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Abstract: 

This article delves into the connection between astronomy and machine learning, specifically focusing on 

gravitational waves and the detection of exoplanets. It emphasizes how automated analysis tools have 

become crucial in advancing our understanding of the universe thanks to the potential of machine learning. 

The article explores how machine learning is used for classifying supernovae and detecting anomalies in 

data. It also discusses the challenges faced when applying relativity to studying powerful celestial bodies 

like exoplanets. Additionally, it highlights the increasing reliance on data analysis and machine learning 

within astronomy. Moreover, it underscores the importance of exoplanet research and how machine 

learning can automate the process of discovery. Ultimately this article emphasizes how modern 

technologies, including machine learning are transforming research and making it more accessible to 

citizen scientists. 
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1. INTRODUCTION  

The paper explores the field of astronomy and how machine learning techniques are being utilized in 

research areas. These include studying supernovae detecting waves finding exoplanets analyzing data and 

observing radio galaxies. These topics emphasize the importance of automated analysis tools the 

challenges faced in data processing and the potential that machine learning holds in advancing our 

understanding of the universe. 

 

Supernovae play a role in enriching the medium with heavy elements triggering star formation and serving 

as a source of high energy cosmic rays. With the abundance of supernova survey data, automated analysis 

tools have become indispensable. Machine learning methods for classifying supernovae using photometric 

data prove valuable in compensating for the absence of spectroscopic support. Employing an N parameter 

grid machine learning analysis [4] can effectively differentiate between types of supernovae and remove 

supernova contamination from the sample and potentially identify objects with unique properties. 

However, there is still room for exploration in the field of anomaly detection within data. 

 

The breakthrough discovery of waves which're ripples in the fabric of space time, stands as a remarkable 

confirmation of Einstein’s theory of general relativity. 
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Laser interferometers are used to capture and analyze these waves, which are then translated into relativity-

based patterns for comprehension. However, when it comes to studying entities like exoplanets, 

implementing numerical relativity faces challenges due to time complexity. We require solutions to 

generate numerical relativity patterns. Gravitational waves also hold potential in supplementing our 

knowledge about exoplanets and initial models have been introduced in this context. The article highlights 

the increasing application of data analysis and machine learning in the field of astronomy encompassing 

tasks such as categorizing stars, identifying and detecting exoplanets. It splits the tasks of analyzing data 

into two categories: statistics and data science methods for non-graphical data while computer graphics 

spectral analysis and computer vision techniques are used for datasets containing sky images. Although, 

some approaches may appear complex for tasks, machine learning remains integral in advancing our 

understanding of the universe. 

 

The study of exoplanets holds significance as it contributes to our comprehension of how our Solar System 

was formed, the search for inhabitable planets and the exploration of life beyond our Solar System. The 

Kepler mission, which monitored changes in star brightness to identify transits of planets in same size or 

larger [12] than Earth has provided accessible data that has greatly enriched exoplanetary research.  

 

However, manually analyzing sets of data to identify exoplanet candidates is a time consuming and 

exhaustive task. The discovery of exoplanets comes with challenges including, dealing with variability, 

noise sources inconsistencies, in light curves false alarm rates, weak transit signals, false positives and the 

overwhelming amount of information available. To address these challenges scientists have proposed 

using machine learning and artificial intelligence techniques to automate the discovery process and reduce 

data noise. Additionally, multiresolution analysis methods have been employed to enhance the 

identification of exoplanets. The study mentioned focuses on implementing models from the field of data 

science, complex methodologies and classification models to classify exoplanet data obtained from the 

Kepler mission. By automating object classification and streamlining data processing, this research 

expedites the search for exoplanets. 

 

The article underscores the role astronomy has played throughout history and its connection to aspects of 

human civilization. It acknowledges the impact of satellites like Kepler in partially automating 

observations and generating data thereby, democratizing exoplanet research. 

The use of machine learning techniques by citizen astronomers is also mentioned with examples provided 

on how neural network models have been employed in identifying planets. This study follows the trend of 

crowdsourced astronomy and leverages machine learning models such, as Support Vector Machine, K 

Nearest Neighbors [5] and Random Forest to classify exoplanets. 

