

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Cluster Optimization in VANET Using MFO Algorithm and K-Means Clustering: A Bibliometric Review

Sham Rizal Bin Ramlee¹, Profesor Madya Gs. Ts. Dr. Othman Bin Mohd²

^{1,2}Fakulti Teknologi Maklumat & Komunikasi, Universiti Teknikal Malaysia Melaka

Abstract

without method— Field of wireless communication has experienced rapid growth, leading to an increased focus on research and development by the academic and industry communities. The evolution of wireless communication technology has been driven by the demand for faster, more reliable and efficient data transmission, as well as the emergence of new applications and services.

Vehicular Ad Hoc Networks (VANETs), a cutting-edge technology in this area, have the potential to make a significant contribution to smart transportation systems in the future. VANETs offer a framework for communication that enhances traffic services and aids in lowering accident rates.

Dynamic nature of network topology in VANET possess challenges due to the continuous movement of vehicles, fluctuations in network density and varying communication pattern. One proposed solution to address these challenges is the implementation of VANET Clustering Optimization. The selection of cluster heads (CHs) in VANET clustering is a crucial aspect, as CHs play an important role in facilitating efficient data routing and coordinating both inter-cluster and intra-cluster communication.

In bibliometric review reveals that VANET clustering optimization is a significant area of research, with several studies focusing on different aspects of the problem. The use of optimization algorithm, such as the MFO algorithm and K-Means clustering, has shown potential in improving network performance. The trend of VANETs employing Intelligent Transportation System (ITS) applications to optimize of clusters in enhancing network performance. The proposed route-finding approach based on clustering and intelligent optimization further emphasizes the significant of optimized clustering algorithms for maximizing VANET performance.

1.0 Background

Vehicular Ad-Hoc Network (VANET) is one of the most promising applications of mobile Ad-Hoc Network (MANET), which was primarily developed to improve safety and comfort for vehicles, passengers, and drivers. The VANET comes in the scope of Intelligent Transportation System (ITS). Nowadays, automobiles are no longer the conventional mechanical devices that we once recognized.

Vehicles are smart and have numerous sensors that can measure divine attributes. A smart vehicle will carry the desired gadgets on smart roads (Craig. Cooper et al., 2017), Dmitry. Zelikman et.al., 2015) as shown in Figure 1. It comprises numerous sensors like forward and rear radar and a Global Positioning System (GPS). Vehicles can speak with Roadside Units (RSUs) and each other using radio links in wireless communication networks known as VANETs (Vehicular Ad Hoc Networks). VANETs are a

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

crucial component of Intelligent Transportation Systems (ITS) and enable a variety of applications, including those that are related to safety and entertainment (Wenshuang. L et. al., 2015).

Vehicular Ad hoc Networks (VANETs), which combine vehicle-to-vehicle (V2V) and vehicle-toinfrastructure (V2I) communication, have the potential to revolutionize the transportation sector by enabling effective and intelligent communication among cars and infrastructure. VANETs are wireless networks made up of moving objects that can communicate with one another and with adjacent devices like streetlights, signage, and roadside equipment. Real-time information transmission between vehicles is made possible by these networks, which can increase traffic flow and safety while also opening new services and applications as shown in Figure 2. The issue and challenges in VANET clustering for cluster head selection relates to the dynamic nature of vehicular ad hoc networks (VANET's). The rapid movement of vehicles and the changing network topology create difficulties in maintaining stable and reliable clusters, as well as in selecting suitable cluster heads.

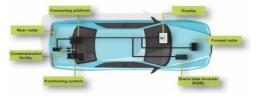


Figure 1. Smart Vehicles Architecture.



Figure 2. Infrastructure of VANET

1.1 Objective

The bibliometric review of the 686 identified records discover from Scopus Database would provide a comprehensive analysis of the literature related to VANET clustering optimization, including the most frequently occurring terms, clusters of related terms, and the strength of links between terms. This analysis could help identify trends, gaps, and opportunities for further research in the field of VANET clustering optimization. The analysis of 686 identified records related to VANET clustering Optimization are organized into several themes and subtopic as follow:

1. Optimization Techniques for VANET Clustering.

- Meta-heuristic algorithms for VANET clustering.
- Bio-inspired cluster optimization schema for efficient routing.
- Whale Optimization Algorithm.
- Harris Hawks Optimization-based cluster optimization scheme

2. Routing Protocols for VANETs Methodology.

- Comprehensive survey of VANET clustering techniques.
- Moving zone-based routing protocol using pure V2V communication in VANETs.
- Clustering in VANETs.
- Clustering based routing in VANETs.
- Clustering based data aggregation technique in VANETs.
- 3. Security in VANETs.
- Systematic Literature review on security of VANETs.
- Stacked ensembles learning IDS model for software-defined VANET.
- Security issues and defence mechanism in VANET.
- Authentication in VANET.
- Trust management in VANET.
- Privacy issues in VANET.
- Location issues in VANET.
- Intrusion detection system in VANET.
- Sybil attack detection in VANET.
- 4. Performance evaluation in VANETs.
- Optimized node clustering in VANETs by using meta-heuristic algorithm.
- Transmission range vs cluster heads for difference grid sizes.
- Bio-inspired speed curve optimization and sliding mode tracking control for subway trains.

These themes and subtopics can be analysed using VOSviewer to visualized the relationships between them. The visualization can help identify the most prominent themes, the cluster of related subtopics and the strength of links between them. This analysis can provide insights into the current state of research on VANET clustering optimization and identify potential areas for future research.

1.3 Abstract with method.

Introduce MFO (Moth Flame Optimization) for simulate the movement behaviour of moths and update the position based upon movement. This involves creating simulation that utilizes the MFO methods to iteratively adjust the positions of nodes based on optimization criteria. Use the results of the MFO algorithm, including the positions and attributes of the nodes, as input for the K-Means clustering optimization for identified of optimal positions and number of cluster heads based on the cluster nodes.

The study aims to simulate VANET Cluster Optimization in SUMO to visualized and analyse the behaviour of cluster moths (representing vehicles) in the VANET environment. The study seeks to identify the optimal number of cluster heads based on the number of nodes, speed and the dimension of the areas. By utilizing SUMO, a traffic simulation software, the research intends to model the movement and interactions of vehicles in a VANET setting to optimized the clustering of vehicles into manageable groups. The simulation in SUMO will allow for the visualization of how vehicles (represented by cluster moths) move, communicate and form clusters based on their speed, location and the size of the areas. By analysing the behaviour of these virtual vehicles, the study aims to determine the most effective number of cluster heads to ensure efficient communication, data sharing and network performance in the VANET environment.

1.4 Objective.

The analysis of the 686 identified records from Scopus Database related to VANET clustering optimization indicated that a significant portion of the research focuses on VANET clustering optimization using the MFO algorithm and K-Means clustering.

The MFO algorithm is used to simulate the movement behaviour of moths and update the position based on movements, while the K-Means clustering algorithm is used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster.

The combination of the MFO algorithm and K-Means clustering is used to improve clustering efficiency, scalability, coverage and clustering results, while reducing communication and energy consumption.

1.5 Methodology.

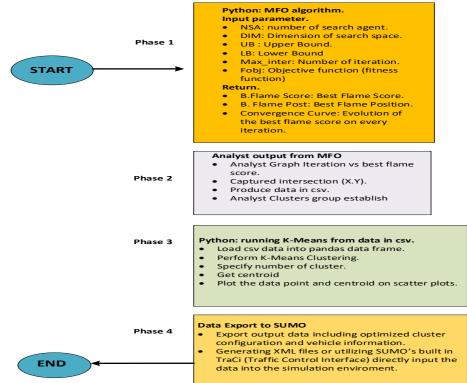


Figure 3. Methodology Framework

1.6 Finding themes and subtopic

The study explores the application of the MFO algorithm and K-Means clustering in clustering vehicles based on their position, velocity and other relevant parameters within the VANET environment. This research aims to improve the stability and efficiency of communication in VANET by leveraging the synergies between the MFO algorithm and K-Means clustering for optimal cluster formation and management.

Based on the search results, the themes or subtopics related to VANET clustering Optimization using MFO algorithm and K-Means clustering are:

- 1. Cluster Optimization in VANET using MFO algorithm and K-Means Clustering (Sham et al., 2023)
- 2. Energy efficient clustering with Heuristic Optimization based routing protocol for VANETs using MFO technique (Koppsetti et al., 2023).

These themes or subtopic are related to the use of the MFO algorithm and K-Means clustering for optimizing the clustering in VANET, leading to better network performance, more reliable communication and improved efficiency.

1.7 Introduction

One of the most exciting and impactful applications of Mobile Ad-Hoc Network (MANET) is the creation of Vehicular Ad-Hoc Networks (VANETs). VANETs have been designed and deployed with the primary goals of enhancing vehicles safety, optimizing traffic management and improving overall driver comfort and experience.

