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1. INTRODUCTION 

Fixed point and periodic point theorems play a crucial role in various fields of mathematics, including 

analysis, topology, and applied mathematics. These theorems provide essential insights into the behavior 

of functions and mappings, offering a foundational framework for understanding various mathematical 

phenomena.Originating from Brouwer’s [12] fixed point theorem in 1912, topological fixed point 

theory focuses on continuous transformations. Meanwhile, discrete fixed point theory, stemming from 

Tarski’s theorem in 1955, concentrates on mappings in discrete spaces. Metric fixed point theory, while 

its foundational concepts predated, owes its practical and widespread application to the contributions of 

the Polish mathematician Stefan Banach [7].  

Meir and Keeler [23] proved that if a self-mapping 𝑓 of a complete metric space (𝑋, 𝑑) satisfies the 

some condition then 𝑓 has a unique fixed point. Rhoades, Park and Moon [6]gave a new result which 

encompasses most of such generalizations of the Meir-Keeler theorem.Boyd and Wong [11] generalized 

the Banach contraction principle in complete metric spaces.Jachymski [16] introduced a modified (𝜀, 𝛿) 

condition to establish a unique common fixed point for two self-mappings 𝐴and 𝐵on a complete metric 

space(𝑋, 𝑑).  Caristi’s  [8]theorem contain fixed point theorem applied with the well-known Banach 

Contraction principle and the generalization of Kannan[34, 35], Chatterjee [25] and Ciric[26, 27].R. P. 

Pant and V. Rakocevic [29] introduce a new, weaker form of continuity that is both necessary and 

sufficient for fixed point existence. 

The exploration of fixed points within contraction mappings in symmetric spaces began with Cicchese's 

work [13]. Wilson [38] subsequently pioneered these spaces by relaxing the requirement of the triangle 
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inequality from the metric constraints. Currently, there's a substantial body of literature discussing fixed 

point theory within symmetric spaces [1 − 5, 13 − 19, 32, 33]. 

In this paper we study the fixed point and periodic point in symmetric spaces. Our findings are relevant 

to both contractive and non-expansive mappings. Moreover, our theorems stand independently of nearly 

all previously established results for contractive type mappings.Our results are more general than the 

result of Pant et al [29]results. 

 

2. MATHEMATICAL PRELIMINARIES 

Definition 𝟐. 𝟏[𝟐𝟎].If f  is a self-mapping of a set X then a point 𝑥 in X is called an eventually fixed 

point of fif there exists a natural number N such that 

𝑓𝑛+1(𝑥) =𝑓𝑛(x) for𝑛 ≥ 𝑁. 

If 𝑓(𝑥) = 𝑥 then  𝑥 is called a fixed point of f. A point 𝑥 in 𝑋 is called a periodic point of period 𝑛 

if 𝑓𝑛𝑥 = 𝑥. The least positive integer n for which f nx = x is called the prime period of x.The set of all 

iterates of a periodic point forms a periodic orbit which equals {𝑥, 𝑓𝑥, 𝑓2𝑥, … . 𝑓𝑛−1𝑥} if 𝑥 is a periodic 

point of prime period 𝑛. A point 𝑥 is called eventually periodic of period 𝑘 if there exists N >  0 such 

that 𝑓𝑛+𝑘(𝑥) = 𝑓𝑛(𝑥)for 𝑛 ≥ 𝑁. 

 

Definition 𝟐. 𝟐 [𝟐𝟎]. The set {𝑥 ∈ 𝑋: 𝑇𝑥 = 𝑥} is called the fixed point set of the mapping 𝑇: 𝑋 → 𝑋. 

 

Definition 𝟐. 𝟑 [𝟑𝟖]. Let X be a non-empty set. A symmetric on a set X is a real valued function  

𝑑: 𝑋 × 𝑋 → ℝ  such that, 

i. 𝑑(𝑥, 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋, 

ii. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, 

iii. 𝑑(𝑥, 𝑦 = 𝑑(𝑦, 𝑥). 

Let 𝑑 be a symmetric on a set 𝑋 and for 𝜀 > 0and any 𝑥 ∈ 𝑋,let 𝐵(𝑥, 𝜀) = {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝜀}.A 

topology 𝑡(𝑑)on 𝑋 is given by 𝑈 ∈ 𝑡(𝑑)if and only if for each𝑥 ∈ 𝑈, 𝐵(𝑥, 𝜀) ⊂ 𝑈 for some 𝜀 > 0. 

A symmetric 𝑑 is a semi-metric if for each 𝑥 ∈ 𝑋and each 𝜀 > 0,𝐵(𝑥, 𝜀),  is a neighborhood of 𝑥 in the 

topology 𝑡(𝑑).There are several concepts of completeness in this setting. A sequence is a 𝑑 − Cauchy if 

it satisfies the usual metric condition. 

 

Definition 𝟐. 𝟒[𝟑𝟖].Let (𝑋, 𝑑) be a symmetric (semi-metric) space. 

i. (𝑋, 𝑑) is S-complete if for every 𝑑 − 𝑐𝑎𝑢𝑐ℎ𝑦 sequence {𝑥𝑛} there exist 𝑥 in 𝑋 with 

lim
𝑛⟶∞

𝑑( 𝑥𝑛, 𝑥) = 0. 

ii. (𝑋, 𝑑) is 𝑑 − 𝑐𝑎𝑢𝑐ℎ𝑦 complete if for every 𝑑 − 𝑐𝑎𝑢𝑐ℎ𝑦 sequence {𝑥𝑛} there exist 𝑥 in 𝑋 with 

lim
𝑛⟶∞

𝑥𝑛 = 𝑥 with respect to 𝑡(𝑑). 

iii. 𝑆: 𝑋 → 𝑋 is d-Continuous if lim
𝑛⟶∞

𝑑(𝑥𝑛, 𝑥) = 0 implies 

lim
𝑛⟶∞

𝑑(𝑆𝑥𝑛, 𝑆𝑥) = 0. 

iv. 𝑆: 𝑋 → 𝑋is 𝑡(𝑑) continuous if lim
𝑛⟶∞

𝑥𝑛 = 𝑥 with respect to𝑡(𝑑) implies  lim
𝑛⟶∞

𝑆(𝑥𝑛) = 𝑆𝑥 with 

respect to 𝑡(𝑑). 
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The following two axioms were given by Wilson [36]. 

