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Abstract 

This paper presents the mechanical vibration analysis of a UAV (Unmanned aerial vehicle) wing spar. 

Theoretical and numerical calculations are performed by considering the spar as a cantilever beam. The 

model is created and modal analyses are performed by using the MATLAB software. The natural 

frequencies and the related mode shapes are obtained. The results of theoretical calculations linear, 

nonlinear and random vibration of both single and multiple degree of freedom (DOF) system are 

graphically presented. The study aims to illustrate vibration tendencies of the wing during flight. 

. 
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1. Introduction 

1.1 Wing structure 

A wing structure of an aircraft is a crucial component of flight that together with the help of airfoil 

profile that generates lift by the vehicle's forward airspeed and the shape of the wings. The internal 

structures of most wings are made up of spars and stringers running spanwise and ribs and formers or 

bulkheads running chordwise (leading edge to trailing edge).  

The spars are the principle structural members of a wing[1]. They support all distributed loads, as well 

as concentrated weights such as the fuselage, landing gear, and engines. The skin, which is attached to 

the wing structure, carries part of the loads imposed during flight. It also transfers the stresses to the 

wing ribs. The ribs, in turn, transfer the loads to the wing spars. 

 

Figure1: Wing internal structure 

•  
Spars are strong beams which run span wise in the wing and carry the force and moments due to the 

span wise lift distribution. They correspond to the longerons of the fuselage. They run parallel to the 
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lateral axis of the aircraft, from the fuselage toward the tip of the wing, and are usually attached to the 

fuselage by wing fittings, plain beams, or a truss. 

 

A wing has two spars. One spar is usually located near the front of the wing, and the other about two-

thirds of the distance toward the wing’s trailing edge Spar run parallel to the lateral axis of the aircraft, 

from the fuselage toward the tip of the wing, and are usually attached to the fuselage by wing fittings, 

plain beams, or a truss. Therefore the spar beams can be considered as a cantilever beam for the design 

purpose.  

Spars may be made of metal, wood, or composite materials depending on the design criteria of a specific 

aircraft. They can be generally classified into four different types by their cross sectional configuration 

as shown in Figure 2. They may be solid, Box shaped, partly hollow and I–beam spar. The top and 

bottom of the I–beam are called the caps and the vertical section is called the web. The entire spar can be 

extruded from one piece of metal but often it is built up from multiple extrusions or formed angles. The 

web forms the principal depth portion of the spar and the cap strips are attached to it. Together, these 

members carry the loads caused by wing bending, with the caps providing a foundation for attaching the 

skin. 

Figure 2: Types of Spar Configurations 

 
In this paper, the aircraft spar is considered as a cantilever with a decreased load distribution from the 

root to tip. This decrease is all the same whether the spar is a rectangular, I-section, tapered Made of 

Aluminum alloy 2024-T4:2024-T351 characteristics. 

 

In the present paper, linear, nonlinear and random vibration[2] was performed to both single and 

multiple degree of freedom model on an fixed wing UAV (Figure 3). Linear vibration on continuous 

model was also obtained. The simulation and calculations were performed by MATLAB and later 

compared to obtain a final analysis of the study. The material considered in the study is Aluminum 

alloys, valuable because they have a high strength-to-weight ratio, lightweight, corrosion resistant and 

comparatively easy to fabricate.  

Figure 3: Fixed wing UAV 

 
 

2. LINEAR VIBRATION OF A SINGLE DEGREE OF FREEDOM  

In linear vibration of a single degree of freedom analysis we will analyse free, forced and random 

vibration of the models considering both damped and undamped system and obtain a natural frequency 

and response.  
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2.1 Free vibration of a viscously damped single degrees of freedom system. 

When a system, after an initial disturbance, is left to vibrate on its own, the ensuing vibration is known 

as free vibration[3]. No external force acts on the system. The oscillation of a simple pendulum is an 

example of free vibration. In this case the system is viscously damped so that was taken that into 

consideration. 

