base papers section: Table-1

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

MLP exposed a weakness in the skilled forgeryT test due to being a 2-class model. AE ande Performance/Res CNN_B-AE did not perform well. This result() u lts shows that the <i>S-vector</i> generated by the trainedu	The equal error rate (EER) is used as an	with many cells and presents an example of his / her signature in each cell. The model accepted
MLP exposed a weakness in the skilled forgeryT test due to being a 2-class model. AE ande Performance/Res CNN_B-AE did not perform well. This result() u lts shows that the <i>S-vector</i> generated by the trainedu	The equal error rate (EER) is used as an	cells and presents an example of his / her signature in each cell. The model accepted
MLP exposed a weakness in the skilled forgeryT test due to being a 2-class model. AE ande Performance/Res CNN_B-AE did not perform well. This result() u lts shows that the <i>S-vector</i> generated by the trainedu	The equal error rate (EER) is used as an	presents an example of his / her signature in each cell. The model accepted
MLP exposed a weakness in the skilled forgeryT test due to being a 2-class model. AE ande Performance/Res CNN_B-AE did not perform well. This result() u lts shows that the <i>S-vector</i> generated by the trainedu	The equal error rate (EER) is used as an	example of his / her signature in each cell. The model accepted
MLP exposed a weakness in the skilled forgeryT test due to being a 2-class model. AE ande Performance/Res CNN_B-AE did not perform well. This result() u lts shows that the <i>S-vector</i> generated by the trainedu	The equal error rate (EER) is used as an	his / her signature in each cell. The model accepted
MLP exposed a weakness in the skilled forgeryT test due to being a 2-class model. AE ande Performance/Res CNN_B-AE did not perform well. This result() u lts shows that the <i>S-vector</i> generated by the trainedu	The equal error rate (EER) is used as an	signature in each cell. The model accepted
MLP exposed a weakness in the skilled forgery test due to being a 2-class model. AE and Performance/Res CNN_B-AE did not perform well. This result u lts shows that the <i>S-vector</i> generated by the trained	The equal error rate (EER) is used as an	each cell. The model accepted
MLP exposed a weakness in the skilled forgery test due to being a 2-class model. AE and Performance/Res CNN_B-AE did not perform well. This result u lts shows that the <i>S-vector</i> generated by the trained	The equal error rate (EER) is used as an	The model accepted
MLP exposed a weakness in the skilled forgery test due to being a 2-class model. AE and Performance/Res CNN_B-AE did not perform well. This result u lts shows that the <i>S-vector</i> generated by the trained	The equal error rate (EER) is used as an	The model accepted
test due to being a 2-class model. AE andPerformance/ResCNN_B-AE did not perform well. This result()u ltsshows that the S-vector generated by the trained	error rate (EER) is used as an	accepted
Performance/ResCNN_B-AEdid not perform well.This result (1)u ltsshows that the S-vector generated by the trained	(EER) is used as an	1 *
u lts shows that the <i>S</i> -vector generated by the trainedu	ised as an	100% of the
		signatures
CNN is more effective than raw signature data.e	evaluation	when only
The CNN_D-AE showed the best result and then	netric for	genuine
CNN_AC-AE showed the second-best accuracy.s	signature	signatures
However, note that the CNN_D-AE is not av	verification.	were given.
practical model	All machine-	It gave a 3%
10	earning	false
n	nodels were	positives in
in	mplemented	Skilled
u	using the	forgery and
П	Theano	was
li	ibrary,	successful in
v	which is a	detecting
v	well-known	unskilful
0	open source	and random
n	nachine-	forgeries.
	earning	
li	ibrary.	
Scope It can be improved further by improving the	Гhey plan	In all our
dataset quantity and quality to train the model. v	verify	investigatio
s	signatures	ns we train
d	lrawn by a	CNN with
h	nand gripping	one × one
a	0 11 -0	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

smartphone, TL as a i.e., a userclassifier. aThe marginα draws signature in is set to the air by a0.2. We hand grippingused the Kaggle data a smartphone, set, and the and not on aresult is screen by ashown in the finger. They tables above. expect that the large signature drawn by hand could have positive effects of verification accuracy and user convenience This can be used to verify signatures on Verify Applications Can be used important documents to verify the owner. banks, signatures in drawn on the government phone. offices and other sensitive fields because the accuracy is high.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Algorithms/appr	Convolutional Neural Network (CNN) to	Convolutio nal	Convolution
o ach	implement theoffline authentication methods,	neural	al Siamese
		network	Network
	CEDAR Signature dataset to train the neural	(CNN for	(CSN).
	network	feature	
		extraction,	Pooling
		and an	Layer,
		autoencod er	Triplet Loss
		(AE) as a	Classificati
		classifier	on

