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Abstract: 

This paper introduces an innovative approach to address the challenges of input saturation and 

interconnected subsystem control in limited authority adaptive control systems. Limited authority adaptive 

control faces issues when encountering input saturation, which can severely impact the system's 

performance and adaptability. Additionally, when dealing with cascaded control systems, ensuring smooth 

adaptation for both subsystems is essential. To overcome these challenges, we propose a method known 

as Pseudocontrol Hedging (PCH), which allows adaptation to continue even during input saturation and 

ensures effective control in interconnected subsystems. The PCH technique modifies the reference model 

response to accommodate expected system behavior, enabling reliable adaptation regardless of system 

response. 
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I. INTRODUCTION  

Limited authority adaptive control systems encounter difficulties when input saturation occurs, affecting 

the system's performance and adaptability. This paper explores a novel approach called Pseudocontrol 

Hedging (PCH) to address these challenges effectively. PCH involves feeding back expected system 

responses to the reference model, allowing adaptation to proceed seamlessly during input saturation. 

Additionally, PCH provides a solution for managing interconnected subsystems, ensuring that adaptive 

control can operate independently and effectively for each subsystem. Section 2 talks about limited 

authority adaptive control in interconnected systems. Pseudocontrol hedging is discussed in Section 3. 

The system architecture and some of the key components of using the Dynamic inversion based adaptive 

control design method are described in Section 4. Section 5 talks about the role of neural network to 

perform the adaptation of the gains. Adaptation law based on Lyapunov’s direct method is described in 

section 6. Simulation parameters are given in section 7. 

 

II. LIMITED AUTHORITY ADAPTIVE CONTROL 

In limited authority adaptive control systems [1-3], multiple subsystems often interact, where the state of 

one subsystem becomes the input for another. For instance, in flight control, the attitude subsystem 

controls the velocity subsystem. To enable effective adaptation for both interconnected subsystems, it is 

vital to account for the response of one subsystem when enabling adaptation for the other. In cases where 

one subsystem cannot respond fully, the design should ensure that the adaptation of the other subsystem 
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can proceed without hindrance. Pseudocontrol hedging offers an effective solution for addressing this 

challenge. 

 

III. Pseudocontrol Hedging  

Pseudocontrol Hedging (PCH) [4-6] is a method specifically tailored for dynamic inversion-based limited 

authority adaptive controllers. PCH involves providing feedback on the expected system response to the 

reference model, allowing adaptation to function optimally regardless of system behavior. This method 

ensures that adaptation continues to work even during input saturation, which is a crucial phase for 

maintaining reliable adaptation. 

 

IV. System Architecture  

In the Section above method of dynamic inversion was described for the control of nonlinear systems. The 

true dynamics of the aircraft are replaced by desired dynamics through feedback. The gains will be 

changing within the controller in response to changes in the aircraft. This approach will address the 

problem of of unavailability of an accurate model of aircraft dynamics. An illustration of such a controller 

is shown in Fig. 1. Here the architecture full state feedback with an adaptive component. This architecture 

includes a ‘nominal’ controller based on the best available information about the aircraft dynamic 

embedded in the design. The adaptive element then works on the error in this nominal model and provides 

a correction. This correction can be arbitrarily accurate correction given sufficient training information, 

and sufficient inputs to the correction block in the form of state and inputs. And sufficient power in the 

adaptive element to curve fit this model error.  

 

 
Figure 1: Dynamic inversion controller with MRAC 

 

Consider a first-order system corresponding to pitch-rate control of an aircraft with a significant unknown 

nonlinearity in pitch damping using the elevator. The true dynamics are given as 

  �̇�  = Mqq + M𝜹𝜹 + sin(q)        (1) 

This system can represented by  

ẋ =  𝐴𝑥 +  𝐵𝑥 +  𝑓(𝑥, 𝑢)        (2) 

Where Ax  + Bu is the linear part and 𝑓(𝑥, 𝑢) represents the nonlinearity in the system.   