 

A spar considered as a cantilever beam, mathematical models of the system was developed to investigate 

vibration in the horizontal direction. Consider the elasticity of the spar itself and introducing a damping 

and then mass (m) of the whole system is considered to be lumped at the end of the beam. Figure 1 

shows a below is the mathematical model of a spar; 

 

Figure 4: Viscously Damped Single Degrees of Freedom System 

 
 

Figure 5: free body diagram 

 
The viscous damping force F is proportional to the velocity or v and can be expressed as 

F = - cx       (1) 

  

Where c is the damping constant or coefficient of viscous damping and the negative sign indicates that 

the damping force is opposite to the direction of velocity. If x is measured from the equilibrium position 

of the mass m, the application of Newton’s law yields the equation of motion: 

𝑚�̈� + c𝑥 + 𝑘𝑥 = 0     (2) 

 

To solve the above equation we assume a solution in the form 

x(t)  =  C𝑒𝑠𝑡      (3) 

 

Where C and s are undetermined constants Introduce critical damping constant and damping ratio. 

For any damped system, the damping ratio z is defined as the ratio of the damping constant c to the 

critical damping constant 𝑐𝑐 

z =
C

𝐶𝐶
=

C

𝟐√𝑚𝑘
      (4) 

  

Substituting equation (ii) and (iii) into (ii) we obtain two roots 
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𝑠2 + 𝑧𝜔𝑛𝑠 + 𝜔𝑛 = 0    (5) 

 

𝑠1,2 = −𝑧𝜔𝑛 ± 𝜔𝑛√𝑧2 − 1   (6) 

Thus the solution, can be written as 

𝒙(𝒕) = 𝑪𝟏𝒆
(−𝒛+√𝒛𝟐−𝟏)𝝎𝒏𝒕 + 𝑪𝟐𝒆

(−𝒛−√𝒛𝟐−𝟏)𝝎𝒏𝒕 (7) 

The nature of the roots will determine behavior of the solution, depending upon the magnitude of 

damping. . C1 and C2 can be obtained through initial conditions. 

 

𝐶1 =
𝑥0𝜔𝑛(𝑧+√𝑧2−1)+�̇�0

2𝜔𝑛√𝑧2−1
   And  𝐶2 =

−𝑥0𝜔𝑛(𝑧−√𝑧2−1)+�̇�0

2𝜔𝑛√𝑧2−1
  (8) 

 

To find the free-vibration response of a viscously damped wing spar system, MATLAB program was 

used to find the response of a system with the Following data: 

 

Lumped Mass (m) of the system = 62.096kg 

Stiffness (K) = 3.046 x 106 N/m 

Damping constant (c) = 1.5x103N.s/m  

Initial displacement 𝑥0= 0.4321 m 

Initial velocity �̇�0 =1.05m/s 

The natural frequency 𝜔𝑛 = 221.479 and z = 0.005 

 

2.2 Results 

To find the free-vibration response of a viscously damped wing spar system, MATLAB program was 

used to find the response of a system with the 

Following data: 

Lumped Mass (m) of the system = 62.096kg 

Stiffness (K) = 3.046 x 106 N/m 

Damping constant (c) = 1.5x103N.s/m  

Initial displacement 𝑥0= 0.4321 m 

Initial velocity �̇�0 =1.05m/s 

The natural frequency 𝜔𝑛 = 221.479 and z = 0.005 

The results showed that the system is underdamped as showm in the figure below. 

 

Figure 6: Results of viscously damped single degrees of freedom system 
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2.3 Forced vibration of an undamped single degree of freedom system. 