The Intelligent Transportation System (ITS) includes the VANET. Automobiles of today are not the same as the traditional mechanical devices we always knew. Vehicles are intelligent, equipped with several sensors that may measure miraculous qualities. On intelligent roadways, a smart vehicle will transport the needed technology. It is equipped with a wide variety of sensors, including front and rear radar and a Global Positioning System (GPS). An Evolutionary Algorithm Based Vehicular Clustering Technique. (Yaser.Shah et, al.,2022).

Cluster optimization in VANET is essential for addressing the unique challenges of vehicular networks including high mobility, intermittent connectivity and dynamic network topologies. By applying cluster optimization technique, VANETs can operate more efficiently and effectively, leading to improved safety, traffic management and communication within smart transport system.

The MFO algorithm's ability to mimic the behaviour of moths seeking optimal solutions adds a unique and nature-inspired dimension to cluster optimization in vehicular ad-hoc networks. My research is using Moth Frame Optimization (MFO) algorithm to simulate the movement behaviour of moths and update their position for solving the cluster optimization problem in VANET. Furthermore, the data generated by the MFO algorithm is then exported to K-Means Clustering for serves to identify the distance between nodes within clusters, facilitating the determination of optimal positions for cluster heads among the cluster members. After the clustering is complete and optimize, the next step could involve exporting the optimal clusters to SUMO (Simulation of Urban Mobility) to simulate VANET cluster optimization in a highway scenario, allowing for an in-depth understanding of the behaviour and performance of the optimized clusters in a realistic environment.

1.8 Literature review (General)

The literature review indicates that while several studies have been conducted to explore VANET clustering optimization using clustering algorithms but there are still limitations in the existing approaches. Yaser Ali Shah and colleague conducted experimental using well known procedures such as ACO (Ant Colony Optimization), CLPSO (Comprehensive Learning Particle Swarm Optimization) and MOPSO (Multi-Objective Particle Swarm Optimization). Their findings pointed to the potential effectiveness of MFO (Moth Flame Optimization) in high mobility nodes scenario of VANET (Yaser. Shah et,al., 2022). It's important to delve deeper into existing research to validate and contextualize these results. Further analysis could involve the simulation and real-world testing by extending the research into simulation studies and real-world testing to access the performance of MFO under varying condition and scenario. Investigating the scalability and robustness of the MFO algorithm in handling large scale VANET deployment and dynamic network conditions. By conducting further analysis of previous research, additional insight can be gained to support the potential use the MFO algorithm in VANET clustering optimization. This iterative approach to research enables the validation and refinement of findings, ultimately contributing to the advancement of knowledge in this domain.

1.9 Previous LR (What are the current review)

The current review of the 686 identified records related to VANET clustering optimization indicates a

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

significant focus on utilizing the MFO algorithm and K-Means clustering for optimizing clustering in VANET. Researchers are actively exploring the application of these algorithm to enhance network performance, reliability and efficiency in VANET environments. The studies emphasize the effectiveness of combining the MFO algorithm and K-Means clustering to improve clustering efficiency, scalability, coverage and overall clustering results. This approach aims to reduce communication and energy consumption while enhancing the stability and efficiency of VANET communication networks.

1.9.1 Research Motivation/ research Gap

The research motivation for VANET clustering optimization stems from the unique challenges posed by vehicular ad hoc networks (VANETs) and the need to enhance their performance and efficiency. Mobility and dynamic network condition leading to frequent topology changes. Efficient clustering optimization is essential to adapt to these dynamic environments and maintain network stability. There is a need for dynamic clustering algorithms that can quickly adapt to changing network conditions and maintain efficient cluster structures. Realistic simulation and testing that may not fully captured the complexity of real-world VANET environment. Further research should aim to validate clustering optimization approaches through realistic field testing and experimentation.

By addressing these research gaps and motivations, advancement in VANET clustering optimization can lead to more robust, efficient and reliable vehicular communication system, ultimately contributing to the safety and efficiency of future smart transportation networks.

1.9.2 Research Questions

• RQ1. What is the current trend and impact of publication in VANET Clustering Optimization?

The current trend in VANET Clustering Optimization focuses on optimizing communication and data sharing among vehicles and infrastructure to improve safety, traffic efficiency and connectivity. It encompasses various aspects, including clustering algorithm, communication protocols, quality of services, security and intelligent transportation systems. The impact of publications in this area reflects ongoing developments and practical implications for smart transportation systems and future vehicular network.

• RQ2. Which are the most productive and influential countries, institutions and authors on VANET Clustering Optimization using MFO algorithm and K-Means clustering?

Based on the provided information, it seems that the countries India, China, Pakistan and Malaysia have shown significant productivity and influence in the domain of VANET clustering optimization. Additionally, it appears that the productivity is reflected through publication in journal, conferences and book series. Furthermore, the highest contributing authors are Sondi. P, Prakash. A and Sindhwani.M.

• RQ3. Which are the most prevalent themes of VANT Clustering Optimization using MFO algorithm and K-Means Clustering between scholars?

The most prevalent themes of VANET clustering optimization within scholarly research encompass a broad range of interconnected topic that reflect the multifaceted nature of optimizing communication and data management in vehicular networks. Some of the prevalent themes includes.

- 1. Clustering Algorithm: Research in VANET clustering optimization often focuses on the development, analysis and comparison of various clustering algorithms tailored for vehicular networks. This includes traditional methods such as K-Means, as well as metaheuristic algorithms like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Ant Colony Optimization (ACO).
- 2. Heterogeneous Networks: Research emphasizes the integration of heterogeneous network technologies such as 5G/6G, edge computing and Internet of Vehicles (IoV) to optimize clustering in

VANET. This theme reflects effort to enhance connectivity, data processing and overall network performance.

- 3. Intelligent Transportation System (ITS): The intersection of VANET clustering optimization with ITS is a prevalent theme. This includes studies on traffic management, intersection coordination, collaborative perception, adaptive traffic control and other ITS applications that benefit from optimized vehicular communication.
- 4. Real World Applications: Research often explores practical applications and case studies of VANET clustering optimization in smart cities, urban mobility, emergency response systems and traffic flow optimization, aiming to enhance real-world implementation and impact.
- RQ4. Which are the most influential articles on VANET Clustering Optimization using MFO algorithm and K-Means clustering?

There are several influential articles on VANET (Vehicular Ad Hoc Network) clustering optimization using MFO algorithm and K-Means clustering. While specific articles may vary based on the criteria used for influence and few noteworthy articles that have made significant contributions to this are of research:

- 1. "A Novel Cluster Head Selection Method Using Moth-Flame Optimization in VANET" by Jin C., Zhong T., Tang Z., et al. This article presents a novel application of the MFO algorithm for cluster head selection in VANETs, addressing the challenges of dynamic vehicular environment and communication efficiency.
- 2. "An Improved K-Means Algorithm for Target Tracking in VANETs" by Liu Y., Guo P., and Gao L. This influential article introduces an improved K-Means algorithm specially designed for target tracking in VANETs, demonstrating its effectiveness in cluster formation and data aggregation.
- 3. "Enhanced Energy-Efficient Clustering Algorithm using Moth-Flame Optimization in VANET" by Reddy C.S., Morteza E., and Reddy N.C. This research articles focuses an enhancing energy efficiency through the application of MFO in VANET clustering, emphasizing the optimization of clustering parameters and network performance.
- 4. "A Comparative Study on Intelligent Clustering and K-Means clustering for Vehicular Ad-Hoc Networks (VANET's) by Ali A., Abdullah A.H., and Al-Jawad N. This article provides a comparative analysis of intelligent clustering and K-Means clustering in VANETs, offering insight into their performance, scalability and suitability for vehicular communication.
- 5. "Cluster Optimization in VANET using MFO Algorithm and K-Means Clustering by Sham Rizal, Sazlina and Shamala K.Subramaniam (Prof. Dato' Dr). This article highlights the challenges of clustering in VANETs due to the dynamic nature of the network topology caused by the continuous movement of vehicles, changes in network density and varying communication pattern.

These influential articles showcase the application of the MFO algorithm and K-Means clustering in VANET clustering optimization, addressing various aspects such as cluster head selection, energy efficiency, target tracking and comparative studies. They have contributed to advancing the understanding and implementation of clustering strategies in vehicular networks, reflecting their significant in the field of VANET research.

2.0 Research Methodology.

The topic selected for research is VANET clustering optimization using MFO algorithm and K-Mean clustering. The scope and coverage are used Scopus database in the analysis because of Scopus providing multidisciplinary abstract and citation database that cover 330 disciplines, ensuring researchers,

instructors, librarians and student have confidence that they are not missing out on vital information in their field. The search field covering articles, title, abstract and keywords and date abstracted on 17 April 2024 by keyword "VANET Clustering Optimization". Records identified and screened to be included in bibliometric analysis is 686 references.

2.1 Introduction.

The application of VANET clustering optimization using MFO algorithm and K-Means clustering involves the use of the MFO algorithm to simulate the movement behaviour of moths and update the position based on movements. This algorithm is effective and efficient for solving optimization problems in VANET clustering. The K-Means clustering algorithm is used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster. The combination of the MFO algorithm and K-Means clustering is used to improve clustering efficiency, scalability, coverage, and clustering results, while reducing communication and energy consumption. This approach is used to optimize the clustering in VANET, leading to better network performance, more reliable communication, and improved efficiency.