 

2. LITERATURE REVIEW 

The paragraph explores the different ways machine learning algorithms are utilized in the Angle Search, 

for Planets (WASP) data to identify and classify planet candidates. The WASP project employs two 

instruments that incorporate cost commercial components [1]. To process the data techniques like the 

Trend Filtering Algorithm (TFA) and the SysRem algorithm are applied for tasks such as trend filtering 

and reducing errors [2]. The refined data is then used to generate curves for all the identified targets in the 
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ORCA TAMTFA fields. A total of 716 fields shows candidates, which are further selected by observers 

for subsequent observations [3]. 

 

In the study titled "The WASP Project and the SuperWASP Cameras: Investigating Planets through 

Observations " researchers discuss the importance of having a structured methodology in machine learning 

to classify and prioritize planets using data and observations. The aim is to establish a process, for 

identifying and ranking planet candidates When it comes to detecting planets of the size of Earth, 

traditional techniques like least squares optimization and grid search, have their limitations. However, a 

promising solution lies in the use of networks (CNNs) [4]. These networks optimize the signal to noise 

ratio and tackle the challenges posed by variations in transit shape. Additionally, automated planet finding 

algorithms such as forests, self-organizing maps and k nearest neighbors [5] are mentioned as effective 

tools for reducing false positive signals. In conclusion the utilization of deep learning algorithms trained 

on simulated data presents a robust approach to identifying transit signals, enabling them to capture the 

most subtle features in vast datasets. Supernova stars which are fascinating celestial objects, play 

important roles in enriching the interstellar medium triggering the formation of new stars and generating 

high energy cosmic rays. Additionally, they offer information regarding the composition, distance scale 

and ultimate destiny of the Universe. With the advent of supernova surveys there is a growing need for 

automated analysis tools to handle the massive amount of data. Machine learning techniques are crucial 

in supernova typing for determining the type of supernovae based on Grids. This analytical approach helps 

refine supernova samples by removing supernova contaminants and enables the identification of unknown 

variable objects or supernovae with unique properties. The search for these sources poses a challenge due 

to their rarity. 

 

Various techniques, including principal component analysis (PCA), random forest (RF), decision tree 

(DT) and convolutional/deep neural networks (CNN/DNN) have been employed to classify stars, 

exoplanets, galaxies and quasars. These techniques have also been used to estimate redshifts, classify 

asteroids and stellar/galaxy morphologies, predict flares, detect gravitational waves and gamma ray bursts, 

analyze asteroid composition, identify pulsars and gravitational lenses as well as classify transit objects 

and radio wave sources. Machine learning has demonstrated potential in extracting insights from 

astronomical data. 

 

Exoplanets refer to planets that exist beyond our Solar System and possess distinguishing characteristics 

that set them apart from objects. Typically, these planets have masses 13 times that of Jupiter, which 

prevents them from undergoing deuterium burning and evolving into brown dwarfs [6]. Some exoplanets 

known as mass objects [7] do not orbit any star. Initially, there were debates surrounding the discoveries 

of exoplanets with reports on the earliest detections. However, a significant milestone in exoplanet 

research was reached in 1995 with the discovery of "51 Pegasi b" by Michel Mayor and Didier Queloz 

using the velocity method [8]. This discovery marked the exoplanet found around a main sequence star 

distinct from our Sun. 

 

Early searches for exoplanets involved ground based facilities like the Wide-Angle Search for Planets 

(WASP) [9] and the Hungarian made Automated Telescope (HAT). Furthermore, space missions such as 

NASA’s Kepler Space Telescope launched in 2009, played a role in this field. Kepler diligently observed 
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a region within the Cygnus constellation for four years leading to the detection of a multitude of 

exoplanets. The information, from the mission was split into two categories: Long Cadence (LC) and Short 

Cadence (SC) targets [10]. Before being made accessible through the Mikulsky Archive the data 

underwent some steps. This data included Simple Aperture Photometry (SAP) and Presearch Data 

Conditioning (PDC) fluxes [11] To identify exoplanets and remove any positives and the Transiting Planet 

Search (TPS) and Data Validation (DV) modules were utilized. 

