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Abstract: 

This article is based on a series talks I gave on the topic mentioned in the title 

in a Counsellor Seminar at proms’. The exposition till Section is based on and 

most of the remainder is based on and some notes on Algebraic Number 

Theory available. 
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         Introduction:  

The purpose of this article is to study the single most important ring that comes up in 

algebraic Number theory - Dedekind domains.  These domains share many properties with Z, 

and indeed, Z is a Dedekind domain. Moreover, weird rings like Z [   −5], which are 

notorious for not having unique. Prime factorization, are also Dedekind domains.  In fact, 

one of the most beautiful and important facts about these domains is that “unique prime 

factorization is restored at the ideal level”. The ring of integers of any algebraic number 

field is a Dedekind domain, and so it is a very crucial object to study for number theorists. 

Furthermore, as Example 1 suggests, they also come up a lot in algebraic geometry. Finally, 

Dedekind domains are also very fascinating from a purely commutative algebra point of 

view, and several equivalent characterizations of them are available in literature. Without 

further ado, let’s get started. 

 Definition 1. An integral domain D is a Dedekind domain if  

1. D is a No ethereal ring. 

2. D is integrally closed in its field of fractions. 

3. All non-zero prime ideals of D are maximal. 1 

Example 1. Easier examples to follow. And this particular example won’t be 

              needed anywhere the ring of regular functions of a non-singular at fine  

                   curve over an algebraically closed field is a Dedekind domain. 
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Example 2. The following are some non-examples of Dedekind domains. Here, k 

                     denotes a field, and x, y, xi’s are in determinates. The proofs of these 

                     Statements are elementary exercises in com- mutative algebra. 

        K[x]/⟨x2⟩ is not a Dedekind domain as it is not a domain. 

                        K[x, y]/⟨x2 − y3⟩ is not a Dedekind domain as it is not integrally closed.  

                        K[x, y] is not a Dedekind domain as the non-zero prime ideal ⟨x⟩ of k[x, y]  

             i s  not maximal. 

       The next proposition gives a plethora of Dedekind domains: 

                          K[x1, x2 ...] is not a Dedekind nd doma in as it is not Noetherian 

  Proposition: A principal ideal domain is a Dedekind domain. 

   Proof: Let D be a principal ideal domain (PID). Then it is trivially a Noetherian  

 Ring. Since every principal ideal domain is a unique factorization domain      (UFD), 

and UFDs are inte- grally closed domains, we get that D is integrally closed in its field 

of fractions. 

Let p = (p) = (0) be a prime ideal of D. Suppose m = (q) is a maximal ideal of D 

prime, p is a prime element of D, and so it is irreducible, whence either q or d is a unit. 

But q cannot be a unit since it generates a maximal ideal.  Thus, d is a unit, and hence, q 

= p.d−1, implying (q) (p).  Thus, we have p = m, and it follows that every non-zero 

prime ideal of D is maximal. 

Fractional ideals: 

The study of fractional ideals is one of the key building blocks of the general theory 

of Dedekind domains. Roughly speaking, fractional ideals are kind of “a fraction times an 

ideal”, and this provides a way to discuss “inevitability” of ideals: just like to discuss 

inevitability of ordinary integers, one brings in fractions. 

In this section, D denotes an integral domain which is not a field, and K its field of 

fractions. 

Definition: A D-sub module M of K of the form M = cI = {x ∈ K | x = ca for 

some a ∈ I}, where c ∈ K∗ and I is a non-zero ideal of D is called a fractional ideal of 

D, or a fractional D-ideal. 

Proposition: Let D be a Noetherian integral domain, then the  

   following conditions on a non-zero D-sub module M of K are equivalent: 

              M is a fractional ideal of D. M is a finitely generated D-sub module of K. 

          Proof:    Suppose  M  = c I  is  a  fractional  ideal  of  D,  where  c ∈ K∗ 

                 and I is a    D     Σ-   ideal.  Let I = ⟨a1, a2... an⟩, where each ai ∈ D. 
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                Then, every element of M can be expressed as 

               With di ∈ D, i.e., M is the D-submodule of K generated by {ca1, ca2... can}. 

2 =   ⇒   1:   Suppose M is generated by 

{k1, k2, ..., kn},  where  ki  =  ai/bi,  with  ai, bi  ∈  D  and  bi =   0 ∀ 1 ≤ i ≤ n. 

             Let M1 =b 1I1   and M2 = b 2 I2   (where b1, b2 ∈ K∗ and I1, I2  are ideals of  

          People familiar with basic ring theory can easily give an explicit description of this  

           product, much in lines of the definition of the product of two ideals of a ring. 

