

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

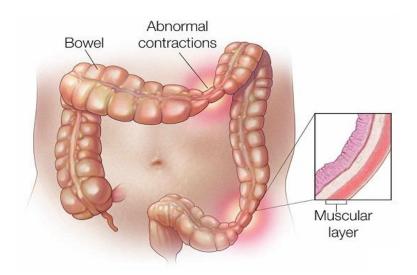
Review on Recent Advancements in The Treatment of Irritable Bowel Syndrome (IBS)

Prathmesh Sudhir Gogate¹, Prof. Shailesh. G. Jawarkar², Dr. N. N. Bobade³

ABSTRACT:

Irritable Bowel Syndrome (IBS) is a prevalent and chronic gastrointestinal disorder that affects millions worldwide, characterized by a complex interplay of symptoms, including abdominal pain, bloating, diarrhea, and constipation. Despite its widespread impact, the precise etiology of IBS remains elusive, with genetic, environmental, and psychosocial factors contributing to its pathogenesis. Historically, IBS management has centered on symptom alleviation, often through a combination of dietary interventions, pharmacotherapy, and psychological support. Recent advances in the field, however, have brought about a transformative shift in the approach to IBS care, offering innovative strategies and treatments aimed at addressing the multifaceted nature of the condition.

These emerging paradigms encompass personalized medicine, microbiota-based therapies, and an expanding array of pharmacological treatments that target various aspects of IBS pathophysiology, such as altered gut motility and visceral hypersensitivity. Additionally, the integration of telemedicine and digital health platforms has improved patient access to care and facilitated ongoing symptom management. Notably, Tenapanor (IBSRELA®), the first NHE3 inhibitor approved for treating IBS-C, presents a promising therapeutic option. Ongoing research efforts focus on unraveling the intricate mechanisms underlying IBS, exploring the potential of microbiome-based interventions, and tailoring treatments to individual patients' needs, with the aim of ultimately enhancing the quality of life for those afflicted by this challenging gastrointestinal condition.


KEYWORD: Irritable Bowel Syndrome (IBS) Overview, Abdominal pain, constipation, Diarrhea, IBS Subtype, IBS Management, medication and treatment, IBS future advancement in treatment.

INTRODUCTION:

IBS stands for Irritable Bowel Syndrome. It's a common gastrointestinal disorder that affects the large intestine and can cause symptoms like abdominal pain, bloating, diarrhoea, and constipation. IBS is a chronic condition and its exact cause is not fully understood, but it's believed to involve a combination of factors, including genetics, diet, and stress. It's important for individuals with IBS to work with healthcare professionals to manage their symptoms and develop a personalized treatment plan. Millions of individuals worldwide suffer from Irritable Bowel Syndrome (IBS), a chronic functional gastrointestinal illness. Traditionally, symptom management has been the main emphasis of IBS treatment.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Pharmacotherapy For Abdominal Pain

Pharmacotherapy for abdominal pain in Irritable Bowel Syndrome (IBS) typically focuses on alleviating the pain and discomfort associated with the condition. Some medications that may be used to manage abdominal pain in IBS include:

Antispasmodic drugs like hyoscyamine (Levsin) or dicyclomine (Bentyl) can help reduce intestinal muscle spasms, which can contribute to abdominal pain. Pain Modulators is medications like tricyclic antidepressants (TCAs) or certain selective serotonin reuptake inhibitors (SSRIs) may be prescribed in low doses to help modulate pain perception in the gut.

Peppermint oil capsules, such as enteric-coated peppermint oil, have been shown to provide relief from abdominal pain in some individuals with IBS due to its smooth muscle relaxing properties. Soluble fibre supplements like psyllium (Metamucil) or methylcellulose (Citrucel) may help regulate bowel movements and reduce abdominal discomfort in some cases.

Some probiotics containing specific strains of beneficial bacteria may alleviate IBS symptoms, including abdominal pain, by promoting a healthier gut microbiome. Low-Dose Tricyclic Antidepressants (TCAs) in addition to pain modulation, low doses of TCAs like amitriptyline or nortriptyline may also help with abdominal pain by affecting gut motility.