Table-2:

	Paper-1	Paper-2	Paper-3
Database/Corpa	A collection of 6000 signatures is used which	The signatures collected were manually made. Few	A signature database is used which was developed
	contains 1000 genuine and	features are extracted	in Graphics Visualization
	1000 forged signatures per	from the signatures to	and Games Development
	subject. The images taken	crease a knowledge base	lab at the Multimedia
	were in RGB format.	for every individual. The	University, Cybejaya,
		dataset contains 750	Malaysia.
		signatures which has 5	5
		signatures were taken	
		from each person from	
		150 people in total.	
	The highest training and	The speed of execution of	The model accepted 100%
Performance/Result	validation accuracy is found	the method is found out to	of the signatures when only
s	to be 98.11% and 98.23%	be pretty fast. The	genuine signatures were
	respectively.	accuracy is found out to	given. It gave a 3% false
		be around 80%.	positives in Skilled forgery
			and was successful in
			detecting unskilful and
			random forgeries.
Scope	A custom loss function can be	An optimized algorithm	Global learning techniques
	created in the future which	can be created which can	can be used which will
	can predict which user the	differentiate the errors	improve accuracy and
	signaturebelongs to.	made by the real user to	speed of the prediction.
		remove false negatives.	
Applications	This can be used to verify	Can be used in bank	Can be used in banks,
	signatures on important letters	cheque signature	government offices and
	etcto verify the writer.	verification systems.	other sensitive fields

Г

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

		because the
		accuracy is high.
A 1 • 1 /		
Algorithms/approac	The dataset is divided into	First, a signature image is Signature images are
h	batches using several split	passed after the imagebinarized and window size
	ration and accuracy and	preprocessing wherewith a fixed size and then
	validation graphs are plotted	normalization, imagethey are thinned out. The
	and the split ratio with the	enhancements, geometricthe thinned image is then
	best results is taken. CNN is	transformations, etcdivided into a fixed
	used.	applied to the image sonumber eight sub-images
		that the image perfectlycalled boxes. This section
		processed and can beis complete using a
		passed on featurehorizontal density
		extraction. When approximation
		extracting features of approach. Each sub-image
		local a global features areas then further resized and
		extracted from the figure resized split into twelve
		for comparing uploaded more sub-images using
		image to image stored inunified distribution
		the database. approach.
		Generally for low levelProperties the normalized
		applications such asyector angle (a) and are
		object detection and taken into account
		classification, globaldistance (y) from each
		functions are used and forbox. Each function
		higher-level application.extracted from sample
		such as an objectsignatures give rise to
		recognition, local features fuzzy sets. With regard to
		are used. A it regarding to it
		combination of those will Choosing the right
		provide higher accuracy fuzzification function is
		provide inglier accuracy. ruzzification runction is
		rty

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Evaluation metrics The dataset is divided into First, a test signature is Custom variation is used batches using several splitrecognized with a given to assess test signatures. ration and accuracy andinput training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metricsThe dataset is divided intoFirst, a test signature iswith structural parameters that is able to adapt to changes in hzzy sets. This feature is used to develop complete counterfeit detection and authenticationsystem.Evaluation metricsThe dataset is divided intoFirst, a test signature is Custom variation is used batches using several split recognized with a givento assess test signatures. ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the
In the billocation plantitiesthat is able to adapt to changes in hzzy sets. This feature is used to develop complete counterfeit detection and authenticationsystem.Evaluation metricsThe dataset is divided into First, a test signature is Custom variation is used batches using several split recognized with a givento assess test signatures. ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metrics batches using several splitrecognized with a given to assess test signatures. ration and accuracy andinput training set usingFor a particular function, if validation graphs are plottedboth CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metrics The dataset is divided intoFirst, a test signature is Custom variation is used batches using several splitrecognized with a given to assess test signatures. ration and accuracy and input training set usingFor a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metrics The dataset is divided into First, a test signature is Custom variation is used batches using several splitrecognized with a given to assess test signatures. ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metrics The dataset is divided into First, a test signature is Custom variation is used batches using several splitrecognized with a givento assess test signatures. ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metrics The dataset is divided into First, a test signature is Custom variation is used batches using several splitrecognized with a given to assess test signatures. ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
Evaluation metrics The dataset is divided intoFirst, a test signature is Custom variation is used batches using several splitrecognized with a given to assess test signatures. ration and accuracy and input training set usingFor a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with theTrough methods. Then, within the range of
batches using several splitrecognized with a givento assess test signatures. ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
ration and accuracy and input training set using For a particular function, if validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
validation graphs are plotted both CNN and Crest-the membership value lies and the split ratio with the Trough methods. Then, within the range of
and the split ratio with the Trough methods. Then, within the range of
and the spin ratio with including includes. Then, within the ratige of
best results is taken. Theforeary detection given by the
detection variation given by the
accuracy% and loss% arealgonums Harrisonnerence of the minimum
plotted against epoch. Algorithmic and Surfand maximum thresholds,
Algorithm are carried outit counts as "true". The
on this classified image total number of "real"
The results from eachoccurrences for a
algorithm are thenparticular signature is
compared. divided by the total
number of features to get a
percentage. Skilled forged
and unskilled forged
signatures
havecorresponding figures
of 88.5% and 82.3%. The
minimum limit or
acceptable percentage for
a genuine signature is set
to 91% with respect to the
output result of the signer's
signature. Signatures that
have a percentage of less
than
91% are considered forged
signatures.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Table-3:

	Paper-1	Paper-2	Paper-3
	In this Paper group of	These handwritten	The signature
	5000 signatures were	signatures are from a	database consists of a
Database/Corpa	used with 2500 forged	dataset containing 750	total of 510
	and 2500 genuine sigs.	signatures from 150	handwritten signature
	All the Images are in	individuals providing 5	images. Out of these,
	RGB format.	signatures each. Second,	255 were authentic
		these signatures are stored	signatures and others
		in the form of a matrix,	were
		then converted from the	forged ones. These
		RBG image to a black and	signatures were
		white image with the help	obtained Erom 17
		of a grayscale algorithm	volunteers with each
			person contributing
			15 signatures

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	The highest training	The result of this system is	An off-line signature
	and validation	that it has 94% and 85-89%	verification and
Performance/Resul	accuracy is found to	accuracy for signature	forgery detection
ts	be 98.11% and 98.23%	recognition and forgery	system is modeled by
	respectively.	detection, respectively. We	TS model, which
		can conclude that this	involves structural
		system may have some	parameters in 'its
		flaws, but it is a useful one.	exponential
			membership function.
			The features
			consisting of angles
			are extracted using
			box approach. Each
			feature yields a fuzzy
			set when its values are
			gathered from all
			samples because of
			the variations in
			handwritten
			signatures
Scope	A custom made	This algorithm can be	Machine learning
	technology can be	created which can	techniques can be
	created in the future	differentiate the errors	used which will
	which can predict the	made by the real user to	improve accuracy and
	identity of the users.	remove false signatures.	speed of the
			prediction with the
			minimal time
			complexity.
Applications	This can be used to	Can be used in paper bank	Can be used in banks,
	verify signatures on	cheque signature	government offices
	entry pass, letters,	verification and	and other sensitive
	authentication to	authentication.	fields because the
	verifythe owner.		accuracy is extremely
			sensitive.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Algorithms/approa	The handwritten	We intend to use a	Since the main thrust
ch	signature is a	Convolutional Neural	here is to establish the
	behavioural biometric	Network (CNN) to	genuineness of the
	which is not based on	implement the offline	signature thereby
	any physiolo	authentication methods,	detecting the
	characteristics of the	since all the offline	forgeries, we go in for
	individual signature	methods exploit the	fuzzy modeling of
	but on the behaviour	content-based features and	angle features. For the
	that change over time.	the visual information of	purpose of signature
	Since an individual's	the signature, it is better to	verification and
	signa alters over time	use a CNN since a CNN	detection of forgeries,
	the verification and	can classify the extracted	we have employed the
	authentication for the	features from the signature.	Takagi- Sugeno
	signature may take a	We will use the CEDAR	model. In this, we are
	long period which	Signature dataset to train	following the same
	include the for the	the neural network.	concept as outlined in
	errors to be higher in	The CEDAR Signature	[131 for considering
	some cases.	dataset is a signature	each feature as
	Inconsistent signature	verification database. 55	forming a fuzzy set
	leads to higher false	individuals contributed 24	over large samples.
	rejection rates for an	signatures each and hence	This is because the
	indivi who did not	the dataset consists of 1320	same feature exhibits
	sign in a consistent	genuine signatures. People	variation in different
	way	were asked to forge the	samples giving rise to
		three other writers	a fuzzy set. So, our
	Data Acquisition	signatures, eight times	attempt is to model
		every subject creating a	the uncertainty
		total of 1320 forged	through a fuzzy
	TT 1 1	signatures. The obtained	model such as the TS
	Handwritten	dataset consists of 24	model.
	signatures are	genuine and 24 forged	
	collected and some	signatures for each writer.	
	unique leatures are		
	knowledgebase each		
	and over individual		
	A standard database of		
	signatures for every		
	individual is needed		
	for evaluating		
	performance of the		
	performance of the		