In this case, the spar is an undamped system and is subjected to a harmonic force, so the damping 

equation; 

 

𝑐�̇� = 0       (9) 

If a force acts on the mass m of an undamped system, the equation of motion reduces to; 

 

𝑚�̈� + 𝑘𝑥 = 𝑓0𝑐𝑜𝑠𝜔𝑡    (10) 

 

The homogeneous solution of this equation is given by; 

 

𝑋ℎ = 𝑎1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝑎2𝑠𝑖𝑛𝜔𝑛𝑡   (11) 

 

Where 𝜔𝑛 is the natural frequency of the system. Because the exciting force (t) is harmonic, the 

particular solution    𝑋𝑝is also harmonic and has the same frequency 𝜔 Thus we assume a solution in the 

form; 

 

𝑋𝑝 = 𝐶1𝑠𝑖𝑛𝜔𝑡 + 𝐶2𝑐𝑜𝑠𝜔𝑡   (12) 

 

For this case; 

  𝜔 ≠ 𝜔𝑛      (13) 

 

So we can obtain C1 and C2 as;  

 

𝐶1 =
−𝑓0

2𝑚𝜔𝑛
   ,      𝐶2 = 0    (14) 

So the general solution for the system is; 

 

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)    (15) 

 

𝑎1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝑎2𝑠𝑖𝑛𝜔𝑛𝑡 +
−𝑓0

𝑚(𝜔𝑛
2−𝜔2)

𝑠𝑖𝑛𝜔t (16) 

 

The initial conditions 𝑥(0) = 𝑥0 𝑎𝑛𝑑 �̇�(0) = �̇�0 results to; 

 

𝑎1 = 𝑥0 𝑎𝑛𝑑 𝑎2 =
�̇�0

𝜔𝑛
−

𝑓0𝜔

𝑚(𝜔𝑛
2−𝜔2)

  (17) 

the response of the system under harmonic vibration will be: 

𝐱(𝐭) = 𝒙𝟎𝒄𝒐𝒔𝝎𝒏𝒕 +
�̇�𝟎

𝝎𝒏
−

𝒇𝟎𝝎

𝒎(𝝎𝒏
𝟐−𝝎𝟐)

𝒔𝒊𝒏𝝎𝒏𝒕 +
−𝒇𝟎

𝒎(𝝎𝒏
𝟐−𝝎𝟐)

𝒔𝒊𝒏𝝎𝐭  (18) 

MATLAB program was used to plot the response of a system based on the Following data: 

𝝎 = 𝟐𝟎𝟎 𝐫𝐚𝐝/𝐬,𝝎𝒏 = 𝟐𝟐𝟐. 𝟒𝟕𝟗𝐫𝐚𝐝/𝐬 ,the  F0= 1277N 

           𝒇𝟎 =
𝑭𝟎

𝒎
=

𝟏𝟐𝟕𝟕

𝟔𝟐.𝟎𝟗𝟔
= 𝟐𝟎. 𝟓𝟔𝟓 

Initial conditions: 

https://www.ijfmr.com/
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𝒙𝟎 = 𝟎. 𝟏𝒎 , �̇�𝟎 =
𝟎. 𝟐𝒎

𝒔
 

 

Figure 7: Results of harmonically excited single degrees of freedom system 

 
 

3. Linear Vibration of a Multi Degree Freedom System 

Systems that require two independent coordinates to describe their motion are called two degree of 

freedom systems. Considered a spar as a cantilever beam with the mass of a rib creating to masses with 

two independent coordinates creating a two degree of freedom system (DOF) and in this case we 

considered the free and forced vibration under damped and undamped condition. 

 

3.1 Free vibration of a viscously damped two degrees of freedom system 

Consider a viscously damped two-degree-of-freedom spring-mass system, shown in the Figure below; 

 

Figure 8 : A Viscously Damped Two-Degree-Of-Freedom Spring-Mass System 

 
Figure 9: Free body Diagram 

 
The motion of the system is completely described by the coordinates x1 and x2 which define the positions 

of the masses m1 and m2 and at any time t from the respective equilibrium positions. Since its free 

vibration no external forces and act on the masses. 