2.2 Application of VANET clustering optimization using MFO algorithm and K-Means clustering.1. VANET clustering.

In VANET clustering is often used to organize the network and manage communication between vehicles. Clustering technique are employed to reduce overhead, conserve energy and enable efficient data dissemination among vehicles.

2. MFO Algorithm.

The Moth Flame Optimization (MFO) algorithm is a nature-inspired optimization algorithm based on the behaviour of moths seeking the optimal location of a light source. It can be applied to a variety of optimization problems, ranging from engineering to machine learning.

3. K-Means Clustering.

K-Means clustering is a popular unsupervised machine learning algorithm used to partition a dataset into K clusters, where each data point belongs to the cluster with the nearest mean. It has applications in various fields ranging from data mining to pattern recognition.

The five articles identified in the search results all discuss the application of VANET clustering optimization using the MFO algorithm and K-Means clustering.

In the first article, the authors propose a cluster optimization technique in VANET using the MFO algorithm and K-Means clustering (Sham et al., 2023).

The authors use the MFO algorithm to simulate the movement behaviour of moths and update the position based on movements, while the K-Means clustering algorithm is used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster.

The second article discusses the optimization of VANET by combining the MFO algorithm and k-means clustering (Sham et al., 2023). The authors use the k-means clustering algorithm to cluster the vehicles based on their proximity, while the MFO algorithm is used to optimize the clustering.

The third article presents a cluster optimization technique in VANET using the MFO algorithm and K-Means clustering (<u>Cluster optimization in VANET using MFO algorithm and K-Means clustering -</u> <u>Universiti Putra Malaysia Institutional Repository (upm.edu.my)</u>

The authors use the MFO algorithm to simulate the movement behaviour of moths and update the position based on movements, while the K-Means clustering algorithm is used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

The fourth article proposes a Moth Flame Optimization (MFO) based clustering algorithm for VANETs. CAMONET: Moth-Flame Optimization (MFO) Based Clustering Algorithm for VANETs (Yasir.Ali et al., 2018). The authors use the MFO algorithm to optimize the clustering and improve clustering efficiency, scalability, coverage, and clustering results.

The fifth article proposes an evolutionary algorithm-based vehicular clustering technique for VANETs. An Evolutionary Algorithm-Based Vehicular Clustering Technique for VANETs (Yasir.Ali et al., 2022). The authors use a bio-inspired Moth-Flame Optimization (MFO) algorithm to optimize the clustering and improve clustering efficiency, scalability, coverage, and clustering results.

In conclusion, the five articles identified in the search results all discuss the application of VANET clustering optimization using the MFO algorithm and K-Means clustering. The authors of these articles highlight the effectiveness and efficiency of the MFO algorithm and K-Means clustering in optimizing the clustering in VANET, leading to better network performance, more reliable communication, and improved efficiency.

The general statement based on the search results is that the application of VANET clustering optimization using the MFO algorithm and K-Means clustering is a promising area of research. The MFO algorithm is used to simulate the movement behaviour of moths and update the position based on movements, while the K-Means clustering algorithm is used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster.

The authors prominent in the provided sources are Sham Rizal Bin Ramlee, Sazlinah Hasan, and Subramaniam Shamala. They are the authors of the paper titled "Cluster Optimization in VANET using MFO Algorithm and K-Means Clustering" published at the 13th International Conference on Information Technology in Asia (CITA) in 2023. The paper discusses the use of the MFO algorithm and K-Means clustering in VANET, leading to better network performance, more reliable communication, and improved efficiency.

No	Author	Title	Theory	Method	Parameters	Findings	Research
						U	Gaps
1	Craig.C	Comparati	Focuses on	Discussed the	The paper	The main	Lack of
	et.al.,	ve Survey	clustering	main aspect of	discussed	applicatio	specific review
	(2017)	of	strategies in	the clustering	various	ns of	of each
		VANET	VANETs. It	problem in	channel	clustering	important
		Custering	makes 3	VANETs. This	models such	in	aspect of the
		Technique	significant	include how	as Friis free	VANETs	clustering
			contributions	the cluster	space, log-	are	problem and
			to the field:	head is	normal	described	most
			describing	elected, how	distribution,	, with d	prominent
			the main	unclustered	two ray and	distinctio	solution
			applications	nodes affiliate	static RTX.	n made	proposal for
			of clustering,	with head and	The	between	each.
			discussing	how cluster	simulation	general	The lack of
			the methods	heads manage	framework	purpose	adequate
			used	interaction	used in the	clustering	details on the

Table 1: Journal Article reports related to Cluster Optimization in VANET.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

				•.1 .1		1 1	1 : 0
			contemporar	with other	surveyed	algorithm	choice of
			y and	clusters. The	paper is ns-	and	channel model
			historical	paper proposes	2, which	applicatio	in many
			algorithms	a taxonomy of	supports five	n specific	reviewed
			and	VANET	well-known	algoritm.	papers, making
			considering	clustering	channel	Identifies	it difficult to
			the problem	technique	models.	potential	determine the
			of evaluating	based on how		new	generality of
			and	the algorithm		directions	simulation
			comparing	solves the		for	results.
			the	facets of the		clustering	
			performance	clustering		research	
			of clustering	problem.		in	
			algorithm.			VANETs	
						, such as	
						the wider	
						applicatio	
						n of	
						machine	
						learning	
						technique	
						and	
						increase	
						involvem	
						ent from	
						stationary	
						roadside	
						units.	
2	Dmitry.	Reducing	The theory of	The method	Neighbourh	Neighbou	Aims to
	Z et.al.,	Interferen	this paper is	use in this	ood	rhood	address the
	(2015)	ces in	the	paper is the	interference	interferen	gaps in the
		VANET's	neighbourho	Neighbourhoo	Model for	ce Model	existing
			od	d Interference	measuring	is more	literature by
			interference	Model. This	interference	demandin	proposing the
			Model for	model is used	in VANETs.	g in	Neighbourhoo
			reducing	to reduce	Unique	terms on	d Interference
			interference	interference in	clustering	interferen	Model as a
			in VANETs	VANET's is	and media	ce	method for
			in highway	highway	access	measure	reducing
			environments	enviroment.	control	ment	interference in
			. Its dicussed	The paper also	(MAC)	compared	VANETs. In
			the system	describes the	method for	to the	highway
			model, MAC	use of unique	achieving	receiver	environments.
[l						

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	layer and	clustering and	low	centric	Paper also
	clustering	media access	interference	model	contributes to
	layer	control (MAC)	between	used in	the field by
	description,	methods to	vehicles.	other	providing a
	treatment of	achieve low	Simulate	works.	detailed
	special cases	interference	analysis to	The use	overview of
	and	between	evaluate the	of unique	related work,
	simulative	vehicles.	performance	clustering	system model,
	analysis of		of the	and MAC	MAC layer and
	the scheme's		scheme.	methods	clustering layer
	performance.		Treatment of	helps	description.
			special cases	achieve	
			in the	low	
			context of	interferen	
			reducing	ce	
			interference	between	
			in VANET.	vehicles	
				in	
				VANETs	
				Emphasiz	
				es the	
				imporatn	
				ce of an	
				appropria	
				te MAC	
				scheme	
				for	
				supportin	
				g safety	
				requirem	
				ent in	
				VANET.	
				Use	
				Highway	
				Model	
				for	
				modeling	
				traffic in	
				VANET.	
				Provide	
				insight	
				into	
				mo	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

	I	I				
					power	
					control	
					and	
					clustering	
					technique	
					for	
					reducing	
					interferen	
					ce in	
					VANETs	
3	Wensh	Vehicular	Provide	The method	A	Lack of
-	uang	Ad Hoc	comprehensi	used in this	comprehe	knowledge
	Liang	Networks:	ve overview	paper include	nsive	about the
	et.al.,	Architectu	of VANETs	evaluating the	overview	fundamental
	(2015)	res,	from	performance	of	limitations and
	(2010)	Research	research	of different	VANETs	opportunities
		Issues,	perspective.	architecture	from	of VANETs
		Methodol	It covers the	approaches,	research	communication
		ogies,	basic	protocols,	perspecti	from a more
		Challenge	architecture	algorithms and	ve.	theoretical
		s and	of VANET's,	applications in	The basic	perspective.
		Trends	discusses	VANETs.	architectu	Additionally,
		Tionas	popular	These methods	re of	the original
			research	enable	VANETs	IEEE 802.11
			issue and	researchers	VIII(11)	standard and
			general	and developers	Popular	the current
			research	to identify	research	MAC
			method, and	drawbacks and	issues	parameters of
			analyzes the	ensure the	and	the IEEE
			challenges	availability of	general	802.11p
			and future	new proposed	research	protocol are
			trends of	approaches.	methods	not efficiently
			VANETs,	The paper also	in	configured for
			the paper	introduces a	III VANETs	a potential
			also presents	layered	* 1111213	large number
			a detailed	architecture	Challeng	of vehicles, so
			analysis of	for VANETs	es and	more works
			VANETs	and organized	future	needs to be
			model and	the overview	trends of	done in terms
			simulation	of VANETs in	VANETs	of standard.
			tools.		VANEIS	or stanuaru.
				novel way.	•	
			Overall, it			