Definition 𝟐. 𝟓.Let (𝑋, 𝑑) be a symmetric (semi-metric) space. 

 

W1:Given{𝑥𝑛}, 𝑥, 𝑦 𝑖𝑛 𝑋, 𝑑(𝑥𝑛, 𝑥) → 0 and  𝑑(𝑥𝑛, 𝑦) → 0 ⇒ 𝑥 = 𝑦. 

W2:Given{𝑥𝑛}, {𝑦𝑛}, and 𝑥, 𝑦 𝑖𝑛 𝑋𝑑(𝑥𝑛, 𝑥) → 0 and 

𝑑(𝑥𝑛, 𝑦𝑛) → 0 ⇒ 𝑑(𝑦𝑛, 𝑥) → 0. 

 

Definition 𝟐. 𝟔 A function 𝑓: 𝑋 → 𝑌 is called continuous if lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑡 whenever {𝑥𝑛} a sequence in 

𝑋 such that lim
𝑛→∞

𝑥𝑛 = 𝑡.  

 

Definition 𝟐. 𝟕.([𝟒𝟏]) A self-mapping f of a metric space 𝑋 is called 𝑘 − 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑘 = 1,2,3 … .. if 

lim
𝑛→∞

𝑓𝑘𝑥𝑛 = 𝑓𝑡whenever {𝑥𝑛} is a sequence in 𝑋 such that lim
𝑛→∞

𝑓𝑘−1𝑥𝑛 = 𝑡.  

 

Definition 𝟐. 𝟖. A function 𝑓: 𝑋 → 𝑌 will be called asymptotically 𝑘 −continuous (or equivalently, 

asymptotically continuous) if lim
𝑘,𝑛→∞

𝑓(𝑓𝑘𝑥𝑛) = 𝑓𝑡 whenever {𝑥𝑛} is a sequence in 𝑋 such 

that lim
𝑘,𝑛→∞

𝑓𝑘𝑥𝑛 = 𝑡. 

 

Definition 𝟐. 𝟗([𝟐𝟔, 𝟐𝟕]). If 𝑓 is a self-mapping of a metric space (𝑋, 𝑑)then the set 𝑂(𝑥, 𝑓) = is called 

the orbit of 𝑓 at 𝑥 and 𝑓 is called orbitally continuous if 𝑢 =  lim
𝑖

𝑓𝑚𝑖𝑥impliesfu = lim
𝑖

𝑓 𝑓𝑚𝑖𝑥. 

Continuity implies orbital continuity but not conversely [26, 27]. 

 

Definition 𝟐. 𝟏𝟎. ([𝟒𝟐]).A self-mapping 𝑓 of a metric space (𝑋, 𝑑) is called weakly orbitally continuous 

if the set {𝑦 ∈ 𝑋: lim
𝑖

𝑓𝑚𝑖𝑦 = 𝑢 ⇒ lim
𝑖

𝑓 𝑓𝑚𝑖𝑦 = 𝑓𝑢}is nonempty whenever the set {𝑥 ∈ 𝑋: lim
𝑖

𝑓𝑚𝑖𝑥 =

𝑢} is nonempty. 

 

Definition 𝟐. 𝟏𝟏.([𝟐𝟎]).Let 𝑓 be a self- mapping of the set of real numbers and 𝑝 be a periodic point of 

prime period 𝑛. The point 𝑝 is called hyperbolic if,|(𝑓𝑛)′(𝑝)|  ≠ 1. The point 𝑝 is called non-hyperbolic 

if,|(𝑓𝑛)′(𝑝)| = 1. Here (𝑓𝑛)′(𝑝)denotes the derivative of 𝑓𝑛(𝑥)at  𝑝. 

 

Definition 𝟐. 𝟏𝟐. The function 𝑓: (−∞, ∞) → (−∞, ∞) such that 𝑓(𝑥) is the least integer not less than 𝑥 

is called the least integer function or the ceiling function and is denoted by 𝑓(𝑥) = ⌈𝑥⌉. 

 

3. MAIN RESULT 

In the following theorems, we shall denote m(x, y) = max{d(x, fx), d(y, fy)}. 

Theorem 𝟑. 𝟏. Let 𝑓 be a self-mapping of a symmetric metric space(𝑋, 𝑑). Suppose that given ε >

0 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 0 < 𝛿(𝜀) < 𝜀 such that for each x, y in X 

 (i) ε < 𝑚(x, y) ≤ ε + δ ⟹ d(fx, fy) ≤ ε, and 

 (ii) ε − δ < 𝑚(x, y) ≤ ε ⟹ d(fx, fy) ≤ ε − δ. 
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Then either f has a unique fixed point and for each x in X  the sequence of iterates {f nx}converges to the 

fixed point, or each x in X is a fixed point or an eventually fixed point. The mapping f possesses a 

unique fixed point if and only if x ≠ y ⟹ max{d(fx, fy)} > 0. 

 

Proof.  If each x in X is a fixed point of f then the conditions (i) and (ii) are satisfied since there exists no 

pair (x, y)in X that violates (i) and (ii). Thus, either each point of X is a fixed point of f or there exists a 

point x0 in X such that fx0 ≠ x0. Define a sequence {xn} in Xby xn = fxn−1, that is, xn =  f nx0. 

Condition (ii) implies that f cannot have periodic points of prime period ≥  2. For example, suppose y is 

a periodic point of prime period n ≥ 2, that is, f ny = y but f iy ≠ f ny  for 1 ≤  i <  𝑛.Then  

max {d(y, fy), d(fy, f 2y), … . d(f n−1y, f ny)}> 0.  