The free-body diagrams of the masses and are shown in Figure 7.The application of Newton’s second 

law of motion to each of the masses gives the equations of motion: 

In matrix form; 
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International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23069354 Volume 5, Issue 6, November-December 2023 7 

 

[
𝒎𝟏 𝟎
𝟎 𝒎𝟐

]
�̈�𝟏

�̈�𝟐
+ [

𝒄 𝟎
𝟎 𝟎

]
�̇�𝟏

�̇�𝟐
+ [

𝒌𝟏 + 𝒌𝟐 −𝒌𝟐

−𝒌𝟐 𝒌𝟐
]
𝒙𝟏

𝒙𝟐
=

𝟎
𝟎

   (19) 

𝒎𝟏 being the mass of a wing rib attached to the spar and 𝒎𝟐 being the mass of a lumped system, 𝒎𝟏=53 

k(g , 𝒎𝟐= 62.096 kg , 𝒄 = 𝟏𝟓𝟎 𝑵. 𝒔/𝒎, 𝒌𝟐 = 𝟐𝒌𝟏 = 𝒌=3.046 x 106 N/m 

[
𝒎𝟏 𝟎
𝟎 𝒎𝟐

]
�̈�𝟏

�̈�𝟐
+ [

𝒄 𝟎
𝟎 𝟎

]
�̇�𝟏

�̇�𝟐
+ [

𝟐𝒌 −𝒌
−𝒌 −𝒌

]
𝒙𝟏

𝒙𝟐
=

𝟎
𝟎

    (20) 

Or 𝑴�̇� + 𝑲𝒚 = 𝟎         (21) 

Where 𝑴 = [
𝒄 𝑴
𝑴 𝟎

] , 𝑲 = [
−𝑴 𝑲
𝟎 𝑲

]𝒂𝒏𝒅 𝒀 =
�̇�
𝒙

 

The solution is assumed as  

𝐲 =  𝛗𝒆−𝜸𝒕          (22) 

Where γ are the eigenvalues of M-1K and φ are the eigenvectors. The general solution is a linear combi-

nation over all solutions 

𝒚 = ∑ 𝒄𝒋𝝋𝒋𝒆
−𝜸𝒋𝒕𝟒

𝒋=𝟏          (23) 

 And after introduction of initial conditions; 

𝒙𝟏(𝟎)  = 𝟎, 𝒙𝟐(𝟎)  =  𝟎. 𝟎𝟎𝟓 𝐦, �̇�𝟏 (𝟎 =  𝟎, �̇�𝟐 (𝟎)  =  𝟎   (24) 

𝒚 = ∑ 𝒄𝒋𝛗𝒋
𝟒
𝒋=𝟏 = VC        (25) 

𝑪 = 𝑽−𝟏𝒚𝟎           (26) 

 

The MATLAB code to find the free-vibration response of the system and modal nodes and response of 

the system is as below; 

 

Figure 10: Results of a 2 DOF viscously damped system 

 
 

3.2 Forced Vibration of Undamped Two Degrees of Freedom System 

In this case harmonically excited two degree of freedom system of a wing spar was analysed. Since 

damping was disregarded; c =0, the below equations were utilized to obtain a steady state response and 

frequency-response curve was plotted. 
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Figure 11: harmonically excited two degree of freedom system 

 
When masses m1 and m2 are excited by force  

𝑓1(𝑡) = 𝐹10𝑐𝑜𝑠𝜔𝑡         (27) 

The equation of motion can be expressed as; 

[
𝒎𝟏 𝟎
𝟎 𝒎𝟐

]
�̈�𝟏

�̈�𝟐
+ [

𝒌𝟏 + 𝒌𝟐 −𝒌𝟐

−𝒌𝟐 𝒌𝟐
]
𝒙𝟏

𝒙𝟐
=

𝑭𝟏𝟎𝒄𝒐𝒔𝝎𝒕
𝟎

    (28) 