 

The Kepler mission produced the Kepler Objects of Interest (KOI) catalog [12], containing stars that 

potentially host exoplanets. ML algorithms and manual vetting contributed to generating various KOI 

catalogs. To enhance data analysis, the KOI Network (KOINet), consisting of telescopes worldwide, 

collaborated on Transit Timing Variation (TTV) curve completion (13) and [14] which helped characterize 

multi-planetary systems. When the Kepler spacecraft experienced a reaction wheel failure [15], the project 

transitioned into the K2 mission, which expanded its scope to include studying various celestial objects 

such as young open clusters, bright stars, exoplanets, galaxies, supernovae, and asteroseismology. 

 

3. METHODOLOGY 

The study of exoplanets has involved astronomers, scientists and physicists for years. With the progress 

of intelligence (AI) this field has evolved into a problem that can be addressed using machine learning 

techniques going beyond traditional physics and planetary studies. Machine learning now plays a role in 

determining the likelihood of detecting exoplanets. 

 

One popular approach in this research involves analyzing the brightness of light (flux), When a planet 

passes in front of its host star as observed from Earth it causes a decrease in the star’s brightness which is 

referred to as flux. By monitoring these dimming over several months astronomers can infer the presence 

of an orbiting celestial body, potentially an exoplanet. Artificial intelligence with machine learning 

algorithms assists in determining whether the orbiting object is indeed an exoplanet. 

 

Various AI methods used in article [16] have been explored for detecting exoplanets; 

1. Decision Trees; These graphical structures utilize decision rules obtained from training data to predict 

the class or value of the target variable. They excel at handling linear decision-making tasks and are 

particularly useful for creating training models. 

2. Support Vector Machines (SVM); SVM is a learning algorithm that is well suited for both classification 

and regression analysis. These methods offer solutions with features making them widely used for 

their efficiency and reliability. 

3. Logistic Regression; This algorithm is used when analyzing regression, with a variable. It predicts the 

likelihood of an event occurring based on variables. 

4. Random Forest Classifier; It is a learning algorithm that combines decision trees to make predictions. 

By considering input from trees, it determines the classification of the test object. 

5. Multilayer Perceptron (MLP); This is a type of network that consists of linear layers, including input, 

hidden and output layers. Each perceptron can interact with others due to connectivity. There is a risk 

of overfitting. 

6. Convolutional Neural Networks (CNN); CNNs are networks mainly used for image classification. 

They employ filters for convolution operations to learn features in the input data. 

https://www.ijfmr.com/
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Each of these AI methods has strengths and applications allowing classification of exoplanets and analysis 

of transit properties. By combining these techniques, we have an approach to exoplanet detection that 

enhances result reliability and advances our understanding of these distant worlds. 

 

The text provided is an excerpt taken from a research paper [17] that explores the application of machine 

learning algorithms in identifying planets from data. The researchers aimed to minimize detections while 

still being able to detect rare types of planets. 

 

Here are the main points discussed in the text: 

1. Exploring the Data: To distinguish between signals and false positives the researchers experimented 

with various machine learning techniques. Their training data set consisted of planets eclipsing 

binaries, variable stars and light curves without transits. They also considered blend scenarios where 

signals from stars overlap. 

2. Extracting Features: In addition, to the information the researchers introduced features to capture more 

abstract or relational details. This included analysing the ratio of transit depth to width and examining 

the skewness of the distribution during transit events. 

3. Training Data: The entire dataset was divided randomly into two sets: a training dataset and a testing 

dataset. The training set was utilized to train classifiers, such as Support Vector Classifier (SVC) , 

Linear Support Vector Classifier (LinearSVC), regression, K nearest neighbours (KNN) and Random 

Forest Classifier (RFC).In order to improve the performance of the classifier, the features in the 

training data set were adjusted by centring and scaling them.  

4. Synthetic Minority Over Sampling Technique (SMOTE): To address the issue of under representation 

of planets in the data set, the researchers employed a technique called Synthetic Minority Over 

Sampling Technique (SMOTE). This involved generating data points for the minority class resulting 

in an increased number of detected planets. However, it also led to an increase in positives for some 

classifiers. 

5. Random forest classifier: After exploring classifiers the researchers ultimately chose to focus on the 

Random Forest Classifier (RFC) due to its recall rate. RFC is a method that combines decision trees 

trained on random subsets of the data. Its parameters, such as the number of trees, tree depth and 

number of features at each split were fine-tuned during the analysis. 

6. Feature importance: During the analysis it was found that the period of the planet, served as the 

indicator for classification. Other important features included transit width estimated radius of the 

planet square value and the number of transits. 

