

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

A Review on Medicinal Plants Used as Alternative Treatment for Malaria: An Anti-Malarial Drug

Abubakar Iliya

Ph.D. Biotechnology, Department of Bioengineering and Bioscience, Lovely Professional University

Abstract

Malaria remains an important risk around the globe public health, particularly in tropical and subtropical areas. Malaria, a disease that infects millions of human beings worldwide, is still caused by numerous *Plasmodium species*, with *Plasmodium falciparum* being the most virulent and common in sub-Saharan Africa. Pregnant women tend to be at high risk despite great success in lowering malaria-related deaths. This study focuses on the usage of natural antimalarial treatments in Ghana, an economy with a severe malaria epidemic. Communities in Ghana rely on those natural remedies due to they perceive them to be efficient and affordable, especially in rural areas. The study's objectives involve figuring out the herbs applied in these preparations, evaluating their scientific validity, as well as deciding if they correspond to the requirements of the FDA for both domestic and foreign marketing. The World Health Organization's World Health Assembly has recognized the elimination of parasitic infections as one of its top goals. The obstacle with current antimalarial drug resistance necessitates people to search for novel treatments. The success rate of various plant-based malaria treatments is looked at in this study. In the end, results indicate the need for additional study in the search for appropriate antimalarial medical products and educate us to understand conventional herbal treatments and their roles in fighting the spread of malaria.

Keywords: Malaria, consequences, vaccination, prevention, treatment, and medicinal plants.

INTRODUCTION

Malaria poses a significant public health threat, particularly in tropical and subtropical regions. Various *Plasmodium* species, such as *Plasmodium* falciparum, *Plasmodium* malaria, *Plasmodium* ovale, *Plasmodium vivax, and Plasmodium knowlesi*, are responsible for causing malaria (Yu et al., 2020). The transmission of these parasites occurs through the bites of female *Anopheles* mosquitoes. *P. falciparum*, being the most contagious species, leads to the highest rates of disease and mortality. Malaria remains a pressing issue, with 619,000 deaths and 247 million reported cases worldwide (Rahi & Sharma, 2022). sub-Saharan Africa (SSA), where malaria cases and fatalities are most prevalent globally (Nkumama et al., 2017). In 2016, the World Health Assembly established a global technical plan aiming to eliminate malaria by 2030. Notably, the reduction in malaria mortality has been significant, but pregnant women in SSA remain the most at-risk population (Angupale et al., 2023).

About 29 countries accounted of malaria for 95% of malaria cases worldwide, southeast Asia region accounted for the second highest burden globally, while only five countries accounted for more than half of the cases. Nigeria accounted for 27%, the democratic republic of Congo 12%, Uganda 5%, Mozambique

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

4%, and Niger 3% (Pradhan et al., 2022). Five countries in the Region—Bhutan, DPR Korea, Nepal, Thailand, and Timor-Leste—are among 25 countries and one territory worldwide that have been designated as having the potential to eradicate malaria by 2025. The Maldives and Sri Lanka have continued to maintain their status as malaria-free nations. September of 2023 (WHO, 2023).

Ghanaians, particularly in rural areas, widely embrace herbal remedies for malaria treatment due to their perceived effectiveness and accessibility. Herbal treatments vary in plant compositions based on traditional knowledge. The research aims to identify herbs used in Ghanaian herbal antimalarial medications, examine scientific support for their use, and assess compliance with FDA standards (Peprah P et al., 2019).

The World Health Assembly's commitment to achieving a 90% reduction in global malaria occurrence and mortality by 2030 is crucial. Universal healthcare inclusion and access to plasmodium treatment, prevention, and detection are emphasized (Million et al., 2022). The early diagnosis pillar, focusing on swift and effective malaria treatment, relies on remedies incorporating locally renowned herbs (Million et al., 2022).

While significant progress was made post-World War II with the introduction of DDT and chloroquine, recent years pose new challenges. Since 2019, certain regions have witnessed an increase in malaria cases. In 2021, 247 million cases were diagnosed in 87 malaria-endemic nations, with Southeast Asia accounting for 3% of global cases. Children under the age of five remain the most vulnerable, constituting 67% of malaria-related deaths in 2019, attributed to their immunization status (WHO, 2021).