𝒎𝟏 being the mass of a wing rib attached to the spar and 𝒎𝟐 being the mass of a lumped system, 𝒎𝟏=53 

kg , 𝒎𝟐= 62.096 kg , 𝒄 = 𝟎, 𝒌𝟐 = 𝟐𝒌𝟏 = 𝒌=3.046 x 106N/m 

 

𝒇𝟏(𝒕) = 𝑭𝟏𝟎𝒄𝒐𝒔𝝎𝒕 , 𝒇𝟐 = 𝟎        (29) 

 

We can write the steady-state solutions as 

 

𝐱𝐣(𝐭)  =  𝐗𝐣𝐞−𝐢𝛚𝐭, 𝒋 =  𝟏, 𝟐        (30) 

Where X1 and X are, in general, complex quantities that depend on 𝜔 and the system parameters. 

Substitution of Equation. (29) And (30) into Equation of motion leads to; 

 

[
−𝜔2𝑚1 + 3𝑘 −2𝑘

−2𝑘 −𝜔2𝑚2 + 2𝑘
] {

𝑋1

𝑋2
} = {

𝐹10

0
}     (31) 

We define impedance matrix 𝒁𝒓𝒔(𝒊𝝎) as 

𝒁𝒓𝒔(𝒊𝝎) = −𝝎𝟐𝒎𝒓𝒔 + 𝒌𝒓𝒔       (30) 

So equation (iii) can be written as  

[𝒁𝒓𝒔(𝒊𝝎)]�⃗⃗� = 𝑭𝟎
⃗⃗ ⃗⃗           (31) 

[𝒁(𝒊𝝎)] = [
𝒁𝟏𝟏(𝒊𝝎) 𝒁𝟏𝟐(𝒊𝝎)
𝒁𝟐𝟏(𝒊𝝎) 𝒁𝟐𝟐(𝒊𝝎)

]      (32) 

�⃗⃗� = 𝑭𝟎
⃗⃗ ⃗⃗  [𝒁(𝒊𝝎)]−𝟏         (33) 

The solution will be; 

𝑿𝟏(𝒊𝝎) =
𝒁𝟐𝟐(𝒊𝝎)𝑭𝟏𝟎

𝒁𝟏𝟏(𝒊𝝎)𝒁𝟐𝟐(𝒊𝝎)−𝒁𝟏𝟐
𝟐(𝒊𝝎)

=
−𝝎𝟐𝒎𝟐+𝟑𝒌

(−𝝎𝟐𝒎𝟐+𝟐𝒌)−𝝎𝟐𝒎𝟐+𝟑𝒌−𝟒𝒌𝟐   (34) 

𝑿𝟐(𝒊𝝎) =
−𝒁𝟏𝟐(𝒊𝝎)𝑭𝟏𝟎

𝒁𝟏𝟏(𝒊𝝎)𝒁𝟐𝟐(𝒊𝝎)−𝒁𝟏𝟐
𝟐(𝒊𝝎)

=
−𝟐𝒌𝑭𝟏𝟎

(−𝝎𝟐𝒎𝟐+𝟐𝒌)−𝝎𝟐𝒎𝟐+𝟑𝒌−𝟒𝒌𝟐   (35) 

With the data, MATLAB was used to plot frequency response curves. 
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Figure 12: Results of Forced Vibration of Undamped Two Degrees of Freedom System 

 
 

4. Non Linear Vibration 

4.1 Lindstedt’s perturbation method 

In the case of non linear vibration analysis, we considered the pertubation. The perturbation method is 

applicable to problems in which a small parameter associated with the nonlinear term of the differential 

equation[4]. The solution is formed in terms of a series of the perturbation parameter,𝜺, the result being 

a development in the neighbourhood of the solution of the linearized problem. If the solution of the line-

arized problem is periodic, and if 𝜺, is small, we can expect the perturbed solution to be periodic also. 