٦

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

C	ignature verification
5	ustom and also for
S	
С	omparing the result
O	btained using other
te	echni on the same
d	atabase
T	
ľ	re-processing
F	CGB to Grayscale
Т	n layman's tarms, any
	CGB image is
r	epresented as matrix
0	f X, Y dimensions
a	nd

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	to attack and a state state state		
	depth of 3 pla where		
	each plane comprises		
	of Red, Green and		
	Blue values ranging		
	from 0 to		
	255. Whereas, grays		
	image is represented		
	as matrix of X. Y		
	dimensions and depth		
	of only I plane. Each		
	cell value ninges fre to		
	255 Any RGB (Red,		
	Green, Blue) image		
	which has to undergo		
	Digital Image		
	Processing (DIP) neec		
	be converted to		
	grayscale image. By		
	doing this the		
	computational		
	complexity of DIP		
	decreases drastic and		
	helps to run image		
	processing algorithms		
	in much smoother		
	way. This operation is		
	seen in Fig.		
	Ŭ Î		
Evaluation metrics	We create models for	For signature recognition,	The signature
	different splits of data	forgery detection and	database consists of a
	and plot the training	verification based on	total of 510
	and validation	CNN(Convolutional Neural	handwritten signature
	accuracies to get an	Network), Crest-Through	images. Out of these,
	idea of the presence of	Method, SURF algorithm	255 were authentic
	anv overfitting or	and Harris corner detection	signatures
	underfitting.		
	\mathcal{O}^{*}	algorithm. In this system.	and others were
		CNN and Crest-Through	forged ones. These
I	I I		- <u></u>

	1 1
On splitting the Method are used for	signatures were
dataset in the ratio of recognition	andobtained Erom 17
8:2 we obtained averification. When	eas, volunteers with each
maximum accuracyof-SURF and Harris con	rnerperson contributing
98 percent on the detection algorithms	are 15 signatures as
validation set as used forgery detection.	Thisshown in Table 1. The
shown in Fig 9. Therepaper has literature surv	veyssignatures were
is very little overfitting on other papers also. The	nesecollected over a
as the training and signatures undergo pre-	period of a few weeks
testing	
accuracies are almost	
equal to each other.	
processing using CNN a	nd to account for
On splitting ourCrest-Through Method.	variations in the
dataset in the ratio 73,	signature with time.
we get a maximum	?he forgeries of these
accuracy of 96 percent	signatures were
on the validation set	collected over a
as shown in Fig 10 at	similar time frame.
the third epoch. There	The random forgeries
is some underfitting	were obtained by
here, and further	supplying only the
epochs show over	
fitting. The validation	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

accuracy at the fifth	names of the
epoch is-94 percent	individuals to the
	casual forgers who
	did not have any
	access to the actual
	genuine signatures.
	The unskilled
	forgeries in turn,
	were obtained by
	providing sample
	genuine signatures to
	the forgers who were
	then allowed to
	practice for a while
	before imitating them
	to create their
	forgeries. Each
	volunteer had to
	provide five
	imitations of any one
	of the genuine
	signatures, apart
	from his or her own
	signatures. These
	samples constituted
	the set of unskilled
	forged signatures for
	the set of genuine
	signatures. We then
	requisitioned the
	services of a few
	expert forgers who
	provided five
	forgeries of each
	genuine signature in
	the test set to create
	the skilled forged
	samples of all the
	persons.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Conclusion and future directions:

Handwritten signatures are very important in our social and legal life for verification and authentication. A signature can only be accepted if it is from the intended person. Probability two signatures of the same person are very small. Many properties the signature may differ even if the two signatures are of the same person. So the detection of a forgery becomes a challenging task. In the organization without affecting the current system. In parallel with the new technology that opens up with new possibilities, there is a clear demand for new and improved methodologies and algorithms. The proposed approach is suitable for use as an efficient signature verification system. The the proposed technique effectively performed offline signature verification with increased efficiency and accuracy, as well as the ability to detect expert forgeries. We have successfully detected the signature cheats using Python and its modules combined with a convolutional neuron based solution network (CNN). In the future, the model will be improved by reducing the error rejection rate.