7. neural networks: In addition to methods Convolutional Neural Networks (CNNs) were also explored 

by the researchers to analyse the light curves. CNNs are a type of network proficient, in identifying 

complex patterns within data. For implementing the CNNs, Keras, a known learning framework was 

utilized.  

In general, the scientists discovered that the RFC performed well in identifying planets. It also generated 

a considerable amount of false positive results particularly when dealing with binary star systems. To 

enhance the precision of classification they additionally investigated the potential of CNNs, as a testing 

method. 
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This article [18] discusses how machine learning algorithms are typically categorized as supervised or 

unsupervised. Supervised methods rely on pre-labeled data to train and tune the algorithms, allowing for 

classification or regression of new instances. However, relevant pre-labeled data can be scarce in 

astronomy, especially when targeting rare events or serendipitous discoveries. The five primary classes of 

supervised learning algorithms used in astronomy are ANNs, CNNs, DTs, RFs, and SVMs. CNNs have 

gained widespread usage in astronomy since the Ball and Brunner review in 2010. 

 

ANNs, dating back to the 1950s, simulate biological neurons by weighting and combining signals from 

multiple inputs. SVMs, like ANNs, learn nonlinear decision boundaries but focus on finding hyperplanes 

that distinctly separate data in spaces of any dimensionality. Different ML/AI methods are applied to 

various data types, with CNNs being particularly suitable for image-style data. 

 

Comparative studies that involve multiple methods are essential for assessing their performance, and 

reference datasets can facilitate such analyses. For instance, the availability of PHoto-z Accuracy Testing 

datasets allowed for evaluating the efficacy of MLPQNA, a neural network-based method, in assigning 

photometric redshifts. Solar astronomy has seen more systematic comparisons, but other disciplines, such 

as stellar and variable star classifications, also engage in experimentation with emerging techniques like 

probabilistic RFs and transfer learning. 

 

TABLE 1 From a qualitative examination of a sample of ~200 refereed publications from 2017 to 

February 2019, a mapping emerges between the nature of astronomical data and the way that 

machine learning and artificial intelligence is actively been pursued. 

 

Notes: The table presents a summary of the types of astronomical data and the algorithms that appeared 

most regularly. The purpose of the table is to provide a convenient starting point for selecting an 

algorithm that has been used successfully for each data type. Abbreviations: ANN, artificial neural 

network; CNN, convolutional neural network; DBSCAN, density-based spatial clustering of applications 

with noise; DT, decision tree; GAN, generative adversarial network; k-M, k-means clustering; k-NN, k-

nearest neighbors; RF, random forest; SVM, support vector machine.

 

The article [19] explores the application of learning in the identification of gravitational waves (GWs) 

based on confirmed detections. Here is a brief overview of the approaches discussed in the article: 

Data/Methods ANN CNN GAN SVM   DT  RF DBSCAN K-NN K-M 

Image . . . . . .  .  

Spectroscopy . .  .  .   . 

photometry .    . . .  . 

Light Curve  .    .    

Time Series . .   . . .   

Catalogue .   . . . . .  

Simulation . . . .  .    

https://www.ijfmr.com/
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1. Gravitational wave Model: The article primarily focuses on studying the phase of black hole (BBH) 

waveforms and uses the IMRPhenomPv2 model to generate simulated waveforms, for both 

nonprecessing and processing GWs. 

2. Position Parameter Constraint: A key observation in lensed GWs is the expected time delay (Î�td) 

between two images. This delay is typically around a millisecond. To account for this the article 

restricts the parameter "y" to a range of 0.05 < y < 1 for Point Mass (PM) and Singular Isothermal 

Sphere (SIS) lens models. 

3. Generation of Realistic Spectrogram Samples: Real gravitational wave data captured by detectors like 

LIGO/Virgo often includes noise from sources. To emulate real world scenarios the article employs a 

Power Spectral Density (PSD) model known as the high-power model of the Advanced LIGO to 

generate spectrogram samples. The Signal, to Noise Ratios (S/Ns) of these samples are controlled to 

ensure they fall within the range of 10 â�¤ S/N â�¤ 50. 

4. Deep Learning Application: In this article they utilize the Visual Geometry Group (VGG) network, 

VGG 19, for both classification and regression purposes. To implement VGG 19, PyTorch is 

employed. The spectrogram samples are divided into three sets: training, development and evaluation. 