We can reason from the phase plane that the periodic solution must represent a closed trajectory. The 

period, which depends on the initial conditions, is then a function of the amplitude of vibration. Consider 

the free oscillation of a mass on a nonlinear spring, which is defined by the equation; 

�̈� = 𝝎𝒏
𝟐𝒙 + 𝜺𝒙𝟑         (36) 

With initial conditions 𝒙(𝟎) = 𝑨, �̇�(𝟎) = 𝟎 When 𝜺 = 0, the frequency of oscillation is that of the linear 

system,𝝎𝒏 = √
𝒌

𝒎
. We seek a solution in the form of an infinite series of the perturbation parameter p. as 

folIows: 

𝒙 = 𝒙𝟎𝒕 + 𝜺𝒙𝟏𝒕 + 𝜺𝟐𝒙𝟐𝒕        (37) 

Furthermore, we know that the frequency of the nonlinear oscillation will depend on the amplitude of 

oscillation as well as 𝜺 on. We express this fact also in terms of a series in𝜺; 

𝝎𝟐 = 𝝎𝒏
𝟐 + 𝜺𝜶𝟏 + 𝜺𝟐𝜶𝟐        (38) 

Where the 𝜶𝟏are as yet undefined functions of the amplitude, and 𝝎 is the frequency of the nonlinear 

oscillations. We consider only the first two terms of Equations (37) and (38), which will adequately il-

lustrate the procedure. Substituting these into Eq. (i), we obtain; 

�̈�𝟎 + 𝜺�̈�𝟏 + (𝝎𝟐 − 𝜺𝜶𝟏)(𝒙𝟎 + 𝜺𝒙𝟏) + 𝜺(𝒙𝟎
𝟑 + 𝟑𝜺𝒙𝟎

𝟐𝒙𝟏 + ⋯)   (39) 

Because the perturbation parameter 𝜺 could have been chosen arbitrarily, the coefficients of the various 

powers of 𝜺 must be equated to zero. This leads to a system of equations that can be solved successively: 

�̈�𝟎 + 𝝎𝟐𝒙𝟎 = 𝟎         (40) 

�̈�𝟏 + 𝝎𝟐𝒙𝟏 = 𝜶𝟏𝒙𝟎 − 𝒙𝟎
𝟑       (41) 

The solution to the first equation, subject to the initial conditions, 𝒙(𝟎) = 𝑨, �̇�(𝟎) = 𝟎  is; 

𝒙𝟎 = 𝑨𝒄𝒐𝒔𝝎𝒕         (42) 
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By substituting this into the equation above we get; 

�̈�𝟏 + 𝝎𝟐𝒙𝟏 = 𝜶𝟏𝑨𝒄𝒐𝒔𝝎𝒕 − 𝑨𝟑𝒄𝒐𝒔𝟑𝝎𝒕      (43) 

= (𝜶𝟏 −
𝟑

𝟒
𝑨𝟐)𝑨𝒄𝒐𝒔𝝎𝒕 −

𝑨𝟑

𝟒
𝒄𝒐𝒔𝟑𝝎𝒕      (44) 

Where 𝒄𝒐𝒔𝟑𝝎𝒕 =
𝟑

𝟒
𝒄𝒐𝒔𝝎𝒕 +

𝟏

𝟒
𝒄𝒐𝒔𝟑𝝎𝒕 has been used. We note he re that the forcing term 𝒄𝒐𝒔𝝎𝒕 

would lead to a secular term 𝒕𝒄𝒐𝒔𝟑𝝎𝒕 in the solution for 𝒙𝟏 (i.e., we have a condition of resonance). 