Another interesting project is the merging of offline and online signature verification technologies, which it will strengthen the system by requiring both speed of execution and authenticity. Another promising project would be to merge offline and online signature verification systems, which would make the system more robust due to execution speed and authentic appearance signature, making it difficult to produce signatures. This project was only implemented for one language. When uploading digital signatures to apps or websites, many additional languages can be incorporated using a GUI based on the Flask platform for better users participation. The planned system is highly economical in detecting and tracking counterfeits on the fly, and therefore the system's responsiveness can be increased by training the extracted features on artificial neural networks by storing the extracted features. Negligible misclassification or however, a bug is required in such sensitive applications This comes at the cost of a high recognition rate (HRR). Another goal is that the probability of a

a forged signature as if it were real is zero. As future work, we can also focus on increasing the resulting accuracy of the system by trying new and better parameter coefficients that increase the difference between realand forged signatures.

References:

- Hilton O, Scientific Examination of Questioned Documents:https://books. google.co n/books/about/Scientific_Examination_of Questioned _Doc.himl?id=nQlIw2_gE-cC&redir_ese=y Specin Forensics LLC, Handwriting and Forgery Examination http://4n6,com/handwriting-andforgery-examination
- 2. Zaidi S.F.A., Mohammed S, Biometric Handwritten Signature Recognition, TDDD17: Information SecurityCourse, Linkopingsuniversitet,Sweden
- Srinivasan H., Srihari S.N., Beal M.J. (2019) Machine Learning for Signature Verification. In: Kalra P.K., Peleg S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg,
- 4. Bhattacharya L, GhoshP.,Biswas S. (2018) Offline Signature Verification Using Pixel Matching Technique [6]Drott B. and Hassan-Reza T. On-line Handwritten Signature Verification using

Machine Learning Techniques with a Deep Learning Approach(2019), In Master's Theses in Mathematical Sciences FMAS20 20151, Mathematics. (Faculty of Engineering)

- 5. Hafemann L, G., Sabourin R., Oliveira L.S., Learning features for offline handwritten signature verification using deep convolutional neuralnetworks, Pattern. Recognition, Volume —70,2017, Pages «163-176,
- 6. ISSN 0031-32037302017)
- Jerome Gideon S, Anurag Kandulna, Aron Abhishek Kujur, Diana A Kumudha Raimod "Handwritten Signature Forgery Detection Using Convolutional Neural Networks", International Conference on Advances in Computing and Communication, P – 978-987 (ICACC-2018) https://www.sciencedirect.com/science/article/pii/S877050918320301
- Bhattacharya L., Goshp., Biswas S, (2013) "Offline Signature Verification Using Pixel Matching Technique", International Conference on Computational Intelligence : Modeling Technique and Applications(CIMTA), Proceida Technology, P – 970-977, 2013.
- 9. Ashish A Dongare, Prof R. D. Ghongade(2016) "Artificial Intelligence Based Bank Cheque SignatureVerification System", Vol 03, P-ISSN 2395-0072(IRJET)
- 10. Walid Hussein, Mostafa A. Salama and Osman Ibrahim (2016), "Image Processing Based Signature Verification Technique to Reduce Fraud in Financial Institution", MATEC Web of Conferences 2016.
- 11. Saroj Ramdas, Geethu P. C. (2015) "Comparative Study on Offline Handwritten Signature Verification Scheme", International Journal of Advanced Research Trends in Engineering and Technology (IJARTET), Vol -02, March 2015.
- 12. [13] R. Plamondon and F. Leclerc, "Automatic signature verification: the state of the art 1989-1993", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 8, No. 3, pp. 643-660, 1994.
- 13. R. Plamondon and G. Lorette, "Automatic signature verification and writer Identification: the state of theart", Pattern Recognition, Vol. 22, No. 2, pp. 107-131, 1989.
- R. Sabourin, R. Plamondon and G. Lorette, Offline identification with handwritten signature images: Survey and Perspectives, Structured Image Anaiysis, Springer-Verlag, New York, 1992, pp. 2 19-234.
- 15. R. Plamondon and S.N. Srihari, "On-line and offline Handwriting Recognition: A Comprehensive Survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. I, pp. 63-x4,2000.
- 16. M.A. Ismail and Samia Gad, "Off-line Arabic signature recognition and verification", Pattern Recognition, Vol. 33, No. 10, pp. 1727-1740, 2000.
- A. El-Yacoubi, E.J.R. Justino, R. Sabourin and F. Bortolozzi, "Off-line signature verification using HMMS and cross-validation", Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, USA, 2000, pp. 859-868.
- 18. C. Quek and R.W. Zhou, "Antiforgery: a novel pseudo-outer product based fuzzy neural network drivensignature Verification system", Pattern Recognition Letters, Vol. 23, pp. 1795-18i6, 2002.
- 19. M. Hanmandlu, K.R. Murali Mohan, S. Chakraborty, S. Goel and D. Roy Choudhury, "Unconstrainedhandwritten character recognition based on fuzzy logic", Pattern Recognition, Vol.
- 20. [21]M. Hanmandlu, K.R. Murali Mohan, S. Chakraborty and G. Garg, "Fuzzy modeling based signature verification system", Proceedings of the sixth International Conference on Document