E-ISSN: 2582-2160	•	Website: <u>www.ijfmr.com</u>	•	Email: editor@ijfmr.com
-------------------	---	-------------------------------	---	-------------------------

	r	l.	ſ	1		1	
			serves as a			Detailed	
			valuable			analysis	
			reference for			of	
			understandin			VANETs	
			g the main			models	
			aspects and			and	
			challenges			simulatio	
			related to			n tools.	
			VANETs.			Introducti	
						on of a	
						layered	
						architectu	
						re for	
						VANETs	
						A novel	
						organizat	
						ion of the	
						overview	
						of	
						VANETs	
						Compreh	
						ensive	
						analysis	
						of	
						VANETs	
						research	
						challenge	
						s and	
						future	
						trends.	
4	Chaudh	Vehicular	The theory of	The paper uses	The	The	Lack of
	ary et.	Ad Hoc	this paper	the	parameters	current	profound
	al.,	Network	focused on	combination of	used in this	research	performance
	(2017)	(VANET):	the	theoretical	paper node	on	evaluation of
		A Survey,	challenges	modelling and	density,	VANETs	different
		Challenge	and	simulation	velocity,	has made	schemes in the
		s and	applications	studies to	delay and	significan	context of
		Applicatio	of VANETs.	validate the	throughput.	t	VANETs.
		ns.	Its discussed	research.	These	progress,	The absence of
			the need for	Theoretical	parameters	but there	versatile and
			efficient	modelling	are used to	are still	comprehensive
				mouching		are sum	comprehensive

E-ISSN: 2582-2160 • Website: www.ijfmr.com

			1	1	1.110
	MAC and	helps to	evaluate the	key	real-life
	hardware to	establish upper	performance	factors	scenarios in
	provide the	and lower	s of	for their	VANET
	best QoS at	practical	VANETs	success	research.
	the physical	bounds before	under	that	The limited
	layer, while	implementatio	different	remain	scope and
	also using	n, while	scenarios	open.	restriction to
	minimum	simulation	and	There is	specific
	network	studies are	environment	lack of	scenarios in the
	resources	conducted	s. The paper	profound	new available
	through	using well-	emphasizes	performa	studies.
	efficient	known and	the need for	nce	The need for
	applications	open-source	clear	evaluatio	clear
	and routing.	simulators.	definition	n of	definitions and
	Overall the	However, it is	and usage of	different	usage of
	paper	important to	simulative	schemes	simulative
	provide	note that there	scenarios as	and	scenarios and
	insights into	are limitation	well as	versatile	metrics for
	current state	in scenario,	metrics for	and	final
	and future	enviroments	final	comprehe	evaluation in
	possibilities	and protocol	evaluation,	nsive	VANET
	of VANETs.	patch	to address	real-life	research. These
		implementatio	the variation	scenarios	research gaps
		n in these	and	in the	highlight the
		simulators.	limitation in	context	area where
		Difference	VANETs	of	further
		results can be	research.	VANETs	investigation
		obtained even			and
		for the same		Efficient	improvement
		scenario and		MAC and	are needed in
		using the same		hardware,	the field of
		simulator,		along	VANETs.
		indicating the		with	
		variations and		efficient	
		limitations of		applicatio	
		simulations in		ns and	
		VANET		routing,	
		research.		are	
				crucial	
				for	
				providing	
				the best	
				QoS	
				`	1

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	1	1	1	1	1		· · · · · · · · · · · · · · · · · · ·
						while	
						using	
						minimum	
						network	
						resources	
						Comfort	
						layer	
						architectu	
						re which	
						combines	
						efficient	
						MAC and	
						hardware	
						with	
						efficient	
						applicatio	
						ns and	
						routing,	
						opens up	
						new	
						possibiliti	
						es for	
						researche	
						rs.	
5	Ismail.	A survey	Focuses on	Comprehensiv	The	Focus on	Include the
5	G et.al.,	of	the topic	e survey and	parameters	the topic	need for a new
	(2011)	Clustering	clustering in	classification	mentioned	of	efficient
	(2011)	Schemes	MANET	method to	include	clustering	clustering
		for Mobile	(Mobile Ad-	analyse and	battery	in	algorithm that
		Ad-Hoc	Hoc	evaluate	energy,	MANET'	address and
		Network	Networks). It	various	mobility,	s. The	overcome the
		(MANET)	presents	clustering	transmission	paper	different
			definition	algorithms for	power and	presents	clustering
			and design	MANETs. It	cluster size.	definition	faced by
			objective of	reviews and	Also	and	MANETs. The
			clustering	categorizes	mentioned	design	paper
			algorithms,	clustering	the	objective	mentioned that
			discusses the	algorithms	importance	s of	there are
			challenges	based on their	of	clustering	numerous
			and costs	objective and	considering	algorithm	important
			associated	features. The	parameters	s,	issues to
			with		such as	s, discussed	
			witti	paper also	such as	uiscussed	examine, such

E-ISSN: 2582-2160 • Website: www.ijfmr.com

			1 . •	11	1 •1•	.1	.1 . 1 .1.
			clustering,	discusses the	mobility	the	as the stability
			and classifies	advantage of	speed, node	challenge	of cluster
			and discusses	clustering for	degree, and	s and	construction
			clustering	ad-hoc	battery	costs	and
			algorithm	networks and	energy in	associate	maintenance,
			based on	the challenges	selecting	d with	the energy
			their	faced in	suitable	clustering	consumption
			objectives,	clustering,	cluster	, and	of mobile
			mechanisms,	including cost	heads.	classifies	nodes with
			performance	issues. It	Additionally	and	different
			and	provides	, discussed	discusses	cluster related
			application	comprehensive	the use of	clustering	status, the
			scenario.	survey of the	weighted	algorithm	traffic load
			Also	related	clustering	based on	distribution in
			highlighted	literature and	algorithms	their	clusters and the
			importance	presents a	that consider	objective	fairness of
			issues related	classification	attributes	s,	serving as
			to clustering	of clustering	like the ideal	mechanis	cluster heads
			in MANETs	schemes.	number of	ms,	for mobile
			such as		nodes and	performa	nodes.
			custer		cluster head	nces and	
			structure		can support,	applicatio	
			stability,		mobility,	n	
			control		transmission	scenarios.	
			overhead of		power and	section 105.	
			cluster		battery		
			construction		power.		
			and		power.		
			maintenance,				
			energy				
			consumption				
			of mobiles				
			nodes, traffic				
			load				
			distribution				
			and fairness				
			of serving as cluster heads.				
6	K.Pad	Inapage		The method	Charnel	Discusse	
6		Improving	Focuses on	The method	Channel		
	man	QoS in	the	involves the	type:	d the	
	et.al.,	VANET	implementati	implementatio	wireless	improve	
	(2016)	Using	on of	n of a novel	channel.	ment of	
		Dynamic	dynamic	dynamic Ad		QoS in	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

	ning almatanin -	II.o.o. Materia	Dadia	VANET
Cluster	~ -	Hoc Network	Radio	VANETs
Techni	1 0	(VANETs).	propagation	using a
	VANETs to	The technique	model:	dynamic
	improve the	adapts to the	Mode l two	clustering
	QoS	dynamics of	way round	technique
	parameters	the platoon	Network	. The
	such as	under traffic	interface	paper
	delay,	disturbance.	type:	focuses
	throughput,	The nodes are	Wireless	on
	and packet	clustered in a	physical,	vehicle
	loss ratio.	hierarchical	MAC Type:	platoons,
	The paper	manner using	IEEE	which are
	also	Vehicle-to-	802.11p.	vehicles
	discussed the	Vehicle (V2V)	Interface	following
	advantage of	communicatio	queue: Drop	one
	vehicles	ns. The	tail/Pri	another
	platoons in	algorithm	queue.	with
	highways	formed the	Link Layer	limited
	and the	dynamic	Type: LL.	distance
	existing	platoons a	Antenna	between
	disturbance	main single	model:	them.
	adaptive	clustered	Omni	The goal
	technique. It	platoon and	Antenna,	is to
	proposes a	incorporates	Link type:	maintain
	new	multiple	LL	network
	algorithm	clusters with	Maximum	connectiv
	that	the	numbers of	ity in
	managers the	surrounding	packets in	heavy
	intra-spacing	vehicles.	interface	traffic.
	gaps between		queue: 50	The
	platoon		Number of	paper
	members and		mobile 20	proposed
	alters the			an
	platoon sizes.			adaptive
	Overall, the			clustering
	theory of this			technique
	paper			to
	revolves			overcome
	around			the
	improving			disturban
	the			ce caused
	performance			by non-
	-			•
	and			platoon