In some cases, healthcare providers may prescribe medications like lubiprostone (Amitiza) or linaclotide (Linzess), which are specifically approved for the treatment of IBS with constipation (IBS-C) and may help relieve abdominal pain.

Pathogenesis Of Irritable Bowel Syndrome

The exact pathogenesis of Irritable Bowel Syndrome (IBS) is not fully understood, but it is believed to be a complex interplay of several factors, including:

- 1. Gut Motility: Abnormalities in the movement of the digestive tract, such as hypersensitivity to gut contractions or altered transit times, can contribute to IBS symptoms.
- 2. Visceral Hypersensitivity: Some individuals with IBS may have increased sensitivity to pain or discomfort in the gut, leading to heightened perception of symptoms.
- 3. Gut-Brain Axis: The communication between the gut and the brain is thought to play a significant role. Stress, anxiety, and psychological factors can influence gut function and exacerbate IBS symptoms.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

- 4. Microbiome Dysbiosis: Imbalances in the gut microbiota (dysbiosis) have been associated with IBS. Changes in the composition and diversity of gut bacteria may contribute to symptom development.
- 5. Immune Activation: Some studies suggest that immune system activation in the gut may contribute to IBS symptoms in some individuals.
- 6. Genetic Factors: There is evidence that genetics may play a role in predisposing some people to IBS, although specific genes have not been definitively identified.
- 7. Dietary Triggers: Certain foods or food intolerances, such as lactose or gluten intolerance, can trigger IBS symptoms in susceptible individuals.
- 8. Infections: Gastrointestinal infections can sometimes lead to post-infectious IBS (PI-IBS), where symptoms persist after the infection has cleared.

Management Strategies Conclusion:

Irritable Bowel Syndrome is a common gastrointestinal disorder with a multifactorial etiology, complex clinical presentation, and significant impact on patients' lives. While its exact cause remains elusive, advancements in research and a multidisciplinary approach to management have improved our understanding and treatment options. Future research will likely continue to shed light on the underlying mechanisms of IBS and offer more effective therapies, ultimately improving the quality of life for those affected by this condition. lifestyle changes, pharmacotherapy, and psychological interventions. Dietary interventions may include the low FODMAP diet, which restricts certain fermentable carbohydrates, and fibre supplementation. Medications such as antispasmodics, laxatives, and antidepressants may be prescribed based on the predominant symptoms.

Pharmacothera	py for diarrhoea				
Peripheral opiod agonist	Loperamide, Diphenoxylate and difenoxin				
Bile acid sequestrant	Cholestyramine				
	Colesevelam				
	Colestipol				
5- HT3 receptor antagonist	Ramosetron				
	Ondansetron				
	Alosetron				
Mixed opioid agonist	Eluxadoline				
Antibiotics	Rifaximin				
Pharmacothera	py for constipation				
Soluble Fiber	Psyllium				
Laxative	Lactulose, magnesium citrate &				
	polyethlene glycol				
Gaunylate cyclase -C agonist	Linaclotide				
Type 2 chloride channel activator	Lubiprostone				

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Pharmacotherapy for abdominal pain				
Antispasmodics	Dicycylomine			
	Mebeverine			
	Otilonium			
	Peppermide oil			
Peripheral opioid agonists	Trimebutine			
Tricyclic antidepressant	Desipramine			
	Amitriptyline			
Selective serotonin reuptake	Paroxetine			
inhibitor	Sertraline			

Dietary Interventions

Advancements in dietary management include the refinement of the low FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) diet and its integration into clinical practice. Moreover, emerging evidence suggests that modifying dietary fiber intake and introducing prebiotics may benefit IBS patients.

Personalized Medicine

Advancements in personalized medicine are revolutionizing IBS treatment. Biomarkers, genetic profiling, and microbiome analysis enable tailored therapeutic approaches, ensuring more effective outcomes for individual patients.