Let the output be given by 

 𝑦 =  𝐶𝑥 

C=1, Taking the derivative of the output as 

 ẏ =  𝐶ẋ          (3) 

Now the reference model tracking error dynamics can be written as   ė = ẏ - ṙ  (4) 
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 ṙ  the term represents the desired response, substituting eq. 2 and 3, eq. 4 becomes  

    ė =  𝐶(𝐴𝑥 +  𝐵𝑥 +  𝑓(𝑥, 𝑢) ) - ṙ        (5) 

   Now,  ė  = -Ke represents a stable system as long as K is positive definite.  Eq becomes  

𝐶(𝐴𝑥 +  𝐵𝑢 +  𝑓(𝑥, 𝑢) ) - ṙ = -Ke 

Substituting the value of A, B, C,  a puedocontrol signal v is represented as  

𝑣 =  ṙ +  𝐾𝑒 −  𝑓(𝑥, 𝑢) 

adaptive control element will ideally be a function of both the state and input of the original system. The 

puedocontrol can be further written as   

   𝑣 =  ṙ +  𝐾𝑒 − 𝑣𝑎𝑑(𝑥, 𝑢, 𝜃) 

Where ke term is a linear feedback on the tracking error, and 𝑣𝑎𝑑the new adaptive signal, which includes 

internal plant parameter 𝜃. 

PCH allows the control system designer to select which system characteristics adaptation should correct 

for, ensuring that the controller does not attempt to correct for absolute input saturation or the responses 

of subsystems with their adaptive processes. To illustrate this in the context of input saturation, we 

introduce variables ucmd (unsaturated input) and u (saturated input). PCH modifies the reference model's 

motion to accommodate the expected system response, enabling adaptation to proceed effectively. 

The PCH controller is illustrated in Fig.1, where the  PCH block shown computes the hedge signal  

𝑣ℎ  =  𝑣 −  𝑓(𝑥, 𝑢) 

The reference model motion is modified by PCH in a specific way as described here. Let the original 

model is of the form  

  ṙ =  𝑓𝑟𝑚(𝑟) 

The modified form with PCH becomes 

  ṙ =  𝑓𝑟𝑚(𝑟)  −  𝑣ℎ 

𝑣𝑟𝑚 =  𝑓𝑟𝑚(𝑟) 

Where 𝑣𝑟𝑚  is the feedforward signal from the reference model. With PCH the reference model tracking 

error dynamics (e) given in eq. 5, remains the same. Note that 𝑢𝑐𝑚𝑑  does not appear in this equation which 

means that the adaptation is able to function properly and attempt to correct for the desired form of model 

error. 

The dynamics are now inverted to find the plant input u and pseudocontrol input corresponding to the 

derivative of pitch rate is 

 𝜹 =   𝑀𝜹
−1(𝑣 − Mqq) 

Additionally, 𝑣𝑎𝑑 can be formulated by doing a nonlinear curve fitting. Specifically, we need to achieve a 

curve fit of the model error as a function of state and input. This adaptive controller architecture possesses 

significant adaptability, as it has the capability, in principle, to modify its internal parameters to achieve 

desired system dynamics for an unknown nonlinear system. In practical terms, it suffices for the controller 

to be capable of effectively rectifying errors within the specific subset of the input and state space that the 

aircraft has encountered. In many scenarios, we may also find satisfaction in the controller's ability to 

adapt exclusively to the recently encountered portion of the input and state space. In other words, it might 

be permissible for the controller to discard information about aspects of the aircraft that are no longer 

relevant. An acceptable condition for this approach would be the controller's ability to respond swiftly 

when confronted with new information. This differentiation allows us to distinguish between long-term 

learning, where the controller enhances performance upon revisiting a portion of the state space the vehicle 
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has encountered before, and short-term learning, where the controller must promptly readjust when 

returning to previous segments of the state space. 

 

IV. NEURAL NETWORK ADAPTIVE CONTROL 

In this section, we introduce a distinct approach for accomplishing short-term learning, rooted in the 

utilization of an artificial network concept. This construct has demonstrated its effectiveness in numerous 

curve-fitting scenarios. Within the context of our adaptive control framework, it can be aptly referred to 

as 'neural network adaptive control’ [7-9]. Specifically, we consider a nonparametric neural network, as 

depicted in Figure 2, where the designer refrains from explicitly incorporating knowledge about the 

functional form of the model error. 

A single hidden layer (SHL) is considered which utilizes a radial basis function given by 

 𝜎𝑗(𝑧)  =  
1

1+𝑒
−𝑎𝑗𝑧 

For j = 1,...N with the value of aj chosen to be distinct for each j, N is the number of hidden layer neurons. 