Let max{d(y, fy), d(fy, f 2y), … . d(f n−1y, f ny)} = d(f k−1y, f ky) = ε > 0, 1 ≤ 𝑘 ≤ 𝑛. If k = 1  then 

d(y, fy) = ε and max{d(y, fy), d(f n−1y, f ny)} = ε > 0.This can also be written as m(y, f n−1y) =

m(f ny, f n−1y) = max{d(f n−1y, f ny), d(f ny, f n+1y)} = ε > 0. 

Using condition (ii) this yields d(f ny, f n+1y) = d(y, fy) < 𝜀, a contradiction. Similarly, if k > 1 then 

d(f k−1y, f ky) = ε and 

m(f k−2y, f k−1y) = max {d(f k−2y, f k−1y), d(f k−1y, f ky)} = d(f k−1y, f ky) 

= ε > 0. 

By virtue of (ii) this gives d(f k−1y, f ky) <  𝜀, a contradiction. Hence, f cannot have periodic points of 

prime period ≥  2 if f satisfies (ii). It may be observed that this conclusion remains true if we replace 

condition (ii) by any of the following two conditions:  

max{d(x, fx), d(y, fy)} = ε ⇒ d(fx, fy) < 𝜀, 

max{d(x, fx), d(y, fy)} = ε ⇒ d(fx, fy) > 𝜀.(3.1) 

The above computation shows that fcan possess periodic points only if the set  

{y ∈ X: max{d(f k−2y, f k−1y), d(f k−1y, f ky)} = d(f k−1y, f ky > 0, 𝑘 ≥ 2}is nonempty, that is, condition 

(ii) will not hold in that case and some weaker condition, say,  

d(fx, fy) ≤ m(x, y), x, y ∈ X,                                                   (3.2) 

will hold.  

Also, if  

{y ∈ X: max{d(f k−2y, f k−1y), d(f k−1y, f ky)} = d(f k−1y, f ky > 0, 𝑘 ≥ 2} 

                                                                               = X                              (3.3) 

then each point of X will be a periodic point of period ≥  2.  

Therefore, condition (ii) implies that either xn = xn+1 for some n ≥ 1 or xn ≠ xn+1for each n > 0. If  

xn = xn+1for some n ≥ 1 then f nx0 =  f n+1x0, that is, xn is a fixed point of f and x0  is an eventually 

fixed point. On the other hand, if xn ≠ xn+1for each n, then x0 is neither a fixed point nor an eventually 

fixed point. This implies that either each point in X is a fixed point or an eventually fixed point, or there 

exists a point x0  in X such that the sequence of iterates {f nx0} consists of distinct points. Suppose the 

sequence of iterates {f nx0}of x0consists of distinct points. Then d(xn,fxn,) > 0, 𝑑(xn+1, fxn+1) > 0 and 

there exists ε >  0 such that   max{d(xn,fxn,), d(xn+1, fxn+1)} = ε. 

By virtue of (ii) the last equation implies d(fxn,fxn+1) ≤ ε −  δ(ε),  that is,  

d(xn+1, xn+2) ≤ ε −  δ . Thus, d(xn+1, xn+2) = εand, d(xn+1, xn+2) ≤ ε − δ.Therefore, d(xn, xn+1) is a 

strictly decreasing sequence and, hence, tends to a limit  r ≥ 0. Suppose  
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r > 0 then there exists positive integer N such that 

n ≥  N ⇒ r < d(xn, xn+1)  <  𝑟 +  𝛿(𝑟), 0 <  𝛿(𝑟)  <  𝑟.                            (3.4) 

This yields r < max {d(xn, xn+1), d(xn+1, xn+2)} = max{d(xn,fxn,), d(xn+1, fxn+1)} < 𝑟 +  𝛿(r), 

which by virtue of (i) yields d(fxn,fxn+1) ≤ r, that is, d(xn+1, xn+2) ≤ r. This contradicts (3.4). 

Henced(xn, xn+1) → 0 as n → ∞. Since {d(xn, xn+1)} is a strictly decreasing, for each p ≥ 1 we get:  

max {{d(xn−1,xn), d(xn+p−1, xn+p)}} = d(xn−1,xn) > 0. 

 

Let max{d(xn−1,fxn−1,), d(xn+p−1, fxn+p−1)} = ε > 0, that is, d(xn−1,xn) = ε > 0. Using (ii), we get 

d(fxn−1,fxn+p−1) ≤ ϵ − δ(ε), that is, d(xn,, xn+p) < 𝑑(xn−1,xn). Taking limit as n →  ∞ we get 

lim
n→∞

d(xn,, xn+p) = 0.Hence{xn} = {f nx0} is a Cauchy sequence. Since X is complete, there exists z in X 

such that xn = f nx0 → z→ z. Also,f pxn → z for each p > 0 We claim that z =  fz. If not, suppose z ≠

fz and d(z, fz) = ε. Then for sufficiently large values of n we get 

m(xn, z) = max{d(xn, fxn), d(z, fz)} = d(z, fz) = ε.                                                    (3.5) 

Using condition (ii) the above inequality yields d(fxn, fz) ≤ ε −  δ(ε). Making n →  ∞  we get 

d(z, fz) ≤ ε −  δ, which contradicts (2.5). Hence z = fz and z is a fixed point off.  

Now, suppose that z and u are fixed points of f, that is, z = fz and u = fu. Then 

max{d(xn, fxn), d(u, fu)} = d(xn, fxn) > 0 

By virtue of (ii), this implies d(fxn, fu) < 𝑑(xn, fxn). Taking limit as n →  ∞  we get 

d(z, fu) = 0, that is, d(z, u) = 0. Hence z = u and z is the unique fixed point of f.  

Moreover, if y(≠ z) is any point in X then, by using (i) and (ii) it follows that f ny → zas n → ∞.  

 

The above analysis implies that if for some x0 in X the sequence of iterates {f nx0} consists of distinct 

points then f possesses a unique fixed point, say z, and lim
n→∞

f ny = z for each y in X. It further implies 

that if there does not exist an x0 in X such that {f nx0} consists of distinct points, then each point of X is 

either a fixed point or an eventually fixed point. Under the assumptions of this theorem, it is easy to 

verify that the condition:  

x ≠ y ⇒ max{d(x, fx), d(y, fy)} > 0 

is a necessary and sufficient condition for the existence of a unique fixed point. This proves the theorem. 