Such terms violate the initial stipulation that the motion is to be periodic; hence, we impose the condi-

tion; 

𝜶𝟏 −
𝟑

𝟒
𝑨𝟐 = 𝟎         (45) 

With the forcing term 𝒄𝒐𝒔𝝎𝒕 eliminated from the right side of the equation, the general solution for is 

 𝒙𝟏 

 𝒙𝟏 = 𝑪𝟏𝒔𝒊𝒏𝝎𝒕 + 𝑪𝟐𝒄𝒐𝒔𝝎𝒕 +
𝑨𝟑

𝟑𝟐𝝎𝟐 𝒄𝒐𝒔𝟑𝝎𝒕     (46) 

𝝎𝟐 = 𝝎𝒏
𝟐 +

𝟑

𝟒
𝜺𝑨𝟐         (47) 

By imposing the initial conditions 𝒙(𝟎) = 𝑨, �̇�(𝟎) = 𝟎  , constants 𝑪𝟏𝒂𝒏𝒅 𝑪𝟐  are 

 𝑪𝟏 = 𝟎 𝒂𝒏𝒅 𝑪𝟐 = −
𝑨𝟑

𝟑𝟐𝝎𝟐        (48) 

 𝒙𝟏 =
𝑨𝟑

𝟑𝟐𝝎𝟐 (𝒄𝒐𝒔𝟑𝝎𝒕 −  𝒄𝒐𝒔𝝎𝒕)       (49) 

The non linear vibration response equation can therefore be obtain by; 

𝒙 = 𝑨 𝒄𝒐𝒔𝝎𝒕 + 𝜺
𝑨𝟑

𝟑𝟐𝝎𝟐 (𝒄𝒐𝒔𝟑𝝎𝒕 −  𝒄𝒐𝒔𝝎𝒕)     (50) 

𝝎 = 𝝎𝒏√𝟏 +
𝟑

𝟒

𝜺𝑨𝟐

𝝎𝟎
𝟐         (51) 

Below figure was obtained after analysis. 

 

Figure 13: Results of Nonlinear Vibration by Perturbation Method 

 
 

5. Random Vibration of a Single Degree Of Freedom 

The type of functions that were considered to this point can be classified as determinisic i:e 

mathematical expressions can be written that will determine their instantaneous values at any time t. 

However, in real life situation, there are a number physical phenomena that results in non deterministic 
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sense like in the case we consider forces acting on aircraft as it flies in air. Random vibration of a 

viscously damped system by arbitrary force was determined. 

 

Figure 14: Random vibration of a viscously damped system by arbitrary force 

 
 

Equation of motion: 

�̈� + 𝟐𝐳𝛚𝐧�̇� + 𝛚𝐧
𝟐𝐱 =

𝐅(𝐭)

𝐦
       (52) 

𝛚𝐧 = √
𝐤

𝐦
   , 𝐳 =

𝐜

𝐜𝐜
 , 𝐜𝐜 = 𝟐𝐦𝐤      (53) 

In any statistical mehod a large amount of data is necessarryto establish reliability example in this case 

forces acting on the aircraft, so many records are collected. Each record is a sample and the total 

collection of samples is called ensemble. We can compute the ensemble average of instantaneous forces 

in each sample at time 𝒕𝟏. We can also multiply the instantaneous forces in each sample 𝒕𝟏 𝒂𝒏𝒅 𝒕𝟏 + 𝝉. 

𝒙(𝒕) = ∫ 𝒙(𝝉)𝒉(
𝒕

𝟎
𝒕 − 𝝉)𝒅𝝉      (54) 

 

Figure 15: Results of Random Vibration in a Single Degree Of Freedom System 

 
 

6. Continuous Vibration Analysis of a Wing Spar 

Since the wing spar is a cantalever beam, analysis of lateral vibration of beams was considered. Since 

it’s a uniform beam its classified as euler-bernoulli beam. 