S/n	year	Number of cases	Number of death	References
1	2019	232000000	568000	(WHO, 2020)
2	2020	245000000	625000	(WHO, 2020)
3	2021	247000000	619000	(Prevention, 2021)
				(WHO, 2021)
4	2022	247000000	619000	(WHO, 2022)

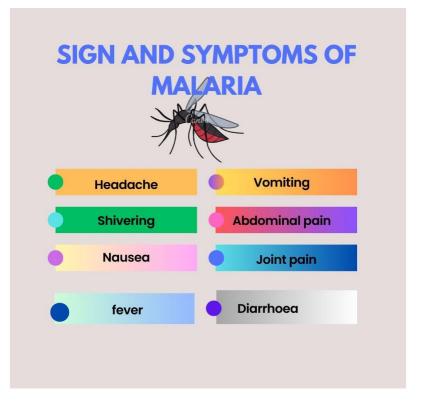

 Table 1: Malaria reported cases from 2019- 2022

figure 1: Malaria cases in bar chart on the above

 International Journal for Multidisciplinary Research (IJFMR)

 E-ISSN: 2582-2160
 • Website: www.ijfmr.com
 • Email: editor@ijfmr.com

Malaria Consequence Globally: A Quick Inform

In tropical and subtropical areas, malaria has a direct impact on the health of local populations and the growth of local economies. 247 million additional cases are anticipated by the World Health Organization (WHO 2021). Fashionable 2021, 29 of the 84 nations where malaria is widespread (including French Guiana) Africa accounted for 95% of entire suitcases and 96% of deaths from the disease worldwide (WHO, 2021). Four nations: Nearly half of all cases were in the Democratic Republic of the Congo (12.3%), Nigeria (26.6%), Uganda (5.1%), and Mozambique (4.1%) (World Malaria Day, 2023).

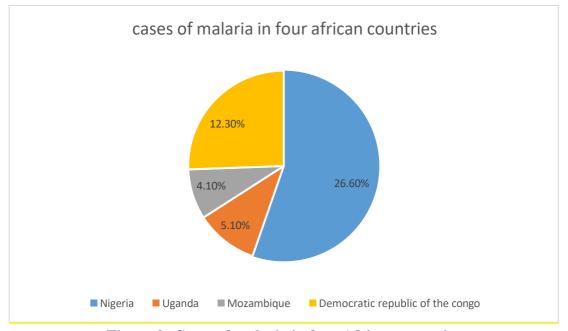


Figure 2: Cases of malaria in four African countries

Nine nations in Southeast Asia were home to endemic malaria in 2021, book-keeping for 5.4 million suitcases in addition to 2% of statistics circumstances global. In 2021, 79% of the world's malaria cases originated in India. *P. vivax* was the culprit in almost 40% of all cases in this area. Malaria cases have dropped by 76% over the past 20 years, or 17.4 million fewer cases in 2021. The attachment of China as a nation with a malaria-free certification is a major recent accomplishment on the Asian continent, 79% of all malaria cases in Latin America are traced to Colombia, Venezuela Brazil, and Colombia. *P. vivax* is responsible for the majority of cases in this area 71.5% in 2021.

The Amazon, which includes nine shapes of Acre, Amapá, Amazonas, Maranho, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins, is the only constituency in Brazil where malaria can be transmitted. Approximately 99.7% of the nation's malaria suitcases are concentrated in fashionable unique parts. *P. vivax* and *P. falciparum* are the two major *Plasmodium* varieties that source anthropoid malaria infections in Brazil. *P. vivax* contagions accounted for 83.0% (114,449) of the reported circumstances, pursued by *P. falciparum* impurities, which were responsible for 17.0% (23,408) of the cases (Siqueira AM, 2016).

Epidemiological data as of 2020 show a yearly decrease in malaria cases, with 139,211 suitcases recorded cutting-edge 2021. Many indigenous communities reside in the Legal Amazon, including the Yanomami, one of the biggest indigenous populations, who had about 11,530 cases of malaria in the previous years, or 9.93% of entirely malaria suitcases in Brazil (WHO, 2021). New approaches and enhancements to disease surveillance and management are nevertheless required.

Argentina (2019), El Salvador (2021), and Paraguay (2018) using nothing instances of malaria on behalf of 3 years consecutively, are among the nations that have received the WHO accreditation of malaria-free nations.