 

Generalization Theorem 3.1 to include mappings that satisfy weaker conditions than (ii). 

 

Example 𝟑. 𝟐. Let (𝑋, 𝑑)be a symmetric space and 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2  ∀ 𝑥, 𝑦 ∈ 𝑋.  

Let f : X → X be defined by 𝑓𝑥 = 𝑥 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 𝑖𝑛 𝑋.Then for any 𝑥, 𝑦 𝑖𝑛 𝑋 we have 

max{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)} = max{𝑑(𝑥, 𝑥), 𝑑(𝑦, 𝑦)} = 0.This implies that there exists no pair of points 

(𝑥, 𝑦) in 𝑋 which violates conditions (i) and (ii). Hence conditions (i) and (ii) of Theorem 3.1 are 

trivially satisfied and each 𝑥 in 𝑋 is a fixed point of  𝑓. 

 

Theorem 𝟑. 𝟑. Let f be a self-mapping of a symmetric metric space (X, d) such that  

(iii) d(fx, fy) < 𝑚(𝑥, 𝑦), Whenever  m(x, y) > 0, 

(iv) Givenε >  0 there exists a δ >  0  such that 
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ε < 𝑚(x, y) ≤ ε + δ ⇒ d(fx, fy) ≤ ε. 

Then f has a unique fixed point or each x in X is a fixed point or an eventually fixed point if and only if f 

is asymptotically k-continuous. If f has a unique fixed point, then for each x in X the sequence of iterates 

{f nx} converges to the fixed point. 

Proof. If each 𝑥 in 𝑋 is a fixed point of f then the conditions (iii) and (iv) are satisfied trivially point of f 

or there exists some point which is not a fixed point. Suppose x0 is not a fixed point of f, that is, fx0 ≠

x0. Define a sequence {xn} in Xby xn = fxn−1, that is, xn = f nx0. By virtue of (3.1), condition (iii) 

ensures that f does not possess periodic points of prime period ≥  2. Therefore, either xn = xn+1 for 

some n ≥ 1 or {xn = f nx0} consists of distinct points. If xn = xn+1 for some n ≥ 1 then xn = f nx0 is a 

fixed point and x0 is an eventually fixed point. If xn ≠  xn+1 for each n, then d(xn, fxn) > 0 for each n, 

and  

max{d(xn, fxn), d(xn+1, fxn+1)} > 0. 

Using (iii) this gives d(fxn, fxn+1) < 𝑑(xn, xn+1).Therefore, {d(xn, xn+1)} is a strictly decreasing 

sequence. Now, proceeding on the lines of the proof of Theorem 2.1 it follows that {xn} = {f nx0} is a 

Cauchy sequence. Since X is complete, there exists z in X such that xn = f nx0 → z. Also, lim
n→∞

f kxn = z 

for each integer k ≥ 1and lim
k,n→∞

f kxn = z. Moreover, using (iii), for each x in X we have 

lim
n→∞

d( f nx0, f nx) = 0, that is, lim
n→∞

f nx = z. Suppose that f is asymptotically continuous.  

Then, since lim
k,n→∞

(f kxn) = z , asymptotic continuity implies lim
k,n→∞

f(f kxn) = fz.This implies z = fz 

since lim
k,n→∞

f(f kxn) = lim
k,n→∞

(f k+1xn) = z. Therefore, z is a fixed point of f. If z and u are fixed points of 

f, then using (iii) it follows that lim
n→∞

d( f nx0, f nu) = 0, that is, d(z, u) = 0. Hence, z is the unique fixed 

point of f.  

If there does not exist an x0 in X such that xn ≠ xn+1 for each n, then each point of X is either a fixed 

point or an eventually fixed point. In this case the mapping f is obviously asymptotically continuous.  

Conversely suppose that a mapping f satisfying (iii) and (iv) either has a unique fixed point or each x in 

X is a fixed point or an eventually fixed point. First suppose that f has a unique fixed point, say z. Then, 

by virtue of (iii) and (iv), for each x in X the sequence of iterates {f nx} is a Cauchy sequence and 

lim
n→∞

f nx = z = fz. If {xn } is any sequence in X then for each n we have lim
k→∞

f kxn = zand 

lim
k,n→∞

f(f kxn) = z = fz. This implies that f is asymptotically continuous. On the other hand, if each point 

of X is either a fixed point or an eventually fixed point then f  is obviously asymptotically continuous. 

This completes the proof of the theorem. 

 

Example𝟑. 𝟒. Let(𝑋, 𝑑 ) be the Symmetric space.Where𝑋 = [−∞, ∞)and 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2∀𝑥, 𝑦 ∈ 𝑋. 

Define 𝑓: 𝑋 → 𝑋by 𝑓𝑥 = 0, for each 𝑥 in 𝑋. Then 𝑓 satisfies the conditions of Theorems 3.1and 3.3, 

possesses a unique fixed point 𝑥 = 0 and every nonzero 𝑥 is an eventually fixed point since 𝑓𝑥 = 𝑓2𝑥 if 

𝑥 ≠ 0. 

 

Example 𝟑. 𝟓. Let 𝑋 = {±4𝑛: 𝑛 = 0, 1, 2, 3, … . } and Let (𝑋, 𝑑 ) be the Symmetric space.Where𝑋 =

[1, ∞)and 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀ 𝑥, 𝑦 ∈ 𝑋. Let 𝑓: 𝑋 → 𝑋 be the signum function 𝑓𝑥 = 𝑠𝑔𝑛𝑥 defined as 

𝑓𝑥 = 1 𝑖𝑓 𝑥 > 0, 𝑓0 = 0, 𝑓𝑥 = −1 𝑖𝑓 𝑥 < 0Then𝑓 is a continuous mapping which satisfies all the 
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conditions of Theorems 3.1 and 3.3, has two fixed points 𝑥 = ±1 and all other points are eventually 

fixed. 