As a step the samples go through max normalization. For regression they also prepare target data 

containing the parameters to be predicted. 

5. Training the VGG Network: The VGG network is trained using the Adam optimization algorithm with 

a batch size of 128. They set the training epoch as 100. To prevent training progress, from stagnating 

they implement learning rate decay, which reduces the learning rate by a factor of 2. This training 

setup is applied for both classification and regression tasks utilizing output forms and loss functions 

 

The article [20] discusses approaches and methods utilized in machine learning to identify exoplanets. 

Here is an explanation, for each of the mentioned methods: 

1. Machine Learning: It's a branch of intelligence that applies theories and computer programming to 

construct models capable of making inferences based on data. In the context of exoplanet identification 

machine learning is used to classify objects of interest as either exoplanets or "false positives." 

2. 2.. Machine Learning: Python is a open source object oriented programming language preferred by 

data scientists. Its popularity in the field of data science and machine learning stems from its 

readability, ease of learning and the availability of statistical and machine learning packages. 

3. Data Scaling: Data scaling involves ensuring that all data features are presented on a scale. This step 

is crucial because features may have units or ranges potentially impacting the performance of machine 

learning models. Scaling techniques transform features to a scale, between zero and one to mitigate 

any potential bias. 

4. Cross Validation: Cross validation is a technique employed to assess the effectiveness of machine 

learning models by simulating exposure, to data. 

5. The dataset is split into subsets. The model is trained on one subset while evaluated on another. This 

process helps us assess how well the model performs and to identify if it becomes too specialized, to 

the training data, known as overfitting. 

6. Feature Elimination: To create a model that can be applied to datasets we identify and remove features 

from the dataset that have limited predictive ability. In the case of exoplanet identification, we work 

with the KOI (Kepler Object of Interest) dataset, which contains features. Eliminating redundant 

features helps us build an effective model. 

https://www.ijfmr.com/
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7. Classification: Classification is a type of supervised machine learning where observations are assigned 

a known class value based on their variables. In our study we perform classification categorizing 

objects of interest as either "FALSE POSITIVE" or "CONFIRMED" exoplanets. 

8. Machine Learning Model Pipeline: A machine learning pipeline outlines the steps involved in 

transforming a candidate dataset into a machine learning model. This includes data engineering, model 

training testing against data saving the model for use and deployment. 

9. Application Programming Interfaces (APIs): APIs serve as interfaces that enable communication and 

interoperability, between systems, models and code bases. 

 

In the realm of machine learning models APIs enable users to access and interact with these models 

without having to rewrite them in programming languages.  

 

Cloud computing, which involves providing computing resources and services on a service basis 

eliminates the need, for infrastructure. It encompasses Infrastructure as a Service (IaaS) Platform as a 

Service (PaaS) and Software as a Service (SaaS). In this study we utilize cloud computing services from 

Google Cloud Platform and Microsoft Azure to host the machine learning models and deploy web 

services. 

 

Collectively these methods and techniques contribute to the development and implementation of machine 

learning models, for the identification of exoplanets. 

 

The article [21] discusses techniques utilized by astronomers to search for exoplanets and determine their 

characteristics. Here are the key methods explained; 

1. Transit Method; This method detects exoplanets by observing the decrease, in brightness of a star 

when a planet crosses in front of it (known as transit). Researchers analyze the changes in intensity 

over time also referred to as curves to calculate parameters such as transit depth, duration, ingress and 

egress times and the relative sizes of the planet and star. 

2. Velocity Method; By analyzing the Doppler shift in the spectrum of the host star this method detects 

exoplanets. The gravitational pull of an exoplanet causes the star to exhibit a wobble resulting in shifts 

in the wavelengths of its light. These shifts can be measured to infer the presence of an exoplanet and 

estimate its mass. 

3. Gravitational Microlensing; This technique relies on the lensing effect produced when light bends 

around objects like stars or planets. When an exoplanet passes in front of a star it can temporarily 

amplify the stars brightness making it appear brighter. The microlensing method is particularly 

sensitive, to detecting planets in cases of alignment. 

4. Direct Imaging; This approach involves capturing pictures of exoplanets and the stars they orbit. It 

allows us to directly observe exoplanets and learn about their makeup and temperature. However direct 

imaging is challenging because exoplanets are often situated away and their faint light gets 

overshadowed by the brightness of the star. 