Analysis and Recognition, USA, 2001, pp. 110-1 14.

- 21. M. Ammar, Y. Yoshida and T. Fukumura, "A new effective approach for off-line verification of signatures by using pressure features", Proceedings of the International Conference on Pattern recognition, 1986, pp, 566-569.
- 22. M. Ammar, "Progress in verification of skillfully simulated handwritten signatures", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 5, pp. 337-351, 1991.
- 23. Jinhong K. Guo, D. Doermann and A. Rosenfeld, "Off-line skilled forgery detection using stroke and sub-stroke properties", Proceedings of the International Conference on Pattern Recognition,
- 24. M. Hanmandlu, K.R. Murali Mohan and Vivek Gupta, "Fuzzy logic based character recognition", Proceedings of the International Conference on Image Processing, Santa Barbara, USA, pp.7 14-717.
- 25. [26]Y. Xuhua, T. Furuhasbi, K. Obata, Y. Uchikawa, Study on signature verification using a new approach to genetic based machine learning. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, USA, 1995, pp. 36, NO. 3, pp. 603423,2003. 2000, pp. 355-358. 4383-4386.
- 26. Roh, J.H.; Lee, S.H.; Kim, S. Keystroke Dynamics for Authentication in Smartphone. In Proceedings of the International Conference Information and Communication Technology (ICTC), Jeju Island, Korea, 19–21 October 2016; pp. 1155–1159.
- 27. Liu, D.; Dong, B.; Gao, X.; Wang, H. Exploiting Eye Tracking for Smartphone Authentication. In Proceedings of the International Conference on Applied Cryptography and Network Security (ACNS), New York, NY, USA, 2–5 June 2015; pp 457–477.
- 28. Buriro, A.; Crispo, B.; Delfrari, F.; Wrona, K. Hold and Sign: A Novel Behavioral Biometrics for Smartphone User Authentication. In Proceedings of the IEEE Symposium on Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 276–285.
- 29. Feng, H.; Wah, C.C. Online signature verification using a new extreme points warping technique. Pattern Recognit. Lett. 2003, 24, 2943–2951.
- 30. Fierrez-Aguilar, J.; Nanni, L.; Lopez-Peñalba, J.; Ortega-Garcia, J.; Maltoni, D. An on-line signature verification system based on fusion of local and global information. In Proceedings of Audio- and Video-Based Biometric Person Authentication (AVBPA), Rye Brook, NY, USA, 20–22 July 2005; pp. 523–532.
- 31. Nanni, L. An advanced multi-matcher method for on-line signature verification featuring global features and tokenised random numbers. Neurocomputing 2006, 69, 2402–2406.
- 32. Guru, D.S.; Prakash, H.N. Online signature verification and recognition: An approach based on symbolic representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1059–1073.
- 33. Gruber, C.; Gruber, T.; Krinninger, S.; Sick, B. Online signature verification with support vector machines based on LCSS kernel functions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2010, 40,1088–1100.
- 34. Iranmanesh, V.; Ahmad, S.M.S.; Adnan, W.A.W.; Malallah, F.L.; Yussof, S. Online signature verification using neural network and Pearson correlation features. In Proceedings of the IEEE Conference on Open Systems (ICOS), Subang, Selangor, Malaysia, 26–28 October 2014; pp. 18–21.
- 35. Fayyaz, M.; Saffar, M.H.; Sabokrou, M.; Hoseini, M.; Fathy, M. Online signature verification based on feature representation. In Proceedings of the International Symposium on Artificial Intelligence and Signal Processing (AISP), Mashhad, Iran, 3–5 March 2015; pp. 211–216.