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	efficiency of	vehicles
	VANETs	and
	through	improve
	dynamic	energy
	clustering.	efficienc
		y in the
		ad-hoc
		network.
		The
		propose
		technique
		involves
		forming
		hierarchi
		cal multi-
		head
		clusters
		within
		the
		platoon,
		ensuring
		that
		nodes
		belongin
		g to one
		cluster do
		not
		overlap
		with
		nodes
		from
		other
		clusters.
		Simulatio
		nn results
		show that
		the
		proposed
		technique
		provides
		better
		results
		than the

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

						current	
						vehicle	
						disturban	
						ce	
						adaptive	
						technique	
7	Khadali	A new	Focuses on	Method used	Number of	Proposed	Not explicitly
	.K	Hybrid	the reliability	in this paper is	vehicles (n):	hybrid	mentioned
	et.al.,	Routing	of links in	a hybrid	These	routing	what the
	(2021)	Protocol	VANETs. It	routing	parameters	protocol	research gaps
		using	utilizes the	protocol that	represent the	suing	are. The
		modified	traditional	combines a	total number	modified	document
		K-Means	theory of	modified K-	of vehicles	K-Means	mainly focuses
		Clustering	traffic flow	Means	in the	clustering	on discussing a
		Algorithm	to estimate	clustering	network.	algorithm	new hybrid
		and	the reliability	algorithm and	Random	and	routing
		Continuou	of the links.	a continuous	variable (z):	continuo	protocol using
		s Hopfield	This theory	Hopfield	This	us	a modified K-
		network	takes into	network	variable	Hopfield	Means
		for	account	(CHN) for	indicates a	Network	clustering
		VANET.	factors such	VANETs. The	random	(CHN)	algorithm and
			as road	clustering	value in the	improves	a continuous
			density,	scheme is	interval	data	Hopfield
			average	divided into	[0.5.0.5].	transmiss	network for
			speed, and	two levels.	Parameter	ion in	VANET
			traffic flow		sitting:	high	networks. Also
			to provide a		These	density	mention the
			global view		parameters	and high	challenges and
			of the		include D1,	mobility	problems in the
			network's		D0 and C,	environm	field of
			topology.		which are	ents in	transportation
			Also		used in the	VANETs	and the need
			introduces a		quadratic	. The	for
			probabilistic		programmin	Maximu	autonomous
			function to		g (QP)	m Stable	wireless
			determine the		problem.	Set	communication
			link lifetime		Velocity (v):	Problem	between
			and estimate		This	(MSSP)	different
			the link		parameter	solved by	platforms.
			reliability		represents	CHN is	
			based on		the velocity	effective	
			difference			in	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	1	1					
			mobility		of a	selecting	
			models.		vehicles.	appropria	
					Position	te cluster	
					(x,y). This	head and	
					parameter	determini	
					represents	ng the	
					the position	number	
					of a vehicles	of	
					or centroid.	clusters.	
					Traffic	The	
					density: This	findings	
					parameter	suggest	
					indicates the	that the	
					number of	hybrid	
					vehicles on a	routing	
					part of the	protocols	
					road and	can	
					affects the	enhance	
					speed of	the	
					vehicles.	performa	
					Link	nce of	
					reliability,	VANETs	
					buffer sizes,	by	
					speed, node	improvin	
					degree,	g data	
					maximum	transmiss	
					stable set	ion	
					problem	efficienc	
					(MSSP),	y and	
					Energetic	reliability	
					function,		
					Packet		
					Delivery		
					Ration		
					(PDR),		
					throughput.		
8	М.	Enhanced	This paper	The methods	The	The	Need further
	Sheh	a Hybrid	focuses on	used in this	parameters	finding of	investigation
	et.al.,	Moths	enhancing	paper include	used in this	this paper	and
	(2021)	Flame	the MFO	the	paper is the	includes	improvement
		Optimizati	algorithm by	hybridization	population	the	of the proposed
		on	introducing	of the MFO	size (n) for	developm	hybrid
		Algorithm	two levels of	algorithm with	the MFO	ent of a	algorithm.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

mr.com • Email: editor@ijfmr.com

u	using new	improvement	the Hill	algorithm.	hybrid	Specifically,
	election	s. The first	Climbing (HC)	The	algorithm	the author
S	cheme.	levels	algorithm,	experiments	called	suggests
		involve	resulting in a	were	MFOCH,	exploring new
		hybridizing	new algorithm	conducted	which	search
		MFO with	called	using	combines	technique, such
		the local	MFOHC. This	several	the MFO	as stochastic
		based	hybridization	values for	algorithm	hill climbing
		algorithm	aims to	population	with the	and opposition
		called Hill	improve the	sizes such as	Hill	based learning,
		Climbing	exploitation	5,10,15,20,5	Climbing	to enhance the
		(HC),	search.	0,100 and	(HC)	limitation of
		resulting in a	Additionally,	500. The	search	the proposed
		new	six popular	result for	strategy	methods.
		algorithm	selection	difference	to	Additionally,
		called	schemes are	population	improve	author
		MFOHC.	investigated to	sizes are	the	proposed
		This	maintain the	shown in	exploitati	utilizing
		hybridization	diversity of	Table 6.	on	different
		aims to speed	solutions and		search.	optimization
		up the	improve their		Addition	problems as
		searching	quality. The		ally,	well as multi-
		process and	performance		several	objective
		enhance the	of the		selection	problems, to
		learning	proposed		schemes	achieve better
		technique for	algorithms is		were	results. These
		finding	tested using		investigat	research gaps
		candidates	thirty basic		ed to	highlight the
		solutions.	benchmark		enhance	potential for
		The second	and five real-		the	further
		level of	world		quality of	advancements
		improvement	problems from		the	in the field of
		involves	the IEEE CEC		selected	optimization
		investigation	2011		solutions.	algorithms.
		six popular	datasheet.		The	
		selection			experime	
		schemes to			nts	
		improve the			conducte	
		quality of the			d showed	
		selected			that the	
		solution. The			proposed	
		proposed			MFOCH	
		algorithm			algorithm	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

		Γ	11 1	ſ	ſ		
			called			outperfor	
			PMFOHC			med	
			aims to			other	
			balance the			method	
			exploration			in terms	
			and			of	
			exploitation			solution	
			phases while			quality	
			maintaining			and	
			diversity of			converge	
			solutions.			speed.	
9	Moni.J	Overview	The theory of	Discussed	Parameter	Proactive	The need to
	et.al.,	VANET:	this paper is	various routing	used in this	protocol	further
	(2017)	Requirem	focused on	protocols for	paper	in	investigation
		ent and its	VANET. It's	VANETs. Its	include	VANET	into the
		routing	discussed the	compares and	packet	have	security attacks
		protocol.	requirement	analyse the	delivery	advantag	and delay in
		1	of VANET,	advantage and	ration and	e of	message
			it routing	disadvantages	throughput	wireless	delivery in
			protocols and	of different	metrics.	multi-hop	VANET.
			the	protocols. The	These	forwardin	Develop
			advantage	routing	parameters	g, but	solution to
			and	protocols	are used to	they do	address the
			disadvantage	considered in	evaluate the	not	different types
			of each	the paper	performance	support	of security
			protocol. The	include	of the	carry and	attacks in
			paper also	proactive	different	forwardin	VANET.
			includes a	protocols,	routing	g –	Improving
			comparative	reactive	protocols in	suitable	packet delivery
			study of the	protocols,	VANET.	for urban	ration and
			routing	delay bounded	The paper	scenario.	throughput
			protocols in	protocols,	also	Reactive	metrics of
			terms of	sparse cluster-	discussed	protocol	position-based
			packet	based protocol	other	in	routing
			delivery	and broadcast	parameters	VANET	protocol in
			ration and	protocols.	such as	also have	VANET.
			throughput	Each protocol	scalability,	wireless	Addressing the
			metrics.	has its own	recovery	multi-hop	issues related
			Additionally,	forwarding	strategy,	forwardin	to different
			it mentions	method, such	delay time,	g, but	types of
			the future	as wireless	packet	they	security attacks
			scope of	multi-hop	retransmissi	support	and delay in
			VANET and	forwarding,	on overhead	carry and	delivering
L	1	I	, in the und		sh o verneud	carry and	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