Table 2 Comparative analysis of the <i>plant</i> extract							
Biological	English	Biological	Method of	Part of	references		
names	names	activities	application	the			
				plant to			
				be used			
Carica papaya	Papaya	Treatment of	Juice from fresh	Leave,	(Pierre et al.,		
		malaria, dengue,	leaves has been	fruits	2011) (Nigussie		
		typhoid,	extracted and	and	& Wale, 2022a)		
		immunomodulatory	ingested. Crush	roots	(Mekonnen et al.,		
		and antiviral	the new leaves		2020)		
		activity	and consume		(Million et al.,		
			themselves by		2022)		
			way of or without				
			milk.				
Azadirachta	Neem	Hemorrhoids, Body	consuming	leaves	(Nigussie &		
indica		Ache, malaria and	prepared <i>leaves</i>		Wale, 2022b)		
		Skin Infection	and water Leaves		(Natural		
			The filtrate is		Products with		
			ingested once the		Potential		
			newly grown				

Table 2 Comparative analysis of the *plant* extract

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

[aniael lacrea		Antimalarial
			apical leaves (buds) have been		
			· /		Effects, n.d.)
			thoroughly		
			pounded and		
			soaked in water.		
			Lemon, salt, and		
			at times sugar are		
			inserted.		
Magnifera	Mango	Anti-bacteria, anti-	As needed, boil	Bark	(Ogbuehi &
India		inflammatory, anti-	stems, barks, and	and	Ebong, 2015)
		malarial Jaundice,	fluids. One may	leaves	(Omosun G.,
		Asthma, and	ingest a fresh one.		Okoro I. A.,
		antioxidant			Ekundayo E.,
					2013)
					(Natural
					Products with
					Potential
					Antimalarial
					Effects, n.d.)
Cymbopogon	Lemon grass	Gastrointestinal	Decoction drink	Leaves	(Omosun G.,
citratus		issues, flu, fever,			Okoro I. A.,
		and pneumonia.			Ekundayo E.,
					2013)
					(Natural
					Products with
					Potential
					Antimalarial
					Effects, n.d.)
Anacardium	Cashew nut	Anti-microbial	Plants wash away	Leaves	(State, 2009)
occidentale			and bubble in	and	(Venugopal et al.,
			aquatic for 20-50	barks	2020)
			min 300 ml of the		(Nigussie &
			tisane is taken		Wale, 2022b)
			once a day for 1		
			week or until the		
			indicators fade		
Ananas	Pineapple	Antioxidant and	Boil the fruit,	Unripe	(Omosun G.,
comosus		anti-microbial	every part of the	fruit	Okoro I. A.,
		infection	plant of		Ekundayo E.,
			Cympobogon		2013)
			citratus, the		(Natural
			leaves of Cassia		Products with
			alata, along with		Potential

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

			Daidium quaique		A
			Psidium guajava.		Antimalarial
					<i>Effects</i> , n.d.)
					(Hossain &
					Rahman, 2011)
Allium sativum	Garlic	prevention of	Sliced into pieces	Bulb	(Douiri, 2013)
		cardiovascular	and dried for 2-3		(Nigussie &
		diseases and certain	days at room		Wale, 2022a)
		digestive cancers to	temperature in the		(Batiha et al.,
		keep about	shade, the		2020)
		insecticides,	dehydrated parts		(Million et al.,
		fungicides,	remained		2022)
		acaricides,	condensed to a		, ,
		nematicides, as	reasonably		
		well as bacterial	satisfactory		
		properties	precipitate using a		
		properties	disintegrator. The		
			dust was		
			disinterested in a		
			Soxhlet kit by		
			95% ethanol		
			solvent for an old-		
			fashioned 24		
			hours, the		
			subsequent		
			cutting was		
			concentrated		
			beneath a vacuum		
			(Rota vapor), and		
			the filtrate was		
			melted in		
			concentrated		
			aquatic. The		
			filtrate was later		
			managed orally at		
			45 mg/kg body		
			weight/day dose		
			in 0.3 ml.		
Cordia	Wanza(A)	Anti-malaria	Distillation of	Barks	(Angupale et al.,
africana			roots and inside	and	2023)
5			woof via ginger is	roots	(Mekonnen et al.,
			used up		2020)
			abou up		(Phytochemical
					Investigation of
					investigation Of