 

These techniques have their strengths and limitations. The transit method tends to be more effective, in 

detecting exoplanets while the radial velocity method requires measurements and stable spectrographs. 
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Gravitational microlensing depends on alignments and imaging necessitates advanced instruments with 

exceptional contrast capabilities. 

 

The article also mentions that the transit method has been particularly successful in discovering 

exoplanets, followed by the velocity method. The NASA Exoplanet Archive serves as a resource for 

accessing data on exoplanets. Confirmed discoveries, providing information, about their characteristics 

and host stars. 

 

The Article [22] uses these mechanisms for the solution: 

• Regression 

In the context of generating wave (GW) waveforms using the PyCBC module the article discusses methods 

that were used to address computational challenges and expand the range of input parameters while 

maintaining waveform accuracy. Here are the different techniques mentioned in the article; 

1. Using Numerical Relativistic Equations; The PyCBC module utilizes numerical equations to 

generate GW waveforms. However, these equations can result in overhead for specific input 

parameter values such, as celestial object masses. 

2. Parallelization; To overcome the challenges of generating a dataset of waveforms parallelization 

techniques were employed by utilizing the Multiprocessing module in Python. This allowed 

utilization of all CPU cores to speed up the waveform generation process. 

3. Analyzing Scatter Plot and Regression; To create a dataset peak amplitude during coalescence 

(SEOBNR) of bodies were recorded for different masses (m1, m2) and lower frequencies (f). A scatter 

plot was then used to examine the relationship, between peak amplitude during coalescence and the 

masses of bodies. The scatter plot demonstrated a linear curve and a linear regression model was 

applied to analyze the data. 

Note: -  PyCBC: An open-source Python module provides theoretical gravitational waveforms using 

Bayesian Belief Networks for various parameters and waveforms 

 

In this article they discuss the process of creating a waveform envelope by analyzing characteristics such, 

as amplitude, frequency and phase. They explain how they used curve fitting and approximation 

algorithms to calculate the coefficients (ea, eb, ec, xa and xb) for models that represent the relationship 

between amplitude and time. These models were fitted to the amplitude peaks during phases of the 

waveform. 

 

They also conducted regression analysis on the model parameters (ea, eb, ec, xa, xb) to observe how they 

change with the chirp mass (Mch) and frequency (f). To visualize the relationships between the model 

parameters and input variables, scatter plots and 3D plots were used. 

 

Additionally, the article mentions using curve fitting to identify the points in the waveform envelope that 

closely match the wave. By plotting the amplitude peaks in order against time they obtained a hyperbolic 

curve that was fitted to determine which points in the waveform envelope should be selected. 

 

Note; The PyCBC module, an open-source Python tool is used to generate waveforms based on Bayesian 

Belief Networks, for different parameters and waveforms 
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• Classification 

The article discusses how weak gravitational waves (GW) emitted by star planet systems; exoplanets are 

classified using the Random Forest algorithm. The main goal of this classification is, to validate models 

expand the use of GW concepts and address any inconsistencies in the regression analysis. 

 

To accurately classify the GW data the approach involves distinguishing mass classes. The Random 

Forests algorithm, which is based on decision trees is chosen for its ability to establish boundaries between 

these classes. However, there are some inconsistencies in the dataset that need to be considered by the 

algorithm in order to improve accuracy. To address the imbalance in data over sampling techniques are 

used, the Synthetic Minority Over Sampling Technique (SMOTE) which generates data to balance the 

classes. 

 

Once the data is balanced the Random Forests algorithm is applied. It uses a bagging-based routine with 

correlated decision trees to make predictions. This approach is well suited for classifying GW data as it 

thoroughly examines the features and makes judgments regarding mass classes. 

 

To evaluate the efficiency of the model various classification performance metrics are employed. Metrics 

such as Positive Rate (TPR) True Negative  

Rate (TNR) and Specificity provide insights, into how each class is handled and help interpret the data. 

The article discusses the outcomes of classification before and, after incorporating SMOTE. While 

including SMOTE generated data decreases the accuracy of the model compared to the one trained  each 

class individually. Despite a decrease in  accuracy, the model’s robustness is enhanced. 