 The multiplication on the set of fractional ideals of D is associative commutative all our 

rings are commutative! has an identity element can you guess what Thus, the set of 

fractional ideals of D form a commutative monoid. We will see later that it in fact forms a 

group when D is a Dedekind domain. 

The multiplication also preserves inclusions in the sense that if M1 ⊆ M2, then M1N ⊆ M2 N, 

where M1, M2 and N are fractional ideals. In particular, we note that if I ⊆ D is an 

ideal, then IM ⊆ DM = M for all fractional ideals M. 

If a ∈ K∗, we write ⟨a⟩ = aD = {ay | y ∈ D}. Any fractional ideal of this form is said 

to be principal. We clearly have ⟨a⟩⟨b⟩ = ⟨ab⟩. 

We  call  a  fractional  D-ideal  M  invertible  if  there  exists  a  fractional  D-ideal   N  such  

that no  the MN = D. 2. for any fractional D-ideal M, we write D.   

II−1 = ⟨x, y⟩ Ç D. To see that I is not invertible, refer to Corollary 1 below. 

       Example:  Let,  D = k[x, y], where k is a field, and x, y indeterminate.  

                        Consider the ideal I = ⟨x2, x y⟩ ⊆ D. Note that 1/x ∈ I−1 \ D, so it  

                        is weakly invertible.  Let’s determine I−1: clearly, 1 D ⊆ I−1.  Also,  

                      f  ∈ I−1  =⇒  f.x2 = p  and  f. xy = q  for some  p, q  ∈ D  = ⇒  p. xy 

                               = q.x2 =⇒ x | p 

               as D is a UFD. Thus, f = p/x2 ∈ 1 D, and so I−1 = 1 D. Finally, 

             II−1 = ⟨x, y⟩ Ç D. To see that I is not invertible, refer to Corollary 1 below. 

          Proposition: Let M be a fractional D-ideal. Then: 

1. If a ∈ K∗, then ⟨a⟩−1  = ⟨a−1⟩. 

2. If a ∈ M ∩ K∗, then M −1 ⊆ ⟨a−1⟩.  

If D is Noetherian, then M −1 is a finitely generated D   module is a fractional 

        D-ideal from Proposition 2. 
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Proof. 1. Let a ∈ K∗ be a unit of K. Then, 

⟨a⟩−1 = {x ∈ K | x ⟨a⟩ ⊆ D} 

= {x ∈ K | x ay ∈ D ∀ y ∈ D} 

= {x ∈ K | x a ∈ D} [all our rings have units!] 

= {a−1y | y ∈ D} 

= ⟨a−1⟩ 

2. Let a ∈ M ∩ K∗, and suppose x ∈ M −1 is any element. Then, we have xM ⊆ D from the 

very definition of M −1. But then, x M ⊆ D = ⇒ x a ∈ D = ⇒  x ∈ a−1D = ⟨a−1⟩.  

As x ∈ M −1 was arbitrary, we conclude that M −1 ⊆ ⟨a−1⟩. 

Corollary:  Let M  be an invertible fractional D-ideal, and  

                       Suppose MN = D.  Then,    N = M −1. 

This corollary shows that M is invertible if and only if MM −1 = D. This indeed justifies 

the name M −1 for the set {x ∈ K | xM ⊆ D}! 

Proof of Corollary 1. Let x N.  Then, x MD   = x M −1, whence NM −1.  

Now, since multiplication of fractional ideals preserves inclusions, we get: 

             D =MN ⊆ MM −1 ⊆ D [The last containment follows from the definition of M  −1]  

= ⇒ MM −1 = D 

= ⇒ (NM) M −1 = ND = N 

= ⇒ M −1 = N 

 The main theorems: 

 Theorem: Every fractional ideal of a Dedekind domain is invertible. 

Before discussing the proofs of these theorems, let us see an example where Theorem 

fails if the domain is not Dedekind gives a failure of Theorem 2 in arbitrary domains. 

    Theorem:  Unique prime factorization of ideals every non-zero ideal I of a 

Dedekind domain D can be written as a product I = p1p2...pn, where pi are non-zero 

prime ideals of D; moreover, this representation is unique up to the order of factors. 