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

					<i>Cordia Africana</i> <i>Lam</i> , n.d.)
Lepidium sativum	Feto(A)	Anti-malaria	Dehydrated fruit is blended into precipitate, mixt with castor oil, as well as managed by mouth	Fruits and seeds	(Angupale et al., 2023) (Million et al., 2022)
Maerua oblongifolia	Ja'a (O)	Anti-malaria	Crushed shrubberies cooked with goat milk and sozzled. Can be used in a mixture with the shrubberies of Withania somnifera	leaves	(Angupale et al., 2023) (Phytochemical Analysis of Maerua Oblongifolia, and Assessment of the Genetic Stability of M, n.d.)
Silene macro solen	Saerosaero (T)	Anti-malaria	Press and put on fire for disinfection	Roots	(Angupale et al., 2023)
Combretum molle	Agalo (A)	Anti-malaria	eaves to bark dust then combine with tea or coffee before ingesting it.	Leaves a barks	(Angupale et al., 2023)
Terminalia brownie	Sebaea (T)	Anti-malaria	Standardized fresh with water then drink it in the morning time before having breakfast for 4 days.	barks	(Angupale et al., 2023)
Pomona kituiensis	Laalata (O)	Anti-malaria	Make a juice with fresh one or drink it with coffee	leaves	(Angupale et al., 2023)
Lagenaria siceraria	Duque hahaha (O)	Anti-malaria	Put it in cold water and drink one glass at noon.	fruits	(Angupale et al., 2023)
Croton macrostachyus	Bisana (A)	Anti-malaria	cook it with aquatic then take it orally either with tea or milk	leaves	(Angupale et al., 2023)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Dracaena	Hasina	Anti-malaria	Get fresh and	Leaves	(Angupale et al.,
reflexa Lamk	Pleomele,		grading then boil	and	2023)
	Song of		it and drink it	bark	
	India		twice for five days		
Euphorbia	Kukuak (A)	Anti-malaria	New fluid of	Latex	(Angupale et al.,
abyssinica			Euphorbia		2023)
			abyssinica		
			consume roast		
			using Eragrostis		
			tef dough		
Sesamum	Eshkulubia	Anti-malaria	Get a fresh root	Roots	(Angupale et al.,
indium	(Ku)		then mix it with		2023)
			cooked milk and		
			half a cup in the		
			morning as well		
			as at night time.		
Tephrosia	Atotoka	Anti-malaria	Devastating the	Roots	(Angupale et al.,
gracilipes	(Ku)		roots, combine it		2023)
			with water then		
			drink it in the		
			morning time		
			with an empty		
			stomach		
Acacia Seyal	Tundukiyac (O	Anti-malaria	Chew the bark	barks	(Angupale et al., 2023)
Albizia amara	Ondoddee	Anti-malaria	Chewing the	barks	(Angupale et al.,
	(0)		barks		2023)
Tamarindus	Mala (B)	Anti-malaria	Cut it into pieces	fruits	(Angupale et al.,
indica			mix it with water		2023)
			and drink it		
Cicer	Shinbira (A)	Anti-malaria	Dried it and	seeds	(Angupale et al.,
arietinum			consume with		2023)
			allium sativum		(Badoni et al.,
			bulb		2018)
Entada	Ambalta (O)	Anti-malaria	Barks mix with	barks	(Angupale et al.,
abyssinica			rhizome of		2023)
			zingiber and bulb		(Hashim EL-
			album and drink		Kamali, 2009)
Duranta	Kata-	Anti-malaria	Eat the plant	Whole	(Angupale et al.,
repens L	mehandi,			plants	2023)
*	Kata-				
	mehendhe				

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Lantana	Chaturaangi,	Anti-malaria	and			Leaves,	(Angupale et al.,
camara L	Jangoli-	tuberculosis		Chewing	with	roots,	2023)
	janglog			salt, blend it n	nix it	and	
				with salt,	and	flowers	
				drink it.			
Nyctanthes	Shefali,	Anti-malaria		Blend it and m	nix it	leaves	(Angupale et al.,
arbor tristis L	Sheuli,			with water	and		2023)
	Sheuly-			consume it			
	phang						