The equation of motion of Euler-Bernoulli Beam is 

𝒎(𝒙)
𝝏𝟐𝝎

𝝏𝒕𝟐
+ 𝜺

𝝏𝝎

𝝏𝒕
+ 𝑬𝑰

𝝏𝟒𝝎

𝝏𝒙𝟒
= 𝒇(𝒙, 𝒕)      (55) 
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Where m is mass per unit length of beam defined as      m = ρA. There is no damping and no external 

force is applied so that c = 0, f(x, t) = 0, and EI(x) and m(x) are assumed to be constant, equation simpli-

fied to; 

𝝏𝟐𝝎

𝝏𝒕𝟐
+

𝑬𝑰

𝒎

𝝏𝟒𝝎

𝝏𝒙𝟒 = 𝒇(𝒙, 𝒕)        (56) 

For the eigenvalue problem, assume the product solution as  

𝝎(x, t) = W(x)F(t)         (57) 

Where W(x) depends on the spatial position alone and F (t) depends on time alone. Introducing equation 

(58) into equation (57), we can obtain the following equation as; 

𝒅𝟒𝑾(𝒙)

𝒅𝒙𝟒 − 𝜷𝟒𝑾(𝒙) = 𝟎        (58) 

Where  

𝜷𝟒 =
𝝎𝟐𝒎

𝑬𝑰
, 𝟎 < 𝒙 < 𝒍.        (59) 

Figure 16: Cantilever beam Boundary conditions[5] 

  
The boundary conditions for the clamped-free case is  

𝑾(𝟎) = 𝟎,   
𝒅𝑾(𝒙)

𝒅𝒙
|
𝒙=𝒐

= 𝟎,
𝒅𝟐𝑾(𝒙)

𝒅𝒙𝟐 |
𝒙=𝑳

= 𝟎     (60) 

𝒅𝟐𝑾(𝒙)

𝒅𝒙𝟐 |
𝒙=𝑳

= 𝟎         (61) 

 

6.1 Results 

The solution obtained  is; 

   W(x) = C1 sin βx + C2 cos βx + C3 sinh βx + C4 cosh βx 

Where C1, C2 ,C3 and C4 can be obtained by the boundary conditions 

The characteristic equation is; 

CosβL cosh βL = −1        (61) 

From the numerical analysis, β1L = 1.875, β2L = 4.694, β3 L = 7.855. 

From the specification of a wing spar and characteristics of the aluminium alloy we obtain the data be-

low (ASM aerospace specification Metal Inc.); 

E= 7.31Gpa, EI= 1.44x106Nm2, m= 62.096kg, L=3.6m 

𝝎𝟏 = 𝟏. 𝟖𝟕𝟓𝟐√
𝑬𝑰

𝒎𝑳𝟒 = 𝟒𝟏. 𝟑𝟏𝒓𝒂𝒅/𝒔𝒆𝒄      (62) 

𝝎𝟐 = 𝟒. 𝟔𝟗𝟒𝟐√
𝑬𝑰

𝒎𝑳𝟒 = 𝟐𝟓𝟖. 𝟗𝒓𝒂𝒅/𝒔𝒆𝒄      (63) 

𝝎𝟑 = 𝟕. 𝟖𝟓𝟓𝟐√
𝑬𝑰

𝒎𝑳𝟒 = 𝟕𝟑𝟎. 𝟓𝒓𝒂𝒅/𝒔𝒆𝒄      (64) 
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The above three modes frequencies of the Continuous Vibration Analysis of a Wing Spar were plotted in 

MATLAB. 

 

Figure 17: Results of the first three modes of the Continuous Vibration Analysis of a Wing Spar 

 
 

7. Conclusion and Summary 

This study was performed for an UAV aircraft wing spar modeled to analyse different vibration patterns. 

The study was done for linear, nonlinear and random vibration considering the wing spar as a cantilever 

beam for both damping and undamped scenarios.  

Responses for all the vibration analysis were plotted using MATLAB software to analyse the behaviour 

of the beam when subjected to different vibration phenomenon. The natural frequency for all single of 

freedom vibration analysis is constant meanwhile the frequencies for the two degree of freedom and 

continuous vibration showing some variations.  

For future study, other forces acting on the aircraft due to the speed will be incorporated in the analysis 

to better observe conditions of vibration. 
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