 

Examples 3.2 and 3.5 show that a mapping satisfying the conditions of theorems 3.1and theorem 3.3 

may not satisfy any contractive condition. 

 

Example 𝟑. 𝟔. Let 𝑋 = {𝑟𝑒𝑖𝜃: 0 ≤ 𝜃 ≤ 2𝜋, 𝑟 = 1, 4, 42, … . . }be the self-similar family of circles, each 

lying within larger circles having radii in geometric progression, in the𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒 and let 𝑑 be the 

symmetric metric  𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀ 𝑥, 𝑦 ∈ 𝑋. Define 𝑓: 𝑋 → 𝑋 by 𝑓(𝑟𝑒𝑖𝜃) = ⌈𝑟
4⁄ ⌉𝑒𝑖𝜃. Where⌈𝑥⌉ 

denotes the least integer not less than. Then 𝑓 satisfies is a continuous mapping which satisfies all the 

conditions of Theorem 3.1 and has the points on the unit circle as fixed points, that is, the unit circle is a 

fixed circle of 𝑓.  

Example𝟑. 𝟕. Let 𝑋 = [0, 2] and 𝑑 be the Symmetric metric on X, and𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2∀𝑥, 𝑦 ∈ 𝑋. 

Let 𝑓: 𝑋 → 𝑋 by 𝑓𝑥 = 1 𝑖𝑓 𝑥 ≤ 1, 𝑓𝑥 = 0 𝑖𝑓 𝑥 > 1,  Then 𝑓 satisfies the conditions of the Theorem 

3.1, has a unique fixed point 𝑥 = 1,  every other point is an eventually fixed point since 𝑓2𝑥 = 𝑓3𝑥 for 

each 𝑥 ≠ 1, and for each 𝑥 in 𝑋 the sequence of iterates {𝑓𝑛𝑥}obviously converges to the fixed point as 

𝑛 → ∞. The mapping 𝑓 satisfies conditions (i) and (ii) with 𝛿(𝜀) = (𝜀 − 1) 2⁄  if 𝜀 > 1, 𝛿(1) = 1 2⁄ , 

𝛿(𝜀) = (1 − 𝜀) 2⁄  if 1 2⁄  ≤ 𝜀 < 1and 𝛿(𝜀) = 𝜀 2⁄  if 𝜀 < 1 2⁄  and satisfies the contractive condition 

𝑑(𝑓𝑥, 𝑓𝑦) < 𝑚𝑎𝑥{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)}whenever𝑚𝑎𝑥{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)} > 0. The mapping 𝑓is 

discontinuous at the fixed point and, therefore, the above theorem contains solutions to Rhoades problem 

[37] on continuity of contractive mappings at the fixed point. Also, 𝑓 is a 2 − 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping and, 

hence, an asymptotically continuous mapping that satisfies the conditions of Theorem 3.3.  

Example 𝟑. 𝟖. Let 𝑋 = [0, ∞) and let d be the symmetric metric𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀ 𝑥, 𝑦 ∈ 𝑋. Define 

𝑓: 𝑋 → 𝑋 by 𝑓𝑥 = 1if𝑥 ≤ 1, 𝑓𝑥 =
𝑥

3
 𝑖𝑓 𝑥 > 1. 𝑓satisfies the conditions of Theorem 3.3 and has a 

unique fixed point 𝑥 = 1 at which 𝑓 is discontinuous. This example provides a new solution of the 

Rhoades problem [34] in the form of an asymptotically continuous mapping. It is easy to see that each 

𝑦 ≠ 1 is an eventually fixed point and 𝑓𝑁𝑦 = 𝑓𝑁+1𝑦 = 1for some integer 𝑁 = 𝑁(𝑦) ≥ 1. The mapping 

𝑓 satisfies the (𝜀, 𝛿) condition with 𝛿(𝜀) =
2

3
− 𝜀 if ε < 2/3, δ(ε)=2 − ε if 2/3 ≤ ε < 2 and δ(ε) = ε if ε ≥ 2. 

Example 𝟑. 𝟗. Let 𝑋 = [0,2] and 𝑑 be the symmetric metric and 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀𝑥, 𝑦 ∈ 𝑋. Let 

𝑓: 𝑋 → 𝑋 by 𝑓𝑥 = (2 + 𝑥) 3⁄ if 𝑥 < 1, 𝑓𝑥 = 0if 𝑥 ≥ 1.Then 𝑓 is not asymptotically continuous, satisfies 

the conditions (iii) and (iv) of Theorem (3.3) and does not have a fixed point. 𝑓Satisfies condition (𝑖𝑣) 

with 𝛿(𝜀) = min(𝜀, 1 − 𝜀) 𝑖𝑓 𝜀 < 1δ(ε) and𝛿(𝜀) = 𝜀when𝜀 ≥ 1. 

Example 𝟑. 𝟏𝟎. Let 𝑋 = [0,2] equipped with the symmetric metric 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀𝑥, 𝑦 ∈ 𝑋. Let 

𝑓: 𝑋 → 𝑋by 𝑓𝑥 = 𝑥 − [𝑥],  [𝑥] being the greatest integer ≤ 𝑥 Then 𝑓 is a 2 −continuous mapping that 

satisfies the conditions of Theorem 3.3.  Each 𝑥 in the interval [0,1) is a fixed point while each 𝑦 in 

[1,2] is an eventually fixed point since 𝑓2𝑦 = 𝑓𝑦. 

Theorem 𝟑. 𝟏𝟏. (The (ε, δ) Fixed and Periodic Points Theorem). Let f be a k-continuous or 

asymptotically continuous self-mapping of a symmetric space (𝑋, 𝑑) such that  

(v)   𝑚𝑎𝑥{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)} > 0 ⇒ 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑚𝑎𝑥{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)}strict inequality holding if 

𝑥, 𝑦 are non-periodic, 

(vi) Givenε >  0 there exists a δ >  0 such that 
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𝜀 < max{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)} ≤ 𝜀 + 𝛿 ⇒ 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝜀. 