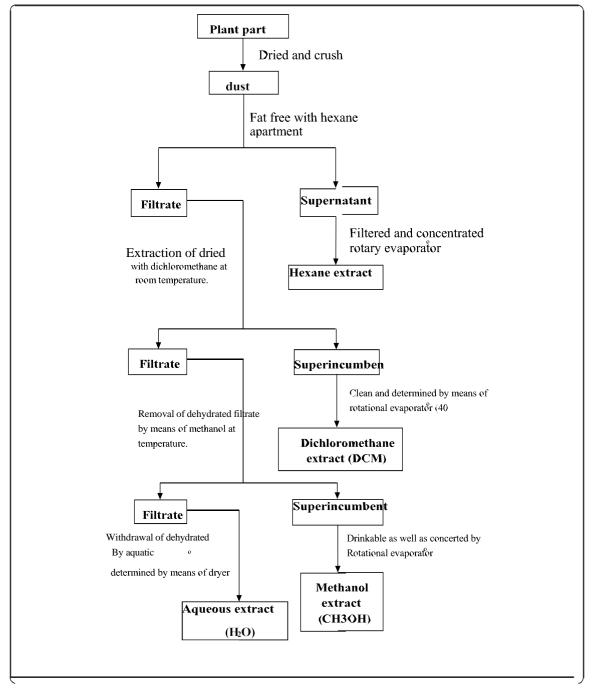


Fig 3, The process of extraction of plant parts by using chemicals

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

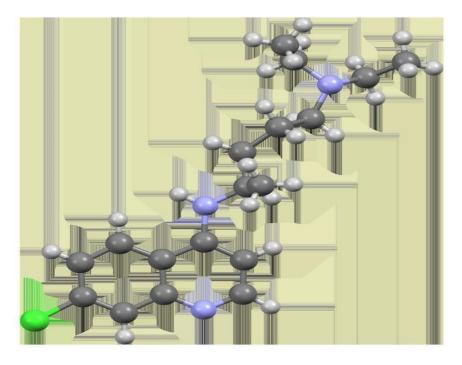


Fig 4, Chloroquine formula

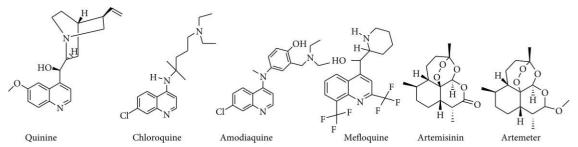
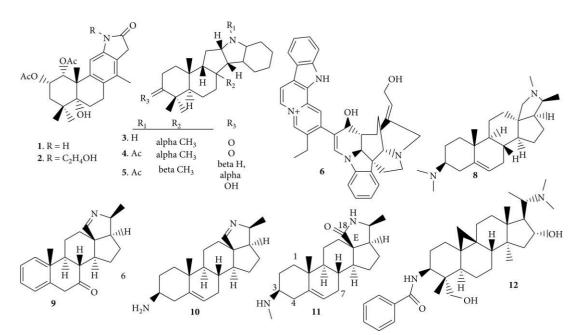
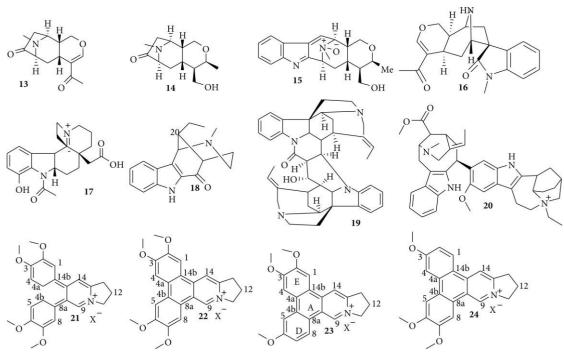



Fig 5; Quinine, Chloroquine, Amodiaquine, Mefloquine, Artemisinin and Artemeter



Fi, 6; Structures of terpenoidal and steroidal alkaloids.(Uzor, 2020)

IJFMR

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Fig, 5; Structures of *indole* and related *alkaloids* with promising anti-malarial activity

Vaccination (add more information in a timeline manner)

A viable solution to combat malaria lies in the development of a vaccine. Given the parasite's resistance to antimalarial drugs and the associated toxicity of chemoprophylaxis, an effective malaria vaccine is imperative. Currently, researchers are actively engaged in vaccine development, with only one candidate progressing to a significant Phase III investigation as of World Malaria Day 2023. Additional investigations are underway for other deserving candidates.

The three main classifications for malaria vaccines correspond to different phases of the parasite's lifecycle: pre-erythrocytic, erythrocytic, and transmission-blocking. AS01, a candidate vaccine, has completed rigorous trials, demonstrating positive results in preventing *p. falciparum* sporozoite.

- 1. RTS, a monovalent recombinant protein vaccine, kickstarts the immune system's response against the circumsporozoite protein (PfCSP), coating sporozoites. This triggers a robust T-cell (CD4+) and immunoglobulin G (IgG) antibody reaction targeting the citrate synthase (CS) protein region, supported by studies (Laurens MB et al., 2019).
- 2. Despite these strides, the World Health Organization (WHO) currently cautions against administering RTS, S/AS01 to young ones in sub-Saharan Africa and other regions with moderate to high P. falciparum transmission. For children starting at 5 months, a four-dose schedule is recommended. Ongoing trials in countries like Malawi, Kenya, and Ghana aim to shed light on the benefits of the fourth dose and its long-term impact on child mortality (WHO, 2023).
- **3.** PAMAVAC, another promising malaria vaccine in development for the blood stage, holds the potential to revolutionize malaria prevention strategies, with ongoing research paving the way for a breakthrough.