 

4. RESULTS 

The paper discusses the outcomes of studies that utilized machine learning algorithms and artificial 

intelligence techniques to determine whether observations are exoplanets or not. These studies aimed to 

examine transit properties and identify exoplanets using approaches; Random Forest Classifier (RFC) 

Support Vector Classifier (SVC) and Convolutional Neural Network (CNN). Each method had its 

strengths and limitations and the findings offered insights, into their effectiveness. 

 

In one study both RFC and CNN achieved accuracy rates of around 90% in recognizing exoplanets from 

light curve data. RFC utilized derived features and external catalog information resulting in the 

identification of candidates displaying exoplanet characteristics. However, it encountered challenges when 

dealing with blended stars that shared descriptors with planets leading to some positive identifications. 

Conversely CNN directly accessed magnitude data folded on the period but sometimes misinterpreted 

eclipsing binaries or noisy data as transit signals resulting in false positives. Increasing the number of 

neurons in the CNN configuration helped alleviate this problem. 

 

Another study examined the performance of machine learning models like regression and an Ensemble 

CNN model, based on evaluation parameters such as accuracy, precision, sensitivity (recall) and 

specificity. The logistic regression model didn't perform as the other baseline models but the proposed 

Ensemble CNN model showed relatively better performance. Figure 10 presents the performance values, 

which highlight the sensitivity and specificity of each model. These results indicate that the trained VGG 
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model is effective, for regression and classification tasks related to lensed waves (GWs). However, in 

some cases the model tends to overestimate or underestimate predictions in populated regions of true 

parameters. This suggests that there is room for improvement with models. 

The model performed well when it came to categorizing types of spectrograms, such as lensed, unlensed 

and unknown. However, there were instances of misclassifications especially when dealing with lens 

models or when the beating patterns caused by lensing were not easily distinguishable. During the 

validation test using population models of GW progenitors the performance slightly decreased, indicating 

a sensitivity to the distribution of parameters used during training. Ensuring population models is essential 

for application. 

 

In general machine learning algorithms have shown results in classifying exoplanets and analyzing transit 

properties. They offer automated and efficient methods of classification that outperform regression 

models. However, some challenges have been observed, including positives, misclassifications and 

sensitivity to parameter distributions. To ensure reliable exoplanet identification it is important to combine 

methods and expert opinions while considering factors, like crowding, previous labels and stellar 

parallaxes. 

 

5. CONCLUSION 

The paper discusses studies that explore the use of machine learning algorithms and AI techniques to 

classify observations as exoplanets or not. These studies employed methods, like Random Forest Classifier 

(RFC) Support Vector Classifier (SVC) and Convolutional Neural Network (CNN) to analyze transit 

properties and identify exoplanets. Each method had its strengths and limitations offering insights into 

their performance. 

 

One particular study found that both RFC and CNN achieved 90% accuracy in identifying exoplanets 

based on light curve data. The RFC approach relied on derived features and external catalogue 

information, which resulted in exoplanet candidates. However, it faced challenges when dealing with stars 

leading to some positives. On the hand the CNN utilized magnitude data folded on the fitting period but 

encountered false positives due to misinterpretation of eclipsing binaries or noisy data as transit signals. 

Increasing the number of neurons in the CNN helped address this issue to some extent. 

 

Another study evaluated machine learning models, including regression and an Ensemble CNN model 

using accuracy, precision, sensitivity (recall) and specificity as evaluation parameters. The performance 

of the regression model was relatively weaker compared to others while the Ensemble CNN model 

exhibited overall performance. In some cases, there were instances of overestimation or underestimation 

of predictions indicating room for improvement, with precise models. 

 

The classification of types of spectrograms such as lensed, unlensed and unknown achieved accuracy with 

machine learning algorithms. However, there were instances of misclassifications especially when 

differentiating between lens models or when the lensing effects were less evident. Tests using population 

models of GW progenitors slightly lowered the performance highlighting the importance of population 

models for implementation. 

 

https://www.ijfmr.com/
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In summary, machine learning algorithms showed promising results in classifying exoplanets and 

analyzing transit properties. They offered automated approaches that outperformed regression models. 

Nevertheless, challenges like positives, misclassifications and sensitivity to parameter variations were 

observed. To improve exoplanet identification, it is vital to combine methods and expert opinions taking 

into account factors like crowding, previous labels and stellar parallaxes. 
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