- 36. Sae-Bae, N.; Memon, N. Online signature verification on mobile devices. IEEE Trans. Inf. Forensics Secur. 2014, 9, 933–949.
- 37. Antal, M.; Szabó, L.Z. On-line verification of finger drawn signatures. In Proceedings of the International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 12–14 May 2016; pp. 419–424.
- Paudel, N.; Querini, M.; Italiano, G.F. Handwritten Signature Verification for Mobile Phones. In Proceedings of the International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy, 19–21 February 2016; pp. 46–52.
- 39. R. Plamondon and F. Leclerc, "Automatic signature verification: the state of the art 1989-1993", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 8, No. 3, pp. 643-660, 1994.
- 40. R. Plamondon and G. Lorette, "Automatic signature verification and writer Identification: the state of theart", Pattern Recognition, Vol. 22, No. 2, pp. 107-131, 1989.
- R. Sabourin, R. Plamondon and G. Lorette, Offline identification with handwritten signature images: Survey and Perspectives, Structured Image Anaiysis, Springer-Verlag, New York, 1992, pp. 2 19-234.
- 42. R. Plamondon and S.N. Srihari, "On-line and offline Handwriting Recognition: A Comprehensive Survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. I, pp. 63-x4,2000.
- 43. M.A. Ismail and Samia Gad, "Off-line Arabic signature recognition and verification", Pattern Recognition, Vol. 33, No. 10, pp. 1727-1740, 2000.
- 44. A. El-Yacoubi, E.J.R. Justino, R. Sabourin and F. Bortolozzi, "Off-line signature verification using HMMS and cross-validation", Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, USA, 2000, pp. 859-868.
- 45. C. Quek and R.W. Zhou, "Antiforgery: a novel pseudo-outer product based fuzzy neural network drivensignature Verification system", Pattern Recognition Letters, Vol. 23, pp. 1795-18i6, 2002.
- 46. M. Hanmandlu, K.R. Murali Mohan, S. Chakraborty, S. Goel and D. Roy Choudhury, "Unconstrainedhandwritten character recognition based on fuzzy logic", Pattern Recognition, Vol.
- 47. M. Hanmandlu, K.R. Murali Mohan, S. Chakraborty and G. Garg, "Fuzzy modeling based signature verification system", Proceedings of the sixth International Conference on Document Analysis and Recognition, USA, 2001, pp. 110-1 14.
- 48. M. Ammar, Y. Yoshida and T. Fukumura, "A new effective approach for off-line verification of signatures by using pressure features", Proceedings of the International Conference on Pattern recognition, 1986, pp, 566-569.
- 49. M. Ammar, "Progress in verification of skillfully simulated handwritten signatures", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 5, pp. 337-351, 1991.
- 50. Jinhong K. Guo, D. Doermann and A. Rosenfeld, "Off-line skilled forgery detection using stroke and sub-stroke properties", Proceedings of the International Conference on Pattern Recognition,
- 51. M. Hanmandlu, K.R. Murali Mohan and Vivek Gupta, "Fuzzy logic based character recognition", Proceedings of the International Conference on Image Processing, Santa Barbara, USA, pp.7 14-717.
- 52. Y. Xuhua, T. Furuhasbi, K. Obata, Y. Uchikawa, Study on signature verification using a new

approach to genetic based machine learning. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, USA, 1995, pp. 36, NO. 3, pp. 603423,2003. 2000, pp. 355-358. 4383-4386.