Alternative approach

Biological, physical, chemical, and mechanical control of mosquitoes

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

- 1. **Biological Control** is a method that involves the use of natural predators, parasites, or pathogens to target and reduce mosquito populations, e.g., introducing mosquito larvae-eating fish into stagnant water bodies to control mosquito breeding.
- 2. **Mechanical Control** is an approach involves the manipulation of the mosquito's environment to prevent its breeding or limit its access to humans, such as implementing proper waste management and eliminate potential breeding sites like discarded tires or containers that collect water.
- 3. **Chemical Control** is use of chemical substances to kill or repel mosquitoes, either on a large scale or through personal protection measures. Like Spraying insecticides in mosquito-prone areas or using insecticide-treated bed nets and indoor residual spraying.
- 4. **Physical Control** is a method involves using physical barriers or modifications to prevent mosquitoes from reaching or biting humans. Such as installing screens on windows and doors to prevent mosquito entry, or using protective clothing such as long sleeves and pants to reduce exposure.

Anyone of the above methods has its advantages and limitations. A comprehensive malaria control program often integrates a combination of these approaches to effectively target different stages of the mosquito life cycle and minimize the risk of disease transmission.

SUMMARY

This study appears to be thorough in its analysis of malaria in Ghana, emphasizing the application of homeopathic remedies. It's interesting to observe how Ghanaian people, particularly in rural regions, rely on herbal treatments because of their perceived efficacy and affordability. The goals of the study, which include determining which herbs were utilized, rating their scientific validity, and determining whether or not they complied with FDA regulations, offer a comprehensive approach.

The World Health Assembly's summary of worldwide efforts to control malaria reflects the continued difficulties and the need for creative solutions. The topic gains depth with the consideration of the challenges presented by drug resistance to anti-malarial and the investigation of plant-based remedies.

The comprehensive list of Ghanaian medicinal plants and the preparation and application techniques for each, provide important insights. It's important that the study recognizes the need for more investigation to fully comprehend herbal remedies and their function in the battle against malaria.

The material is presented more visually when figures describing the chemical structures of antimalarial medications and possible vaccinations are included. All in all, it's a comprehensive examination of the topic, stressing the complexity of malaria and the significance of taking traditional herbal knowledge into account when looking for remedies.

Conclusion

Unique of the greatest established plus effortlessly avoidable roots of bereavement universal is malaria. Some plants contain high toxicity in their nature while some contain low toxicity; more research is needed to curtail their circumstances and then find some suitable plants for the treatment of malaria. There is a need to educate people concerning first aid treatment of malaria, and the prevention of mosquito bites, such as the use of treated mosquito bed nets, repellent oil and soap, and vaccination against pathogens. Granting the frequency of malaria and the number of malaria-related losses have been diminishing for eras, movement seems to be slowing down. Malaria suitcases have improved in the number of seats since 2014 up to date (2023).

Since Laveran in Algeria, Ghana, Nigeria, and India identified the etiology of malaria and the Plasmodium parasite in the nighttime 1800s, several methods have been tried with variable degrees of success to control and eradicate malaria off the face of the earth. We are still a long way from eradicating malaria, despite some significant breakthroughs in its control. There has been a recent emergence of resistance to the conventional front-line artemisinin-based combination therapy.