Then either (a) each x in X is a fixed point or an eventually fixed point, or (b) if there exists an x0 in X 

such that the sequence iterates {f nx0} consists of distinct points then f possesses a unique fixed point, 

say z, and lim
n→∞

f ny = z  provided (y ≠ z) is not a periodic point, or (c) if for each x in X, the sequence of 

iterates consists of only finitely many distinct points then f may possess periodic points besides fixed 

points or (d) each point is a periodic point of prime period > 1. 

 

Proof. We first note that if each x in X is a fixed point of f then the conditions (v) and (vi) are satisfied 

trivially since there exists no pair (x, y) that violates (v) and (vi). Thus, either each x in X is a fixed point 

of f or there exists some point which is not a fixed point. Suppose x0 is not a fixed point, that is, fx0  ≠

x0. Define a sequence{xn }  in X recursively by xn = fxn−1, that is,xn = f nx0 . Then two cases arise: 

either there exists n > 1 such that xn = xi for some i < 𝑛 or for each n we have xn ≠ xi  . We first 

consider the case xn ≠ xifor i < 𝑛, n > 1. In this case, x0 is neither an eventually fixed point nor a 

periodic or eventually periodic point, that is, the sequence{xn = f nx0} consists of distinct points. Since 

{f nx0}  consists of distinct points, using (v) we get d(f nx0, f n+1x0) <

𝑚𝑎𝑥{d(f n−1x0, f nx0), d(f nx0, f n+1x0)}. This implies that 

{d(f nx0, f n+1x0)} = {d(xn, xn+1)}is a strictly decreasing sequence and, hence, converges to a limit r ≥

0. Suppose r > 0 then there exists a positive integer N such that 

n ≥ N ⇒ r < {d(xn, xn+1)} < 𝑟 + 𝛿(r). 

This yields r < 𝑚𝑎𝑥{d(xn, xn+1), d(xn+1, xn+2)} = max{d(xn, fxn), d(xn+1, fxn+1)} <  𝑟 + 𝛿(r). By 

virtue of (vi) this gives d(fxn, fxn+1) = d(xn+1, xn+2) ≤ r, a contradiction. Hence r = 0 and 

d(xn, xn+1) → 0as n →  ∞. From this and (v) it follows easily that {xn } = {f nx0 } is a Cauchy 

sequence. SinceX is symmetric, there exists z in X such that xn = f nx0 → z. Also, lim
n→∞

f kxn = z  for 

each integer k ≥  1and lim
k,n→∞

(f kxn) = z. Suppose f is asymptotically continuous. Since lim
k,n→∞

(f kxn) =

z, asymptotic continuity of f implies lim
k,n→∞

f(f kxn) = fz. This implies z = fzsince 

lim
k,n→∞

f(f kxn) = lim
k,n→∞

(f k+1xn) = z. Therefore, z is a fixed point of f. Now, suppose that z and u are 

fixed points of f, that is, z = fz and u = fu. Then max{d(xn, fxn), d(u, fu} = d(xn, fxn) > 0. By virtue of 

(v), this implies d(fxn, fu) < 𝑑(xn, fxn).Taking limit as n → ∞  we get d(z, fu) = 0, that is, z = u and z 

is the unique fixed point of f. This implies that if y(≠ z) is not a periodic point then f my = z for some 

m > 1 or {f ny} consists of distinct points. If {f ny}  consists of distinct points then using (v) and (vi) it 

follows that{f ny}  is a Cauchy sequence and  f ny → zas n → ∞. Thus, if there exists an x0 in X such that 

the sequence iterates {f nx0} consists of distinct points then f possesses a unique fixed point z and 

lim
n→∞

f ny = z  for each non periodic  y(≠ z)  point .This further implies that if y(≠ z) does not satisfy 

lim
n→∞

f ny = zthen y is either a periodic point of prime period > 1 or f my = z for some integer m ≥ 1. 

Now let us consider the case when, for each xin X, the sequence of iterates consists of only finitely many 

distinct points. In this case if each point in X is not a fixed point or an eventually fixed point then f 

possesses periodic points besides fixed points and eventually fixed points. This implies that if f does not 

possess a fixed point then each point is a periodic point (e.g. Example 3.12 below). If f is k − continuous 

then the theorem holds since k − continuity implies asymptotic continuity. It is clear from the proof of 
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this theorem that a mapping f satisfying the conditions of Theorem 3.12 is not a chaotic mapping since 

the sequence of iterates for each x in X either converges to a fixed point or forms a periodic orbit. 

 

Example𝟑. 𝟏𝟐. (Example 2.10 of [41]). Let 𝑋 = [−1,1] and d be the symmetric metric  𝑑(𝑥, 𝑦) =

(𝑥 − 𝑦)2 ∀𝑥, 𝑦 ∈ 𝑋. Let 𝑓: 𝑋 → 𝑋by 𝑓𝑥 = −|𝑥|𝑥, that is, 𝑓𝑥 = −𝑥2 if 𝑥 ≥ 0 and 𝑓𝑥 = 𝑥2 if 𝑥 < 0. 

Then 𝑓 satisfies condition (𝑣𝑖) of Theorem 3.11 with 𝛿(𝜀) = (√(𝜀 2)⁄ ) − (𝜀 2)⁄  if 𝜀 < 2 and 𝛿(𝜀) =

𝜀if 𝜀 ≥ 2,  and also satisfies the condition (𝑣). If we take  𝑥 = 1 and𝑦 = −1then 𝑓𝑥 = 𝑦, 𝑓2𝑥 = 𝑥, 

𝑓𝑦 = 𝑥, 𝑓2𝑦 = 𝑦 and 𝑚𝑎𝑥{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)} = 𝑑(𝑓𝑥, 𝑓𝑦) = 2 and (1, −1) is the only pair of 

elements in 𝑋 satisfying such a condition, and all other pairs of points (𝑥, 𝑦)satisfy the condition 

𝑑(𝑓𝑥, 𝑓𝑦) < 𝑚𝑎𝑥{𝑑(𝑥, 𝑓𝑥), 𝑑(𝑦, 𝑓𝑦)}. Thus, as observed in the proof of Theorem 2.14, 𝑓 has a unique 

fixed point 𝑥 = 0, two periodic points𝑦 = ±1 and for each 𝑦 ≠ ±1 we have lim
𝑛→∞

𝑓𝑛 𝑦 = 0. This also 

shows that 𝑓 does not have eventually fixed points. 