Pharmacological Treatments:

New pharmaceuticals are under investigation for IBS treatment. Serotonin receptor modulators, selective 5-HT3 antagonists, and non-absorbable antibiotics are among the drug classes showing promise in clinical trials. These medications target various aspects of IBS pathophysiology, such as altered motility and visceral hypersensitivity.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

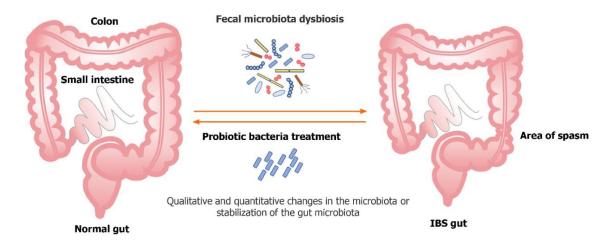
Psychological and Mind-Body Therapies

Psychological therapies, including cognitive-behavioural therapy (CBT) and gut-directed hypnotherapy, continue to be essential in IBS management. Recent studies emphasize their effectiveness in addressing the gut-brain axis dysfunction that plays a pivotal role in IBS.

Telemedicine and Digital Health

The rise of telemedicine and digital health platforms has improved access to IBS care, enabling remote monitoring, symptom tracking, and virtual consultations. These tools enhance patient engagement and support ongoing symptom management.

Tenapanor OR IBSRELA®


The first and only NHE3 inhibitor to receive FDA approval for treating adult IBS-C is IBSRELA® (tenapanor). As evidenced by the Phase 3 clinical studies, IBSRELA, a first-in-class NHE3 inhibitor, offers a novel mechanism of action and remarkable efficacy results to address the various abdominal symptoms and constipation that are often experienced by patients with IBS-C. inhibitor of sodium/hydrogen exchanger 3 (NHE3) with a localized effect. decreases the amount of salt absorbed from the colon and small intestine, which causes the intestinal lumen to secrete more water, the intestinal transit time to speed up, and the consistency of the stool to become softer. Additionally demonstrated in animal models to lessen intestinal permeability and visceral hypersensitivity, which in turn reduces stomach discomfort.

Future Directions

Ongoing research aims to unravel the complex pathophysiology of IBS and develop more targeted treatments. Advancements in gut microbiome research and the potential role of the microbiota in IBS pathogenesis hold promise for future therapeutic interventions. Additionally, personalized medicine approaches may help tailor treatments to individual patients' needs.

Microbiota-Based Therapies

One of the most exciting developments in IBS treatment is the emergence of microbiota-based therapies. Faecal microbiota transplantation (FMT) and microbiome-targeted interventions show promise in restoring gut microbial balance and alleviating IBS symptoms. Research is ongoing to identify specific microbial signatures associated with IBS subtypes for personalized treatment approaches.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Subtype	Treatment
IBS-C (Constipation-Predominant) IBS-M (Mixed Bowel Habits)	 Dietary modification: High diet, increased water intake. Medication: laxatives, stool softeners (under medical guidance). Lifestyle changes: regular exercise, establish a bathroom routine. Dietary Modifications: balance diet considering both constipation and diarrhoea triggers. Medications: Tailored based on predominate symptomsstress management: essential due to stress-triggered symptoms.
IBS-D (Diarrhoea predominant)	 Dietary Modification: low-FODMAP diet, avoidance of trigger food. Medication: antispasmodics, antiarrheal drug. Stress management: mindfulness, medication. Probiotics: Consult a healthcare provider for recommendations.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Class	Agent in	Dosag	MOD	Indication	AEs	Place in
	class	e form				therapy
Serotonin (5-	Tegaserod	Oral	A partial	When there	Back	Was taken off
HT4) Receptor		tablet	neuronal	is no other	pain,	the market
Agonist			agonist of the 5-	therapeutic	nausea,	because of
			HT4 receptor	option,	headache,	the possible
			that reduces	women	migraine,	danger of
			visceral	(less than	dizziness,	cardiovascul
			sensation while	55 years	diarrhoea,	ar problems;
			stimulating	old) who	and	it is now only
			intestinal	have IBS-C	flatulence	accessible for
			secretion and	or CIC		emergency
			the peristaltic	should have		therapy with
			reflex.	emergency		FDA
				treatment.		approval.
Sodium/Hydroge	Tenapanor	Oral	Inhibitor of	Manageme	Gas,	Used to treat
n Exchanger 3		tablet	sodium/hydroge	nt of adult	diarrhoea,	refractory
Inhibitor			n exchanger 3	IBS-C.	and	IBS-C in
(NHE3)			(NHE3) with a		distension	both men and
			localized effect.		of the	women.
			decreases the		abdomen	
			amount of salt			
			absorbed from			
			the colon and			
			small intestine,			
			which causes			
			the intestinal			
			lumen to secrete			
			more water, the			
			intestinal transit			
			time to speed			
			up, and the			
			consistency of			
			the stool to			
			become softer.			
			Additionally			
			demonstrated in			
			animal models			
			to lessen			
			intestinal			
		<u> </u>	permeability			