REFERENCES

- 1. Angupale, J. R., Tusiimire, J., & Ngwuluka, N. C. (2023). A review of efficacy and safety of Ugandan anti-malarial plants with application of RITAM score. *Malaria Journal*, 22(1), 1–19. https://doi.org/10.1186/s12936-023-04486-6
- 2. Badoni, H., Sharma, P., Waheed, S. M., & Singh, S. (2018). *Phytochemical Analysis*, *Antioxidant Activity and Acute Toxicity Study of Cicerarietinum and Brassica oleracea var*. *italica*. 6(1), 20–29.
- Batiha, G. E. S., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al-Sagan, A. A., El-Hack, M. E. A., Taha, A. E., Abd-Elhakim, Y. M., & Devkota, H. P. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. *Nutrients*, *12*(3), 1–21. https://doi.org/10.3390/nu12030872
- 4. Douiri, L. fatima. (2013). Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculatus. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, *3*(1), 30–36. https://doi.org/10.9790/2402-0313036
- 5. Hashim EL-Kamali, H. (2009). Medicinal Plants in East and Central Africa: Challenges and Constraints. *Ethnobotanical Leaflets*, *13*, 364–369.
- 6. Hossain, M. A., & Rahman, S. M. M. (2011). *Total phenolics , fl avonoids and antioxidant activity of tropical fruit pineapple.* 44, 672–676. https://doi.org/10.1016/j.foodres.2010.11.036
- Mekonnen, A., Degu, Y., & Carlson, R. (2020). Appraisal of solvent system effect on bioactivity profiling of Cordia africana stem bark extracts. In *Chemistry International* (Vol. 6, Issue 1, pp. 1–10). http://bosaljournals.com/chemint/images/pdffiles/20-1.pdf
- 8. Million, E., Mulugeta, T., & Umeta, B. (2022). Traditional Medicine Practice and Its Role in the Management of Malaria in Jimma Town, Oromia, Ethiopia. *Infection and Drug Resistance*, *15*(April), 2187–2198. https://doi.org/10.2147/IDR.S339782
- 9. Natural Products with Potential Antimalarial Effects. (n.d.).
- Nigussie, G., & Wale, M. (2022a). Medicinal plants used in traditional treatment of malaria in Ethiopia: a review of ethnomedicine, anti-malarial and toxicity studies. In *Malaria Journal* (Vol. 21, Issue 1). https://doi.org/10.1186/s12936-022-04264-w
- 11. Nigussie, G., & Wale, M. (2022b). Medicinal plants used in traditional treatment of malaria in Ethiopia: a review of ethnomedicine, anti-malarial and toxicity studies. *Malaria Journal*, 21(1), 1–16. https://doi.org/10.1186/s12936-022-04264-w
- Ogbuehi, I. H., & Ebong, O. O. (2015). Traditional Medicine Treatment of Malaria in Onitsha, South East Nigeria. *Greener Journal of Medical Sciences*, 5(1), 011–018. https://doi.org/10.15580/gjms.2015.1.051114384
- 13. Omosun G., Okoro I. A., Ekundayo E., O. P. C. and I. O. (2013). Ethnobotanical study of medicinal plants useful for malaria therapy in eight local government areas of Abia State, Southeast Nigeria. *Advances in Medicinal Plant Research*, *1*(2), 39–44.
- 14. Organisation, W. H. (2021). World malaria report 2021 [Internet]. In World Health Organization.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

- 15. Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. (n.d.).
- 16. Phytochemical Investigation of Cordia africana Lam. (n.d.).
- 17. Pierre, S., Fernand-n, T. F., Alexandre-michel, N. N., & Jean, M. (2011). *Medicinal plants used in traditional treatment of malaria in Cameroon*. 3(March), 104–117.
- 18. Pradhan, S., Hore, S., Maji, S. K., Manna, S., Maity, A., Kundu, P. K., Maity, K., Roy, S., Mitra, S., Dam, P., Mondal, R., Ghorai, S., Jawed, J. J., Dutta, S., Das, S., Mandal, S., Mandal, S., Kati, A., Sinha, S., ... Ince, I. A. (2022). Study of epidemiological behaviour of malaria and its control in the Purulia district of West Bengal, India (2016–2020). *Scientific Reports*, 12(1), 1–11. https://doi.org/10.1038/s41598-021-04399-x
- 19. Prevention, C.-C. for D. C. and. (2021). CDC Malaria Malaria Worldwide Impact of Malaria.
- 20. State, O. (2009). O RIGINAL A RTICLE Evaluation of the Antimicrobial Activity of Root and Leaf Extracts of Terminalia. 3(2), 188–191.
- 21. Uzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies.Evidence-BasedComplementaryandAlternativeMedicine,2020.https://doi.org/10.1155/2020/8749083
- 22. Venugopal, K., Hentzschel, F., Valkiūnas, G., & Marti, M. (2020). Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. *Nature Reviews Microbiology*, *18*(3), 177–189. https://doi.org/10.1038/s41579-019-0306-2
- 23. Yu, T., Fu, Y., Kong, X., Liu, X., Yan, G., & Wang, Y. (2020). Epidemiological characteristics of imported malaria in Shandong Province, China, from 2012 to 2017. *Scientific Reports*, *10*(1), 1–8. https://doi.org/10.1038/s41598-020-64593-1
- 24. Angupale, J. R., Tusiimire, J., & Ngwuluka, N. C. (2023). A review of efficacy and safety of Ugandan anti-malarial plants with application of RITAM score. *Malaria Journal*, 22(1), 1–19. https://doi.org/10.1186/s12936-023-04486-6
- 25. Badoni, H., Sharma, P., Waheed, S. M., & Singh, S. (2018). *Phytochemical Analysis*, *Antioxidant Activity and Acute Toxicity Study of Cicerarietinum and Brassica oleracea var*. *italica*. 6(1), 20–29.
- 26. Batiha, G. E. S., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al-Sagan, A. A., El-Hack, M. E. A., Taha, A. E., Abd-Elhakim, Y. M., & Devkota, H. P. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. *Nutrients*, 12(3), 1–21. https://doi.org/10.3390/nu12030872
- 27. Douiri, L. fatima. (2013). Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculatus. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, *3*(1), 30–36. https://doi.org/10.9790/2402-0313036
- 28. Hashim EL-Kamali, H. (2009). Medicinal Plants in East and Central Africa: Challenges and Constraints. *Ethnobotanical Leaflets*, *13*, 364–369.
- 29. Hossain, M. A., & Rahman, S. M. M. (2011). *Total phenolics , fl avonoids and antioxidant activity of tropical fruit pineapple.* 44, 672–676. https://doi.org/10.1016/j.foodres.2010.11.036
- 30. Mekonnen, A., Degu, Y., & Carlson, R. (2020). Appraisal of solvent system effect on bioactivity profiling of Cordia africana stem bark extracts. In *Chemistry International* (Vol. 6, Issue 1, pp. 1–10). http://bosaljournals.com/chemint/images/pdffiles/20-1.pdf
- 31. Million, E., Mulugeta, T., & Umeta, B. (2022). Traditional Medicine Practice and Its Role in the Management of Malaria in Jimma Town, Oromia, Ethiopia. *Infection and Drug Resistance*, *15*(April),