Now the SHL NN can be written as   

𝑣𝑎𝑑(𝑥, 𝑢, 𝜃) = WT𝝈(VT𝑥) 

Where W is the output weights, v is the input weights, and 𝑥 is the input to NN, states x, plant inputs u, 

and a bias. The complete set of W and V are the NN adjustment parameters.  

 

V. ADAPTATION LAW 

The universal approximation theorem [10-11] for the SHL neural network offers valuable insights, 

demonstrating that we can constrain the fitting error within a defined set of system states and input 

parameters. A notable advantage is the ability to achieve this while catering to any chosen error threshold 

by augmenting the neural network with additional middle-layer neurons (N). The proofs of boundedness 

[12-13] frequently entail the use of a Lyapunov function candidate and the application of the universal 

approximation theorem to illustrate the decrease of the Lyapunov candidate beyond a compact set. This 

guarantees convergence to a region encompassing zero tracking error. Importantly, the considerations 

involved in proving boundedness often serve as inspiration for shaping the adaptive control laws 

themselves. A common approach to training the neural network, directly influenced by the proof of 

boundedness is. 

 Ẇ = −[(𝜎 − 𝜎′VT 𝑥)eT + 𝜆‖e‖W]ΓW 

𝑉𝑑𝑜𝑡= −ΓV [xeTWT𝜎′ + 𝜆‖e‖V], 

where ΓW and ΓV are appropriately dimensioned diagonal matrices of learning rates. The matrix 𝜎′ is the 

gradient of 𝜎. The e-modification scalar  

𝜆 > 0 is necessary for the associated boundedness theorem proof. Note the important role of tracking error 

(e) here. When the tracking error is zero, these parameters do not change. 

 

VI. SIMULATION 

The first order system given in eq .. controlled using a dynamic inversion control based on adaptive control 

whose parameters are learned using a neural network, is simulated in MATLAB. The values of learning 

rate(𝛌), feedback gain(K), plant parameters (M𝛿, Mq), and adaptation gains (ΓW, ΓV) are given in Table 1. 

The feedback gain can be calculated using any technique like LQR or pole placement. 
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Parameter Value 

𝛌 0.01 

K -1 

M𝛿 -10 

Mq -1 

ΓW 1 

ΓV 10 

Table 1: Simulation parameters 

 

RESULTS 

The historical system behavior during the execution of an aggressive square wave as the desired response 

is depicted in Fig. 2. Interestingly, the controller continues to exhibit improved performance with each 

subsequent attempt at this maneuver. This noteworthy observation holds even in the presence of 

substantial modeling inaccuracies and persistent input saturation. As visually confirmed in the figure, the 

input remains consistently saturated for a considerable portion of the responses. Remarkably, the adaptive 

control approach continues to function effectively, overcoming the significant input saturation, as 

demonstrated in Fig. 3. 

 

 
Figure 2: State history 

 
Figure 3: Input history 
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In Fig. 4, the adaptive parameters, comprising all the elements of V and W, are displayed. Following an 

initial transient period, it becomes evident that the weights converge to nearly constant values, even as the 

vehicle executes rapid maneuvers. 

 

 
Figure 4: Neural network parameters 

 

CONCLUSION  

In conclusion, the paper has explored the dynamic inversion control technique as a powerful strategy for 

managing and stabilizing complex nonlinear systems. Through a model-based approach and the design of 

an inverse model, this control architecture allows for the effective cancellation of nonlinear dynamics, 

thereby transforming intricate systems into more manageable linear representations. This adaptability 

makes it particularly well-suited for applications like aircraft control and robotics, where system dynamics 

may change significantly over time. 

Pseudocontrol Hedging (PCH) offers a robust solution to address input saturation and interconnected 

subsystem control issues in limited authority adaptive control systems. By feeding back expected system 

responses to the reference model, PCH ensures that adaptation continues to operate optimally, even during 

input saturation. This approach is vital for maintaining reliable adaptation during critical periods of system 

behavior, allowing for enhanced control in cascaded subsystems. PCH represents a significant step 

forward in the pursuit of adaptive control strategies for complex systems, providing a practical and 

effective solution to real-world challenges.  
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