Example𝟑. 𝟏𝟑. Let 𝑋 = [−1,1] and 𝑑 be the symmetric metric  𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀𝑥, 𝑦 ∈ 𝑋. Let 

𝑓: 𝑋 → 𝑋𝑓𝑥 = −[|𝑥|]𝑥 where [𝑥]denotes the greatest integer not greater than 𝑥. Then 𝑓𝑥 = 0if−1 <

𝑥 < 1, 𝑓1 = −1, 𝑓(−1) = 1. As in Example 3.12 it is easy to show that 𝑓satisfies the conditions of 

Theorem 3.11, has a unique fixed point 𝑥 = 0and two periodic points 𝑦 = ±1 while every other point is 

an eventually fixed point. 

Example 𝟑. 𝟏𝟒. Let 𝐴, 𝐵, 𝐶 be the vertices of an equilateral triangle with each side of length 1. Let 𝐷 be 

the circumcentre of the triangle 𝐴𝐵𝐶and𝐸, 𝐹 be points on the perpendicular line to the plane of 𝐴𝐵𝐶 

through 𝐷 such that 𝐷𝐸 = 𝐷𝐹 = 1 2⁄ . Let 𝑋 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} and 𝑑 be the Symmetric metric 

on𝑋and𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ∀𝑥, 𝑦 ∈ 𝑋. Let 𝑓: 𝑋 → 𝑋 by 𝑓𝐴 = 𝐵, 𝑓𝐵 = 𝐶, 𝑓𝐶 = 𝐴, 𝑓𝐷 = 𝐷, 𝑓𝐸 =

𝐹, 𝑓𝐹 = 𝐸 Then 𝑓 satisfies all the conditions of Theorem 3.11and has a unique fixed point 𝐷,  two 

periodic points 𝐸, 𝐹of prime period 2 and three periodic points 𝐴, 𝐵, 𝐶 of prime period 3. 

 

4. CONCLUSION 

The study of fixed points and periodic points is a vibrant and continually evolving area of 

mathematics.This research paper is the presentation of finding of fixed point and the periodic points in 

the setting of symmetric space.The results are the generalization of the result of R.P.Pant and Vladimir 

Rakocevic [29]. 

 

Conflict of interest:We are declaring that this research paper has not been previously published and is 

not currently under consideration by another journal. 

 

REFERENCES 

1. M. Aamri, D.El.,Moutawakil, Common fixed points for weakly compatible maps in symmetric 

spaces with application to probabilistic spaces, Appl. Math. E-Notes, 5(2005), 171–175. 

2. M. Aamri, D.El.,Moutawakil, Some new common fixed point theorems under strict contractive 

conditions, J. Math. Anal. Appl, 270(2002), 181-188.  

3. M. Aamri, D.El.,Moutawakil, Common fixed points under contractive conditions in symmetric 

spaces, Appl. Math. E-Notes, 3(2003), 159–162. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240124010 Volume 6, Issue 1, January - February 2024 10 

 

4. M. Abbas, B.E. Rhoades, Common fixed point theorems for occasionally weakly compatible 

mappings satisfying a generalized contractive condition, Mathematical Communications, 13(2008), 

295-301. 

5. M. Abbas, B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Applied 

Mathematics Letters, 22(4)(2009), 511-515. 

6. Rhoades, B.E., Park, S., Moon, K.B.: On generalizations of the Meir-Keeler type contraction maps. 

J. Math. Anal. Appl. 146, 482–494 (1990).  

7. S. Banach, Sur les operations dans les ensembles abstraits etleur application aux equations integrals, 

Fund. Math., 3(1922), 133-181. 

8. Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. 

Soc. 215, 241–251 (1976)  

9. A. Bhatt, H. Chandra, Occasionally weakly compatible mapping in cone metric space, Applied 

Mathematical Sciences, 6(55) (2012), 2711-2717. 

10. R.K. Bisht, V. Rakočević, Generalized Meir-Keeler type contractions and discontinuity at fixed 

point, Fixed Point Theory, 19(1) (2018), 57-64.  

11. D.W. Boyd, J.S. Wong, on nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464. 

12. L. E. J. Brouwer, Uber Abidingness von Manning fastigiated, Math. Ann.71, (1912), 97–115. 

13.  M.Cicchese, Questioni di completezza e contrazioni in spazimetricigeneralizzati,  Boll Un Mat 

Ital, 5: 175–179. 

14. H. Chandra, A. Bhatt, Some fixed point theorems for set valued maps in symmetric spaces, 

International Journal of Mathematical Analysis, 3(17)(2009), 839-846. 

15. Troy L. Hicks, B.E. Rhoades, Fixed point theory in symmetric spaces with applications to 

probabilistic spaces, Nonlinear Analysis: Theory, Methods & Applications 36(3) (1999), 331-344. 

16. J. Jachymski, Common fixed point theorems for some families of maps,  Indian J. Pure Appl. Math., 

25 (1994), 925-34. 

17. J. Jachymski, J. Matkowski, T. Świa̧tkowski, Nonlinear contractions on semimetric spaces, J. Appl. 

Anal, 3(1) (1995), 125–134.  

18. G. Jungck, B.E.Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed 

Point Theory, 7(2006), 286-296. 

19. G. Jungck, B.E.Rhoades, Fixed point theorems for occasionally weakly compatible mappings, 

Erratum, Fixed Point Theory, 9(2008),383-384. 

20. R.A. Holmgren, A first course in discrete dynamical systems, Springer-Verlag, New York, 1994. 

21. W.A. Kirk, Contraction mappings and extensions, in Handbook of Metric Fixed Point Theory, 

Kluwer Academic Publishers, Dordrecht,The Netherlands, (2001) ,1–34. 