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

2187–2198. https://doi.org/10.2147/IDR.S339782

- 32. Natural Products with Potential Antimalarial Effects. (n.d.).
- 33. Nigussie, G., & Wale, M. (2022a). Medicinal plants used in traditional treatment of malaria in Ethiopia: a review of ethnomedicine, anti-malarial and toxicity studies. In *Malaria Journal* (Vol. 21, Issue 1). https://doi.org/10.1186/s12936-022-04264-w
- 34. Nigussie, G., & Wale, M. (2022b). Medicinal plants used in traditional treatment of malaria in Ethiopia: a review of ethnomedicine, anti-malarial and toxicity studies. *Malaria Journal*, 21(1), 1–16. https://doi.org/10.1186/s12936-022-04264-w
- 35. Ogbuehi, I. H., & Ebong, O. O. (2015). Traditional Medicine Treatment of Malaria in Onitsha, South East Nigeria. *Greener Journal of Medical Sciences*, 5(1), 011–018. https://doi.org/10.15580/gjms.2015.1.051114384
- 36. Omosun G., Okoro I. A., Ekundayo E., O. P. C. and I. O. (2013). Ethnobotanical study of medicinal plants useful for malaria therapy in eight local government areas of Abia State, Southeast Nigeria. *Advances in Medicinal Plant Research*, *1*(2), 39–44.
- 37. Organisation, W. H. (2021). World malaria report 2021 [Internet]. In *World Health Organization*. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
- 38. Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. (n.d.).
- 39. Phytochemical Investigation of Cordia africana Lam. (n.d.).
- 40. Pierre, S., Fernand-n, T. F., Alexandre-michel, N. N., & Jean, M. (2011). *Medicinal plants used in traditional treatment of malaria in Cameroon.* 3(March), 104–117.
- 41. Pradhan, S., Hore, S., Maji, S. K., Manna, S., Maity, A., Kundu, P. K., Maity, K., Roy, S., Mitra, S., Dam, P., Mondal, R., Ghorai, S., Jawed, J. J., Dutta, S., Das, S., Mandal, S., Mandal, S., Kati, A., Sinha, S., ... İnce, İ. A. (2022). Study of epidemiological behaviour of malaria and its control in the Purulia district of West Bengal, India (2016–2020). *Scientific Reports*, 12(1), 1–11. https://doi.org/10.1038/s41598-021-04399-x
- 42. Prevention, C.-C. for D. C. and. (2021). CDC Malaria Malaria Worldwide Impact of Malaria.
- 43. State, O. (2009). O RIGINAL A RTICLE Evaluation of the Antimicrobial Activity of Root and Leaf Extracts of Terminalia. 3(2), 188–191.
- 44. Uzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies.Evidence-BasedComplementaryandAlternativeMedicine,2020.https://doi.org/10.1155/2020/8749083
- 45. Venugopal, K., Hentzschel, F., Valkiūnas, G., & Marti, M. (2020). Plasmodium asexual growth and sexual development in the hematopoietic niche of the host. *Nature Reviews Microbiology*, *18*(3), 177–189. https://doi.org/10.1038/s41579-019-0306-2
- 46. Yu, T., Fu, Y., Kong, X., Liu, X., Yan, G., & Wang, Y. (2020). Epidemiological characteristics of imported malaria in Shandong Province, China, from 2012 to 2017. *Scientific Reports*, *10*(1), 1–8. https://doi.org/10.1038/s41598-020-64593-1