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

	T	Т	Т .	T	T	Г
			and visceral			
			hypersensitivity			
			, which in turn			
			reduces			
			stomach			
			discomfort.			
Chloride	Lubiproston	Oral	Bicyclic fatty	Treatment	Diarrhoea	Used to treat
Channel	e	tablet	acid stimulates	for adult	, nausea,	women with
Activators			intestinal fluid	female	and	refractory
			secretion and	patients	headaches	IBS-C.
			motility by	with opioid-		
			acting locally as	induced		
			a chloride	constipatio		
			channel (CIC-2)	n associated		
			activator at the	with		
			apical section of	persistent		
			the gut.	non-cancer		
			the gut.			
				pain and chronic		
				idiopathic		
				constipatio		
G 1.	71	0 1	000	n (CIC).	D: 1	**
Guanylate	Plecanatide	Oral	GCC agonist	Therapy for	Diarrhoea	Used to treat
cyclase-C		tablet	that affects the	adults with		refractory
(GCC) agonist	Linaclotide	Oral	intestinal	CIC and	Flatulenc	IBS-C in
		tablet	epithelium's	IBS-C.	e,	both men and
			luminal surface.		diarrhoea,	women.
			GI transit time		and	
			reduces and		abdomina	
			intestinal fluid		1 pain	
			increases.			
			Viscosity-			
			related pain			
			may also be			
			lessened by			
			increased			
			extracellular			
			cGMP through			
			a decrease in			
			pain-sensing			
			neuron activity.			
			neuron activity.			

Table listing the available treatments for IBS-C along with their indications, mechanisms of action, and side effects

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

CONCLUSION:

Irritable Bowel Syndrome is a common gastrointestinal disorder with a multifactorial etiology, complex clinical presentation, and significant impact on patients' lives. While its exact cause remains elusive, advancements in research and a multidisciplinary approach to management have improved our understanding and treatment options. Future research will likely continue to shed light on the underlying mechanisms of IBS and offer more effective therapies, ultimately improving the quality of life for those affected by this condition.

REFERENCE:

- 1. Chapman RW, Stanghellini V, Geraint M, Halphen M. Randomized clinical trial: macrogol/PEG 3350 plus electrolytes for treatment of patients with constipation associated with irritable bowel syndrome. Am J Gastroenterol. 2013; 108: 1508-1515.
- 2. Tack J, Camilleri M, Chang L, et al. Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders. Aliment Pharmacol Ther. 2012; 35: 745-767.
- 3. Camilleri M, Kerstens R, Rykx A, Vandeplassche L. A placebo-controlled trial of prucalopride for severe chronic constipation. N Engl J Med. 2008; 358: 2344-2354.
- 4. Drossman DA, Chey WD, Johanson JF, et al. Clinical trial: lubiprostonein patients with constipation-associatedirritable bowel syndrome –results of two randomized, placebo-controlledstudies. Aliment Pharmacol Ther. 2009; 29: 329-341.
- 5. Chey WD, Lembo AJ, Lavins BJ, et al. Linaclotide for irritable bowel syndrome with constipation: a 26-week, randomized, double-blind, placebo-controlled trial to evaluate efficacy and safety. Am J Gastroenterol. 2012; 107: 1702-1712.
- 6. Rao S, Lembo AJ, Shiff SJ, et al. A 12-week, randomized, controlled trial with a 4-week randomized withdrawal period to evaluate the efficacy and safety of linaclotide in irritable bowel syndrome with constipation. Am J Gastroenterol. 2012; 107: 1714-1724.
- 7. Nelson AD, Black CJ, Houghton LA, et al. Systematic review and network meta-analysis: efficacy of licensed drugs for abdominal bloating in irritable bowel syndrome. Aliment Pharmacol Ther. 2021: 54: 98-108.
- 8. Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. 2015; 313: 949-958.
- 9. Martinez-Vazquez MA, Vazquez-Elizondo G, Gonzalez-Gonzalez JA, et al.Effect of antispasmodic agents, alone or in combination, in the treatment of irritable bowel syndrome: systematic review and meta-analysis. Rev Gastroenterol Mex. 2012; 77: 82-90.
- 10. Delvaux M, Wingate D. Trimebutine: mechanism of action, effects on gastrointestinal function and clinical results. J Int Med Res. 1997; 25: 225-246.
- 11. Gorard DA, Libby GW, Farthing MJ. Effect of a tricyclic antidepressant on small intestinal motility in health and diarrhea-predominant irritable bowel syndrome. Dig Dis Sci. 1995; 40: 86-95.
- 12. Salari P, Abdollahi M. Systematic review of modulators of benzodiazepine receptors in irritable bowel syndrome: is there hope? World J Gastroenterol. 2011; 17: 4251-4257.
- 13. Leventer SM, Raudibaugh K, Frissora CL, et al. Clinical trial: dextofisopam in the treatment of patients with diarrhoea-predominant or alternating irritable bowel syndrome. Aliment Pharmacol Ther. 2008; 27: 197-206.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

- 14. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorder. *Gastroenterology*. 2006;130(5):1480–1491. [PubMed] [Google Scholar]
- 15. Doshi JA, Cai Q, Buono JL, et al. Economic burden of irritable bowel syndrome with constipation: a retrospective analysis of health care costs in a commercially insured population. *J Manag Care Spec Pharm.* 2014;20(4):382–390. [PMC free article] [PubMed] [Google Scholar]
- 16. Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. *JAMA*. 2015;313(9):949–958. [PubMed] [Google Scholar]
- 17. Viberzi [package insert]. Parsipanny, NJ: Actavis Pharma, Inc. 2015 [Google Scholar]
- 18. Xifaxan [package insert]. Bridgewater, NJ: Salix Pharmaceuticals. 2015 [Google Scholar]
- 19. Amitiza [package insert]. Bethesda, MD: Sucampo Pharma Americas, LLC. 2013 [Google Scholar]
- 20. Linzess [package insert]. Cincinnati, OH; Forest Pharmaceuticals, Inc. 2015 [Google Scholar]
- 21. IBS in America Survey Summary Findings: December 2015. The American Gastroenterological Association. [Accessed July 25,
- 22. 2016]. http://ibsinamerica.gastro.org/files/IBS_in_America_Survey_Report_2015-12-16.pdf
- 23. Trinkley KE, Sill BE, Porter K, Nahata MC. Prescribing patterns for outpatient treatment of constipation, irritable bowel syndrome-related constipation, and opioid-induced constipation: a retrospective cross-sectional study. *J Manag Care Spec Pharm.* 2015;21(11):1077–1087. [PMC free article] [PubMed] [Google Scholar]
- 24. Hayes PA, Fraher MH, Quigley EMM. Irritable bowel syndrome: the role of food in pathogenesis and management. *Gastroenterol Hepatol* (*N Y*). 2014;10(3):164–174. [PMC free article] [PubMed] [Google Scholar]