Lemma:  If all the non-zero prime ideals of an integral domain are maximal, 

then an inclusion p ⊇ p1p2...pn  where  p  and  all  the  p j  are  non-zero  prime  ideals,  implies  

that  p = pi  for  some  i. maximal. Suppose the result is true when n = r for some r ∈ N. 

consider the case n = r +1. If p = p1, then we are done. If not, then since our domain has 

dimension 1, pr+1   ¢ p.  But then,   ∃ c ∈ p r+1 S.t c ∈/   

             p. Now, if b is any element of p1p2...pr, then b c    p, and hence b    p.  Thus, p   
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          p1p2...pr   =   p = pi for some i     1, 2...  

Lemma: Let D be a Dedekind domain. Then, a D-ideal I is invertible ⇐ ⇒ I  

                        = m1m2...mr,  

Where mj are invertible parme ideals of D. 

Proof: If I = m1m2...mr, where each mj is an invertible prime idea l of D. Then, m is 

clearly the inverse of I. suppose that I is an invertible D-ideal. If I = D, we can take I 

to be the empty product of ideals, so the result is trivially t let I Ç D. Then, as I−1 ≥ 

D, and so I is weakly invertible. Thus, I m1, where m1 is some maximal weakly-

invertible ideal. We thus conclude that Im1
−1 m1m1−1 = D In turn we get that I   I 

m1
−1 D, where the inequality holds since the one given in the proof. we have that 

Im1
−1 Ç m1m1

−1 = D. Now, note that 

(I   m 1
−1)(m1I

−1) = D, Im−1   is an  If I m−1 = D, we have, I = m1. Otherwise, by 

repeating the earlier argument multiple times, we obtain IÇ Im−
1 

1 Ç Im−
1 

1m2
−1   Ç  

Where m i ’ s are maximal weakly invertible ideals. But D is chain stabilizes. 

Primes in Dedekind extensions: 

The AKLB setup: 

Our next goal would be to show that the ring of integers of a finite extension of Q is 

a Dedekind domain. Not only are the results of this section of utmost importance in number 

theory, these also give us a way of getting new Dedekind domains from old ones.   

Notation (AKLB setup): Let A be a Dedekind domain, K its field of 

fractions, L a finite extension of K, and B the integral closure of A in L. 

Pictorially 

  L 

K 

   

 

B 

 

                                                    A 

Proposition: Assume AKLB, and let p be a prime of A. Let S = A\p, and set A′:= 

S−1A = A p, and B′:= S−1B.  If  q | pB,  then  we  have  A′/p A′ =∼ A/p  and  B′/q B′ =∼ 

B/q  as  rings. 

Before proving the above proposition, let us note that in the above setup, A′KLB′ also 

falls in the “AKLB” setup. Checking that A′ and B′ are Dedekind domains are very 

simple arguments centering properties of localizations and integral extensions. Also, 

note that B′ = S−1B is the integral closure of  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR23069383 Volume 5, Issue 6, November-December 2023 6 

 

  

| 

 

A′ = S−1A in S−1L = L  because integral closures respect a field; refer  

 

K 
B′ 

  B 

                                          A′  

Proof : Let, A′/p A′  = S−1A/S−1p =∼ A/p  [as  p  is  maximal;  use  the  last  lemma].  Note 

that q ∩ S = φ. Indeed,  

X ∈ q ∩ S 

= ⇒ x ∈ q and x ∈ A \ p 

=   ⇒ x ∈ q ∩ A and x ∈/ p 

=   ⇒ x ∈ p and x ∈/ p,   a contradiction 

another application of the last lemma yields B′/q B′ = S−1B/S−1q   

Properties of Dedekind domains: 

The remainder of this article, D denotes a Dedekind domain (unless otherwise specified) 

which is not a field, and K its field of fractions. 

From Theorem 2, we see that the set of fractional D-ideals, endowed with multiplication, 

forms an abelian group, which we denote by ID. 

Let M = ⟨b⟩−1I  be a fractional D-ideal, then we may express both ⟨b⟩ and I  as a product 

of prime 

(i) If M and N  are fractional D-ideals,  then we immediately deduce from the definition 

that 

V p (M N) = v p (M) + v p (N) 

(ii) As v p(D) = 0, and as every fractional ideal M of D is invertible, we conclude v 

p(MM −1) = 

V p (D) = 0, whence v p (M −1) = −v p (M) 

(iii) M is a D-ideal if and only if v p (M) ≥ 0 ∀ p (why?). 

(iv) We say that a fractional ideal M divides a fractional ideal N, written M     N, if N = MI 

for some D-ideal I. 