22. J. Matkowski, Integrable solutions of functional equations,Dissertations Math, (1975), 127:68.  

23. A. Meir, E. Keeler, A theorem on contraction mappings,   J. Math. Anal. Appl. 28(1969), 326–329.  

24. O. Nica, Existence results for second order three-point boundary value problems,  Differ. Equ. Appl., 

4(4) (2012), 547-70. 

25. Chatterjea, S.K.: Fixed point theorems. C. R. Acad. Bulgare Sci. 25, 727–730 (1972) 

26. Ciri´ ´ c, Lj.: On contraction type mappings. Math. Balkanica 1, 52–57 (1971) 

27. Ciri´ ´ c, Lj.:Generalised contractions and fixed point theorems. Publ. Inst. Math. (Beograd) (NS) 25, 

19–26 (1971) 

28. R.P. Pant, Extended Φ contraction mapping, The Journal of Analysis, (2024), 1-10. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240124010 Volume 6, Issue 1, January - February 2024 11 

 

29. R.P. Pant, V. Rakočevič, Fixed point and periodic point theorems, 

 ActaScientiarumMathematicarum, (2024),1-18. 

30. R.P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math.30-

2(1999), 147-152.  

31. R.P. Pant, Common fixed point theorems for contractive maps, J Math. Anal. Appl. 226 (1998), 251-

258. 

32. R.P. Pant, N. Özgür, N. Taş, A. Pant, M.C.Joshi, New results on discontinuity at fixed points, J. 

Fixed Point Theory Appl. 22(2020), 1-14. 

33. R.P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188-2(1994), 

436-440 

34. Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968). 

35.  Kannan, R.: Some results on fixed points-II. Amer. Math. Monthly 76, 405–408 (1969) . 

36. S.Reich, Fixed point of contractive functions. Boll. UMI, 5(1972), 26-42.  

37. B.E.Rhoades, Contractive definitions and continuity, Contempory Math. 72(1988), 233-245. 

38. W.A. Wilson,  On semi-metric spaces, Amer. J. Math, 53(1931), 361–373. 

39. X. Zhang, Common fixed point theorems for some new generalized contractive type mappings, J. 

Math. Anal. Appl., 333,(2007), 780-786. 

40. Zheng, D. and Wang, P., “Weak θ − φ contractions and discontinuity”, J. Nonlinear Sci. Appl., 

10(2017), 2318-2323.  

41. Pant, A., Pant, R.P.: Fixed points and continuity of contractive maps. Filomat 31(11), 3501–3506 

(2017) 

42. Pant, Abhijit, Pant, R.P., Joshi, M.C.: Caristi type and Meir-Keeler type fixed point theorems. 

Filomat 33(12), 3711–3721 (2019) 

43. Bisht, R.K., Rakoˇceviˇc, V.: Generalized Meir-Keeler type contractions and discontinuity at fixed 

point. Fixed Point Theory 19(1), 57–64 (2018)  

44. Bisht, R.K.: Rakoˇceviˇc, fixed points of convex and generalized convex contractions. Rend. Circ. 

Mat. Palermo Ser. 2, 21–28 (2018)  

45. Celik, U., Ozgur, N.: A new solution to the discontinuity problem on metric spaces. Turkish J. Math. 

44(4), 1115–1126 (2020)  

46. Devaney, R.L.: An introduction to chaotic dynamical systems. Benjamin/Cummings Publishing Co., 

California (1986)  

47. Ozgur, N.Y., Tas, N.: Some fixed-circle theorems on metric spaces. Bull. Malays.Math. Sci. Soc. 

42(4), 1433–1449 (2019) 

48. Ozgur, N.: Fixed-disc results via simulation functions. Turkish J. Math. 43(6), 2794–2805 (2019)  

49. Ozgur, N.Y., Tas, N.: Fixed-circle problem on S-metric spaces with a geometric viewpoint. 

FactaUniversitatis. Series: Math. Inf. 34(3), 459–472 (2019)  

50. Ozgur, N.Y., Tas, N.: Some fixed-circle theorems and discontinuity at fixed circle. AIP Conf. Proc. 

1926, 020048 (2018)  

51.  Pant, R.P.: Common fixed points of four mappings. Bull. Cal. Math. Soc. 90, 281–286 (1998)  

52. Pant, R.P.: A Common fixed point theorem under a new condition. Indian J. Pure Appl. Math. 30(2), 

147–152 (1999)  

53.  Pant, Abhijit, Pant, R.P., Joshi, M.C.: Caristi type and Meir-Keeler type fixed point theorems. 

Filomat 33(12), 3711–3721 (2019)  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240124010 Volume 6, Issue 1, January - February 2024 12 

 

54.  Pant, R.P., Ozgur, N.Y., Tas, N.: Discontinuity at fixed points with applications. Bull. Belgian 

Math. Soc. Simon Stevin 26–4, 571–589 (2019)  

55. Rashid, M., Batool, I., Mehmood, N.: Discontinuous mappings at their fixed points and common 

fixed points with applications. J. Math. Anal. 9–1, 90–104 (2018)  

56.  Rhoades, B.E.: Contractive definitions and continuity. Contemp. Math. (Amer. Math. Soc.) 72, 233–

245 (1988)  

57. Saleh, H.N., Sessa, S., Alfaqih, W.M., Imdad, M., Mlaiki, N.: Fixed circle and fixed disc results for 

new types of Θc-contractive mappings in metric spaces. Symmetry 12(11), 1825 (2020) 

58. Suzuki, T.: A generalized Banach contraction principle that characterizes metric Completeness. Proc. 

Amer. Math. Soc. 136–5, 1861–1869 (2008) 

59. Wardowski, D.: Solving existence problems via F-contractions. Proc. Amer. Math. Soc. (2017).  

60. Pant, A., Pant, R.P., Prakash, K.: Dynamics of a family of orbitally continuous mappings. Filomat 

31(11), 3507–3517 (2017)  

https://www.ijfmr.com/