- 53. Kshitij Swapnil Jain, et al. "HANDWRITTEN SIGNATURES FORGERY DETECTION" (2021). International Research Journal of Engineering and Technology (IRJET) Volume: 08 Issue: 01 | Jan 2021.
- 54. Kiran, Lakkoju Chandra, et al. "Digital signature Forgery Detection using CNN." (2021).
- 55. Raj Balsekar, et al. "OFFLINE SIGNATURE FORGERY DETECTION USING CONVOLUTIONAL NEURAL NETWORK", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.7, Issue 5, page no.13-18, May-2020.
- 56. Alajrami, Eman, et al. "Handwritten signature verification using deep learning." International Journal of Academic Multidisciplinary Research (IJAMR) 3.12 (2020).
- 57. Poddar, Jivesh, Vinanti Parikh, and Santosh Kumar Bharti. "Offline signature recognition and forgery detection using deep learning." Procedia Computer Science 170 (2020): 610-617.
- 58. Based Off-Line Handwritten Signature Verification. Computer Vision and Image Understanding, 76(3),173-190. DOI: 10.1006/cviu.1999.0799
- 59. [60] R. Plamondon and F. Leclerc, "Automatic signature verification: the state of the art 1989-1993", International Journal of Pattern Recognition and Artificial Intelligence, Vol. 8, No. 3, pp. 643-660, 1994.
- 60. R. Plamondon and G. Lorette, "Automatic signature verification and writer Identification: the state of theart", Pattern Recognition, Vol. 22, No. 2, pp. 107-131, 1989.
- R. Sabourin, R. Plamondon and G. Lorette, Offline identification with handwritten signature images: Survey and Perspectives, Structured Image Anaiysis, Springer-Verlag, New York, 1992, pp. 2 19-234.
- 62. R. Plamondon and S.N. Srihari, "On-line and offline Handwriting Recognition: A Comprehensive Survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. I, pp. 63-x4,2000.
- 63. M.A. Ismail and Samia Gad, "Off-line Arabic signature recognition and verification", Pattern Recognition, Vol. 33, No. 10, pp. 1727-1740, 2000.
- 64. A. El-Yacoubi, E.J.R. Justino, R. Sabourin and F. Bortolozzi, "Off-line signature verification using HMMS and cross-validation", Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, USA, 2000, pp. 859-868.
- 65. C. Quek and R.W. Zhou, "Antiforgery: a novel pseudo-outer product based fuzzy neural network drivensignature Verification system", Pattern Recognition Letters, Vol. 23, pp. 1795-18i6, 2002.
- 66. M. Hanmandlu, K.R. Murali Mohan, S. Chakraborty, S. Goel and D. Roy Choudhury, "Unconstrainedhandwritten character recognition based on fuzzy logic", Pattern Recognition, Vol.
- 67. M. Hanmandlu, K.R. Murali Mohan, S. Chakraborty and G. Garg, "Fuzzy modeling based signature verification system", Proceedings of the sixth International Conference on Document Analysis and Recognition, USA, 2001, pp. 110-1 14.
- 68. M. Ammar, Y. Yoshida and T. Fukumura, "A new effective approach for off-line verification of signatures by using pressure features", Proceedings of the International Conference on Pattern recognition, 1986, pp, 566- 569.
- 69. M. Ammar, "Progress in verification of skillfully simulated handwritten signatures", International

Journal of Pattern Recognition and Artificial Intelligence, Vol. 5, pp. 337-351, 1991.

- 70. Jinhong K. Guo, D. Doermann and A. Rosenfeld, "Off-line skilled forgery detection using stroke and sub-stroke properties", Proceedings of the International Conference on Pattern Recognition,
- 71. M. Hanmandlu, K.R. Murali Mohan and Vivek Gupta, "Fuzzy logic based character recognition", Proceedings of the International Conference on Image Processing, Santa Barbara, USA, pp.7 14-717.
- 72. Y. Xuhua, T. Furuhasbi, K. Obata, Y. Uchikawa, Study on signature verification using a new approach to genetic based machine learning. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, USA, 1995, pp. 36, NO. 3, pp. 603423,2003. 2000, pp. 355-358. 4383-4386.
- 73. Kshitij Swapnil Jain, et al. "HANDWRITTEN SIGNATURES FORGERY DETECTION" (2021). International Research Journal of Engineering and Technology (IRJET) Volume: 08 Issue: 01 | Jan 2021.
- 74. Kiran, Lakkoju Chandra, et al. "Digital signature Forgery Detection using CNN." (2021).
- 75. Raj Balsekar, et al. "OFFLINE SIGNATURE FORGERY DETECTION USING CONVOLUTIONAL NEURAL NETWORK", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.7, Issue 5, page no.13-18, May-2020.
- 76. Alajrami, Eman, et al. "Handwritten signature verification using deep learning." International Journal of Academic Multidisciplinary Research (IJAMR) 3.12 (2020).
- 77. Poddar, Jivesh, Vinanti Parikh, and Santosh Kumar Bharti. "Offline signature recognition and forgery detection using deep learning." Procedia Computer Science 170 (2020): 610-617.
- 78. Based Off-Line Handwritten Signature Verification. Computer Vision and Image Understanding, 76(3),173-190. DOI: 10.1006/cviu.1999.0799