issues such as security geo cast. Also reservationbandwidth securitongeVANET. Suitable notomarative in the futureattacks and deliveryvANET, such as realistic traffic flow, digital map and virtual infrastructure.in for future protocol in protocol in protocol in protocol in orotanjeVANET, such as realistic traffic flow, digital map and virtual infrastructure.VANET valuating the support carry & protocols in forward.VANET in realizing the support carry & protocols in forward.VANET in realizing the support carry & protocols in forward.VANET in realizing the support carry & protocols in forward.VANET in realizing the support suppor		address	carry and	and	forwardin	message in
as security geo cast. Also reservation Suitable Need attacks and discussed for message for Urban comparative nessage requirement of in the future. scenario. study of delay. as realistic protocol in yarious routing delay. as realistic protocol VANET. digitalmap in Evaluating the yarious routing protocol VANET geo cast. Also infrastructure. support routing various routing protocol VANET protocols geo cast. Also infrastructure. various routing carry & protocols infrastructure. infrastructure. various various various various infrastructure. infrastru			•			
attacks and messagediscussed requirement of vANET, such deliveryfor message requirement of in the future.for Urban scenario.study of study of The delay various routing protocol in protocol in protocol in or VANET.delay.as realistic traffic flow, digital map and vitual infrastructure.inEvaluating the Perdocols in forward.VANETand vitual infrastructure.wares reservationVANET reservationvanes protocol in protocol in vanes or routing carry & protocols in forward.VANET in They are scalability, suitableVANETand vitual infrastructure.vanes reservationvanes reservationvalueand vitual infrastructure.vanes reservationvanes reservationvalueand vitual infrastructure.vanes reservationvanes reservationvalueand vitual infrastructure.vanes reservationvanes reservationvalueand vitual infrastructure.vanes reservationvanes reservationvalueand vitual infrastructure.vanes reservationvanes reservationvalueand vitual infrastructure.vanes reservationvanes reservationvalueand retrass reservationvanes retrass retrass reservationvanes retrass re					-	
nessage deliveryrequirement of heliveryin the future. in the future.scenario. various routing various routing various routing in colordelay.as realistic arafit flow, digital map and virtualprotocolVANET.infastructure.inEvaluating the performance of supportprotocols in forward.VANET in transitioninfastructure.infastructure.inforward.VANET in transitionvanet scalability.infastructure.infastructure.inforward.VANET in transitioninfastructure.infastructure.inforward.VANET in transitioninfastructure.infas		•	-			
delivery delay.VANET, such as realistic traffic flow, odigital map and virtual infrastructure.The delay bounded protocol in VANET.as realistic traffic flow, odigital map and virtual infrastructure.protocol in VANET.VANET performance of support carry & protocols in forward.VANET in They are terms of scalability, recovery for multi- strategy, delay time, packet forwardinVANET inNANET performance of supportVANET protocol in forward.VANET in trategy, delay time, packet forwardinImage: strategy delay time, packet forwardinscalability, recovery time, packet forwardinImage: strategy delay time, packetscalability, strategy, delay time, packet forwardinImage: strategy delay time, packetscalability,		attacks and		-		
delay. as realistic bounded protocol in traffic flow, in Evaluating the and virtual and virtual VANET performance of support routing carry & protocols in forward. VANET performance of support routing carry & protocols in forward. VANET infrastructure. valuation valuation suitable recovery for multi- scalability, suitable recovery forwardin retrasmission g. overhead and Sparse bandwidth cluster reservation for base infu forwardin retrasmission g. value reservation for base infu suitable forwardin g. value reservation for base infu suitable forwardin g. reservation for base infu suitable forwardin g. g. reservation for base infu suitable forwardin g. <		-	-	in the future.		=
raffic flow, protocol VANET. in Evaluating the and virtual VANET infrastructure. support rotting protocols in forward. VANET in They are terms of scalability, suitable recovery formulti- strategy, delay time, packet forward. VANET scalability, suitable g. overhead and g. suitable reservation for based forwardin g. Its suitable g. Its </td <td></td> <td>delivery</td> <td>VANET, such</td> <td></td> <td>The delay</td> <td>various routing</td>		delivery	VANET, such		The delay	various routing
in Evaluating the and virtual infrastructure. VANET infrastructure. VANET in They are terms of not scalability, suitable for multi- strategy, delay time, packet forwardin g. overhead and Sparse bandwidth cluster- reservation for based future protocols in VANET has wireless multi-hop forwardin g. Is suitable for urban scenario. The wireless multi-bop forwardin g. Is suitable for urban scenario. The WaneT has wireless multi-hop forwardin g. Is suitable for urban scenario. The broadcast protocol sin forwardin g. Is suitable for urban scenario. The broadcast protocol sin for wardin g. Is suitable for urban scenario. The forwardin g. Is suitable for urban scenario. The forwardin g. Is suitable for urban scenario. The forwardin g. Is suitable for urban scenario. The forwardin g. Is suitable		delay.	as realistic		bounded	protocol in
Image: structure indication of support infrastructure. VANET performance of support indication of couring carry & protocols in forward. Image: structure indication of the support indi			traffic flow,		protocol	VANET.
Image:			digital map		in	Evaluating the
Image:			and virtual		VANET	performance of
Image: state stat			infrastructure.		support	-
Image: second						-
Image: second					-	-
Image: second						
suitable for multi- strategy, delay hop time, packet forwardin g. overhead and Sparse bandwidth cluster- reservation for based future protocols in VANET has wireless multi-hop for wardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop					•	
for multi- hop time, packet forwardin g. overhead and Sparse bandwidth cluster- reservation for based future protocols messages. in VANET has wireless multi-hop forwardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop forwardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop for wardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop for wardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop						-
hop time, packet forwardin retransmission g. overhead and Sparse bandwidth cluster- reservation for based future protocols in VANET has wireless multi-hop forwardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop forwardin g. Its suitable for urban scenario. The broadcast protocol in VANET has						•
Image: second						
g, overhead and Sparse cluster- cluster- based protocols future protocols messages. in VANET has wireless g, Its suitable suitable for wardin g, Its suitable for urban scenario. g, Its suitable g, Its scenario. g, Its scenario. </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>					-	-
Image: sparse bandwidth						
Image: server in the server					-	
Image: second					-	
Image: sector						
in VANET has wireless multi-hop forwardin g. Its suitable for urban scenario. The broadcast protocol in VANET has wireless multi-hop						
Image: series					-	messages.
Image: sector of the sector						
Image: second						
Image: second						
Image:						
Image: Second						
Image: Second						
Image: second					-	
Image: scenario.Image: scenario. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Image: state s						
Image: state s						
Image: state stat						
in VANET has wireless multi-hop					broadcast	
VANET has wireless multi-hop					protocol	
has wireless multi-hop					in	
wireless multi-hop					VANET	
multi-hop					has	
					wireless	
					multi-hop	
forwardin					forwardin	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

r		Γ					,
						g and	
						support	
						carry &	
						forward.	
						Suitable	
						for	
						highway	
						scenario.	
						The main	
						requirem	
						ent of	
						VANET	
						is to	
						provide	
						safety	
						and	
						driving	
						comfort	
						to users.	
10	Moham	Clustering	Focuses on	Classification	Relative	The	Lack of
10	.M	in	VANET	of VANET	speed for	classifica	comprehensive
	et.al.,	Vehicular	clustering	clustering	selecting the	tion of	studies on
	(2020)	Ad Hoc	algorithm.	algorithms	cluster head	VANET	machine
	(2020)	Network:	Discusses	based on their	(CH).	clustering	learning, fuzzy
		Algorithm	intelligent	characteristic.	Acceleration	algorithm	logic, mobility,
		and	based,	Comparison of	and	s into	NEMO and
		Challenge	mobility	the	direction are	intelligen	multi-hop
		U U	based and		ignored in	t based,	-
		S	multi hop	performance of different	the CH	mobility	strategies in VANET
			based	clustering	selection	based and	clustering.
				e			U
			strategies for	algorithm.	process. RSU	multi hop based	Additionally, there is a lack
			clustering in VANET.	Analysis of the			
				strengths and	dependency	categorie	of detailed
			Provides	weaknesses of	in the	S.	classification
			classification	clustering	algorithm.	The .	for intelligence
			of these	algorithms,	Multiple	comparis	based and
			algorithm	including	metrics such	on of the	multi-hop-
			based on	those that	as	performa	based
			their	combine	throughput,	nce of	strategies.
			characteristic	machine	stability and	different	Overall, the
			s and	learning and	bandwidth	clustering	paper
			compares	fuzzy logic.	efficiency	algorithm	highlights the
			their		for date	•	need for

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	1	1	1	1	1		
			performances	Discussion of	storage	Identified	further
			. Also	the importance	scheme.	the	research in
			highlights the	of cluster	Vehicle	strengths	these areas to
			strength and	formation and	velocity,	and	develop
			weaknesses	CH selection	degree node	weakness	efficient and
			of different	in VANET	and channel	es of	stable
			clustering	clustering.	condition for	clustering	clustering
			algorithms,	Examine of	selecting	algorithm	algorithm for
			including	the role of	slow	,	VANET.
			thos that	mobility-based	vehicles as	including	
			combine	strategies in	CH.	those that	
			machine	improving	Consideratio	combine	
			learning and	cluster	n of vehicles	machine	
			fuzzy logic.	stability.	speed,	learning	
					distance	and fuzzy	
					acceleration,	logic.	
					direction	The	
					and previous	importan	
					history in	ce of	
					СН	cluster	
					selection.	formation	
					Evaluate of	and CH	
					CH duration,	selection	
					number of	in	
					clusters,	VANET	
					packet	clustering	
					delivery		
					ratio (PDR),	The role	
					and	of	
					clustering	mobility	
					overhead as	based	
					parameters	strategies	
					for	in	
					clustering	improvin	
					efficiency.	g cluster	
						stability.	~
11	Samira.	A cluster	Focusses on	Proposing a	The	The	Some potential
	J et,al.,	Based	VANETs and	cluster-based	parameters	paper	research gaps
	(2016)	Routing	specifically	routing	used in this	focus on	could include
		Algorithm	address the	algorithm for	paper	VANETs	the need for
		for	issues of	VANETs. In	include:	and	further
		VANET	routing in	this algorithm		specifical	investigation
			these	a cluster head		ly on	into the