(v) (division   ⇐  ⇒   containment) If M  and N  are fractional ideals of a Dedekind 

domain D, then M | N ⇐ ⇒ v p(M ) ≤ v p(N ) ∀ p  ⇐ ⇒  M ⊇ N .  Indeed, the 

first equivalence follows from (iii). To prove that division implies containment, 

observe that if M | N, then N = MI ⊆ MD = M. And to show that containment 

implies division, note that if N ⊆ M, then NM −1 ⊆ MM −1 = D. Thus, M | M 

(NM −1) (as NM −1 ⊆ D means it s a D-ideal), or, M | N. 

https://www.ijfmr.com/
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Y 

Y 

Y 

∩ 

(vi) (lcm  of  two   I deals) We have v p(M ∩ N ) = Qs   up(v p(M  

                       V p (N Q) ∀   p. fractional     

                 That p u p   ⊆ M ∩ N division ⇐  ⇒ containment.  , 

                               M ∩ N ⊆ M and M ∩ N ⊆ N 

= ⇒ M | (N ∩ M) and N | (N ∩ M) 

= ⇒ v p (M ∩ N) ≥ v p (M) and v p (M ∩ N) ≥ v p (N) ∀ p 

= ⇒ v p (M ∩ N) ≥ sup (v p (M), v p (N)) ∀ p 

= ⇒ p up | (M ∩ N) 

                                                    p   

= ⇒ pup ⊇ M ∩ N 

                           Thus, we get Q pup = M ∩ N. 

 (g .c .d  of  two  fractional ideals)  

We have v p (M + NQ)    inf (v p (M), PQ (N)) ∀ p. 

M + N ⊆   Q pwp   division ⇐ ⇒ containment on the other hand, 

                          M ⊆ M + N and N ⊆ M + N 

= ⇒ (M + N) | M and (M + N) | N 

=  ⇒ vp(M + N ) ≤ vp(M ) and vp(M + N ) ≤ vp(N ) ∀ p 

=  ⇒ vp(M + N ) ≤ inf (vp(M ), vp(N )) ∀ p 

= ⇒ (M + N) | pwp 

                                                     P 

= ⇒ pw p ⊆ M + N  

 P up = M + N p 

(vii) (g c d. l c m = product) If M and N are two fractional D-ideals, then (M N) (M 

+N) = MN. Indeed, we have  V p (MN ) 

= vp (M) + v p (N) [from (i)] 

= sup (vp(M ), vp(N )) + inf (vp(M ), vp(N ) (why?) 

= v p (M ∩ N) + v p (M + N).  

The rest follows from the aforementioned properties of p-adic valuations. 
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Lemma: 

1. I + J = D 

2. I ∩ J = IJ 

3. V p (I) · v p (J) = 0 ∀ p 

Proof. 1 ⇐ ⇒ 2: 

I + J = D 

⇐ ⇒ V p (I + J) = 0 ∀ p  

⇐ ⇒ inf (v p (I), v p (J)) = 0 ∀ p 

⇐ ⇒ Sup (v p (I), v p (J)) = v p (I) + Vp (J) ∀ p 

⇐ ⇒ I ∩ J = IJ [from (vi)] 

I ∩ J = IJ 

⇐ ⇒ inf (v p (I), v p (J)) = 0 ∀ p [as seen above] 

⇐   ⇒ v p (I).v p (J) = 0 ∀ p   

Example: Assume AKLBG. If [L: K] is prime, exactly one of the three possibilities can 

hold for any prime p of A: totally ramify in B, completely split in B, or remain inert 

in B. 

 Theorem: (Cyclotomic reciprocity law) let p be an odd prime. Suppose p n and let f 

be the smallest positive integer such that p f ≡ 1(mod n).  Then, p decomposes into g = φ (n) 

distinct primes in Z [ζ n  ], each of which has residue degree f. 

Proof. Let p be a prime in Z [ζ n] which lies over p. We claim that Z[ζ n]/p is a splitting 

field of x n 1 over Fp technically speaking, our base field is the image of Fp under the map ϕ 

as defined the polynomial is x n − (1 + p)).  Indeed, from Lemma we know that ζ i + p 

/= ζ j + p if 

1 = j, and each of them are a root of x n   1 in Z [ζ n]/p. Thus, x n 1 splits completely 

in Z [ζ n]/p, and the claim follows since the field is generated by ζ n + p over ϕ(Fp). 

Thus, Lemma shows that [Z [ζ n]/p: Z/p Z] = f.  On the other hand, by definition,   [Z [ζ n   

]/p:  Z/p Z] is the residue degree fp. Thus, fp = f. As, p ‡ n, we have ep = 1 from we have 

epfpgp = [Q (ζn): Q] = φ (n), where the last inequality gp = g = φ (n), and we are do 
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