E-ISSN: 2582-2160 • Website: www.ijfmr.com

12	Sadeep.	Vehicular	networks. It highlights the importance of routing due to the dynamic nature of mobile nodes in network. The paper proposes a cluster-based algorithm for VANETs based on V2V communicati on. The algorithm aims to reduce the End-to-End delay in network.	is selected for each cluster to maintain cluster membership information. The algorithm takes into account the high mobility and speed variation of nodes in VANETs. Also mentions that the proposed algorithm has been simulated using NS2.29 on a system running Ubuntu with 4 Gigabyte RAM.The simulation parameters are summarized in Table I. The avarage End- to-End delay metric is used to evaluate the performance of the propose algorithm.	Simulation area: 2000m * 1500m. Channel type: Wireless Channel. Radio- Propagation model: Workaround Network interface type: Wireless Hy. MAC type: 802.11 DropTailPri Queue. Antenna model: OmniAntenn a. Distance between cars: 20m. CBR intervals in s: 0.3s. Data packet size: 512 bytes. Simulation end time: 180s	routing algorithm for VANET based on V2V communi cation. They propose a cluster- based algorithm that aims to reduce end-to- end delay. The paper also discusses the characteri stic of VANETs , existing routing protocols for VANETs , existing routing protocols for VANET and simulatio n results of the proposed algorithm	performance and effectiveness of the proposed algorithm in real world scenarios, the comparison of the proposed algorithm with other existing routing protocols for VANETs and the exploration of potential improvements or modification to the algorithm to address specific challenges or limitation in VANETs.
12	Sadeep. N et.al., (2020)	Ad-Hoc Network (VANET). A brief	VANETs, which are wireless communicati	VANETs and their applications, challenges and	parameters mentioned include the mobile	highlight safety applicatio ns such	gaps mentioned include the need for

E-ISSN: 2582-2160 • Website: www.ijfmr.com

knowledg	on networks	future research	domain,	as real-	addressing
e.	where	directions. It	which	time	security
0.	vehicles and	provides and	comprises	traffic	challenges in
	other devices	overview of	the vehicle	monitorin	VANETs such
	exchange	the	domain	g,	as developing
	information	architecture	(including	cooperati	effective
	to improve	and	vehicles like	ve	measures to
	highway	communicatio	buses, cars	message	counter
	safety and	n protocols	and trucks)	transfer,	network
	provide	used in	and the	post-	attacks, denial
	information	VANETs. The	mobile	crash	of service
	services. The	paper also	device	notificati	attacks, sybil
	paper	explores the	domain	on, road	attacks, syon
	discusses the	various	(including	hazard	alteration
	architecture	application	portable	control,	attacks, social
	and protocols	area of	devices like	notificati	attacks, social attacks, tunnel
	used in	VANETs,	PDAs,	on,	attacks, tunner attacks,
	VANETs as	including	laptop, GPS	cooperati	monitoring
	well as the	safety,	and	ve	attacks and
	application	convenience,	smartphones	collision	eavesdropping.
	areas and	commercial). The paper	warning	Another gaps
	future	and productive	also	and	is the need to
	research	applications.	mentions the	traffic	improve
	directions. Its	Additionally,	onboard	vigilance.	network
	also	it highlights	sensors that	It also	scalability in
	highlights the	the challenges	VANETs	mentions	VANETs,
	challenges	faced by	nodes are	convenie	considering the
	faced by	VANETs,	assumed to	nce	mobility and
	VANETs	such as	be equipped	applicatio	volatility of
	such as	security,	with for	ns like	vehicles in the
	security and	network	transmitting	route	network.
	network	management,	information	diversion	
	management.	technical	to other	s,	
	Overall, the	aspects. The	devices or	electronic	
	paper aims to	paper	nodes.	toll	
	enhance	concludes by	Addition,	collection	
	traffic safety	emphasizing	the paper	, parking	
	and	the potential of	outlines the	availabili	
	efficiency	VANETs to	architecture	ty and	
	through the	enhance traffic	of a VANET	active	
	use of	safety and	system	predictio	
	VANETs.	efficiency.	according to	n. The	
			IEEE 1417-	paper	
				T T	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

					2000 and ISO/IEC 42010 standards, which includes the mobile domain, infrastructur e domain and generic domain.	also addresses the challenge and future research directions for VANETs , including security challenge s, network scalabilit y and vehicle- to- infrastruc ture communi cation.	
13	Saroj.K et.al., (2022)	Moth Flame Optimizati on: Theory, Modificati on, Hybridizat ion and Applicatio n.	The theory of this paper is focused on the MFO algorithm and its various aspects. It discussed the need for nature inspired optimization methods and introduce MFO as one such algorithm. The paper	The method used in this paper include the MFO algorithm, Kapor's threshold image segmentation, Marine Predators Algorithm (MPA), multi- level thresholding (MLT), CAD model, swarm algorithms, opposition	Load demand, solar and wind power generation, AFPID parameters, distributed generators (DG) position and sizes, impulse response coefficients of FIR, machining parameters, FACTS	The finding on this paper include efficienc y, accuracy and f- scored performa nces of the method proposed using the MFO algorithm for	Need further investigation into the performance and effectiveness of the MFO algorithm compared to other optimization algorithms. Additionally, there is a gap in research regarding the applications of MFO in specific fields

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

	1		1	1	1:-4:	
		provides a	learning	devices,	distinguis	such as web
		detailed	technique,	direction	hing	services
		review of	Gaussian	overcurrent	between	composition,
		MFO,	mutation,	relays, data	three	steel frame
		including its	position	stream,	classes	structure and
		origin,	updating	congestion	(Normal,	web-based
		working	mechanism,	control,	AD and	communities.
		process and	K-means	JAYA	Cognitive	
		mathematical	algorithm,	blended	features)	
		formulation.	fuzzy c means	moth flame	based on	
		Explores the	(FCM), hybrid	optimization	selection	
		development,	symbiotic DE,	,	algorithm	
		variants,	and hybrid	transmission	features.	
		modification	microgrid	loss	The	
		s and	system	minimizatio	author	
		hybridization	(HMGS)	n, optimal	also	
		s of MFO.		machining	found	
				parameters,	that the	
				RGB colour	enhanced	
				image	MFO,	
				segmentatio	which	
				n, minimum	incorpora	
				cross	tes	
				entropy	Kapur's	
				thresholding	threshold	
				, fitness	image	
				value.	segmenta	
					tion, is	
					superior	
					to other	
					models in	
					locating	
					tumours	
					in clinical	
					grade	
					MRI	
					slices.	
14 Sanaz.	Using	The theory of	Include	The	Demonstr	One possible
K et.al.,	Clustering	this paper	clustering for	parameters	ate that	research gaps
(2016)	for target	focuses on	target tracking	used in this	the	could be the
	in	the use of	in VANETs.	paper	proposed	need for
	Vehicular	clustering for	The paper	include	clustering	further
	Ad Hoc	target	proposes two	VANETs,	schemes	investigation

E-ISSN: 2582-2160 • Website: www.ijfmr.com

NT_4 1	two alains in	cluster-based	Intallizant	nuo-sid-	and
Network	tracking in		Intelligent	provide	and
(VANETs		algorithms for	Transportati	better	development
)	discussed the	reliable and	ons System	performa	of novel
	challenges of	stable target	(ITS),	nce for	technique to
	dynamic	tracking.	Wireless Ad	target	guarantee
	networks and	Performance	Hoc	tracking	performance
	proposes two	evaluation and	Network,	applicatio	and reduce
	cluster-based	testing results	Mobile Ad	ns in	network
	algorithms	are presented,	Hoc	VANETs	congestion in
	for reliable	comparing the	Network	compared	VANETs for
	and stable	proposed	(MANETs),	to other	target tracking
	target	algorithms to	Wireless	cluster-	applications.
	tracking. The	centralized	Sensors	based	Additionally,
	paper also	cluster-based	Network	algorithm	there amy be a
	highlights the	algorithms.	(WSN),	s. The	need for more
	potential	The paper also	Clustering,	performa	research on the
	applications	discussed the	Target	nces	comparison
	of VANETs	potential	Tracking,	evaluatio	and evaluation
	in Intelligent	applications of	Flooding	n and	of distributed
	Transportatio	VANETs in	Multi-hop	testing	algorithms
	n Systems	Intelligent	Routing,	results	versus
	(ITS) and the	Transportation	Performance	show the	centralized
	need for low-	System (ITS)	Evaluation,	reliability	cluster-based
	delay, low-	and the need	Algorithms	and	target tracking
	overhead and	for low-delay,	Design and	stability	algorithm in
	precise	low-overhead	network	of the	VANETs.
	tracking	and precise	protocols.	proposed	VANULIS.
	systems.	tracking	protocols.		
	systems.			algorithm	
		systems.		s. Addtiona	
				lly, the	
				paper	
				highlight	
				s the	
				potential	
				applicatio	
				ns of	
				VANETs	
				in	
				Intelligen	
				t	
				Transport	
				ation	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

	[Γ			~	[]
						System	
						(ITS) and	
						emphasiz	
						es the	
						need for	
						low-	
						delay,	
						low	
						overhead	
						and	
						precise	
						tracking	
						systems	
						in	
						VANETs	
15	Yaser.	An	The theory of	The paper	The	The	
	A et.al.,	Evolution	this paper is	explains that	parameter	findings	
	(2022)	ary	based on the	MFO is bio-	used in this	of this	
	× /	Algorithm	use of and	inspired	paper	paper	
		Based on	evolutionary	procedure that	include	indicate	
		Vehicular	algorithm	creates	transmission	that the	
		Clustering	called MFOs	optimized	range of the	proposed	
		Technique	to solve the	clusters for	vehicles	algorithm	
		for	vehicular	reliable and	(adjusted		
		VANET.	algorithm	efficient	from 100m	AMONE	
			problem in	communicatio	to 600m),	T based	
			VANETs.	n in VANETs.	the number	on MFO,	
			The paper	The algorithm	of nodes	generates	
			explains that	works by	modified	a small	
			MFO has	using moths as	from 30 to	number	
			been proven	search agents	60 and the	of	
			to be an	that fly in the	dimension	clusters	
			efficient	search space,	of the road	compared	
			method in	while the	sections	to other	
			solving	flames	(ranging	algorithm	
			optimization	represent the	from 1km2	such as	
			problems and	best solutions	to 4km2).	ACO,CL	
			has achieved	found so far.	These	PSO,MO	
			successful	The moths	parameters	PSO.	
			results in	explore the	were used in	This lead	
			various	search space	the	to reduce	
			domains such	near the flame	experimental	hops and	
			uomanis sueli	near the frame	experimental	nops and	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • En

<u> </u>					
	as medical	and revise it	setup to	improved	
	diagnosis and	whenever they	assess the	message	
	image	find a superior	performance	delivery	
	segmentation	solution. The	of the	rates in	
	. The paper	algorithm also	proposed	VANETs	
	proposes a	employs a	algorithm.	. The	
	clustering	linearly		experime	
	algorithm	decreasing		ntal	
	called	factor to		results	
	AMONET,	converge		demonstr	
	which based	towards the		ate that	
	on MFO to	solution. The		AMONE	
	improve	paper provides		T is	
	communicati	a block		efficient	
	on efficiency	diagram that		and	
	in VANETs.	illustrates the		adaptable	
	The	general steps		in	
	experimental	of the		different	
	results show	algorithm. The		scenario,	
	that	paper		outperfor	
	AMONET	describes		ming	
	generates a	experimental		other	
	smaller	setup and		approach	
	number of	compares the		es.	
	clusters	results of the			
	compared to	AMONET			
	other	algorithm with			
	algorithms,	other well-			
	leading to	known			
	reduced hops	procedures			
	and	such as Ant			
	improved	Colony			
	message	Optimization			
	delivery	(ACO),			
	rates.	Comprehensiv			
		e Learning			
		Particle Swam			
		Optimization			
		(CLPSO)			
		AND Multi-			
		Objective			
		Particle			
		Swarm			
	l				

E-ISSN: 2582-2160 • Website: www.ijfmr.com

							[]
				Optimization			
				(MOPSO).			
				The result			
				shown that			
				AMONET			
				generates a			
				smaller			
				number of			
				clusters			
				compared to			
				other			
				technique.			
16	Sham.R	Cluster	The theory of	The method	The	The	The research
	et.al.,	Optimizati	this paper	used in this	parameter	finding of	gaps in this
	(2023)	on in	revolves	paper include	used in this	this paper	paper include
		VANET	around the	MFO	paper	includes	the need for
		by using	development	algorithms is	include grid	the	further
		MFO and	of wireless	based on the	sizes	analysis	investigation
		K-Means	technology,	transverse	ranging	pf	and
		Clustering	specifically	orientation	from 1km2	clusters	improvement
			focusing on	behaviour of	to 4km2,	generated	in the
			VANETs.	moths and is	transmission	for	following
			VANETs	used for	range from	differenc	areas:
			have the	optimization	100m to	e grid	The impact of
			potential to	purposes. It	600m, and a	sizes,	different
			significantly	helps resolve	total of 30	transmiss	clustering
			contribute to	challenging	nodes. These	ion	algorithms on
			smart	optimization	parameters	ranges	VANET
			transportatio	issues by	were used to	and	performance,
			n systems in	utilizing the	test the	nodes	while the paper
			the future by	behaviour of	efficiency of	counts.	focuses on the
			enhancing	moths. K-	the	The	MFO
			traffic	means	clustering	analysis	algorithm and
			services and	Clustering, on	algorithm in	provides	K-Means
			reducing	the other	terms of the	insight	clustering,
			accident	hands is a	percentage	into the	there may be
			rates.	popular	of cluster	impact of	other
			However,	clustering	heads and	these	clustering
			clustering in	algorithm used	the ratio of	paramete	algorithm that
			VANETs	for cluster	cluster	rs on	can be
			comes with	head selection	members.	cluster	explored for
			compromise	in VANETs.		formation	their
			such as	Its partitions a		and the	
	I	I		r		··· ·· ••	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

increased	dataset into a	resulting	effectiveness
latency and	predetermined	network	in VANETs.
overhead.	number of	characteri	Scalability
The paper	clusters based	stic. It	concern: The
discussed the	on the	helps in	paper mentions
use of the	similarity of	understan	that clustering
MFO	-		in VANETs
	the data points	ding the relationsh	
algorithm	can represent		can lead to
and K-Means	the vehicles'	ip bataan	increase
Clustering to	location,	between	overhead.
optimize the	velocity and	these	Further
VANET	other relevant	factors	research can
network.	information.	and	explore ways
	K-Means	optimizin	to optimize
	clustering is an	g the	clustering
	effective	configura	algorithms to
	approach for	tion for	reduce
	cluster head as	better	overhead and
	it helps	network	improve
	identify cluster	performa	scalability.
	of vehicles	nce in	Mobility
	that are similar	VANET.	issue: The high
	in term of their	The	mobility of
	location and	paper	nides in
	other	also	VANETs can
	parameter.	addresses	pose
		issues	challenges in
		such as	maintaining
		increasin	stable
		g	clustering.
		interferen	Future research
		ce,	can focus on
		overlappi	developing
		ng	algorithms or
		clusters,	techniques that
		scalabilit	can handle the
		У	dynamic nature
		concerns,	of VANETs
		mobility	more
		issues	effectively.
		and	Interference
		inaccurat	reduction:
		e distance	The paper

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

metrics briefly that can mentions that arise with issues of increasin increasing interference g with larger transmiss ion range transmission and ranges. Further number research can of nodes. investigate The methods to introducti mitigate on of interference clustering and improve and the overall optimizat performance of VANETs. ion technique Accuracy of based on distance the MFO metrics: The algorithm paper does not and Kdelve into Means specific Clusterin distance g can be metrics used in helpful in the clustering resolving algorithms. these Future research optimizat can explore the accuracy and ion reliability of challenge difference s in VANET distance clustering metrics in VANET environments 17 Yasir Camonet: The paper It is motivated The The The research Ali et. MFO involves by navigating parameters findings gap mentioned procedure of used in this of this in the al., based around the (2018)clustering concept of moths, paper paper document is VANETs. It specifically include the Algorithm indicate scalability for discusses their traverse vehicle that the problem in VANET orientation. direction. Camonet VANETs. This posed by

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

	The sheet 1.	· · · ·	-1	[:
VANETs for	The algorithm	transmission	algorithm	is considered a
routing and	creates a	range, grid	, a	significant
introduces	network of	size, the	nature-	issue in
the idea of	autonomous	number of	inspired	network design
clustering as	vehicles by	nodes in a	algorithm	and researchers
a solution to	randomly	network and	for	have been
enhance	initializing	the speed	vehicular	working on
reliability	their position	vehicles.	clustering	finding new
and	within a	These	,	framework and
scalability.	certain region	parameters	produces	methods to
The paper	called their	are	optimal	address this
also presents	grid size. It	considered	result for	problem. One
the	also allocates	in the	clustering	of the vital
CAMONET	arbitrary	vehicular	in	research issues
algorithm, a	speeds and	process.	VANET'	is how to
nature	directions to	Additionally	s. The	cluster or
inspired	the vehicles.	, the paper	algorithm	group the
algorithm for	The algorithm	explores the	is	vehicles in
vehicular	then measures	use of other	compared	VANET to
clustering,	the Euclidean	parameters	with	maintain
which is	distance	such as	other	network
motivated by	between all the	dimension,	well-	connectivity.
the	nodes to form	lower	known	5
navigating	a complete	bound, and	meta-	
procedure of	distance	upper bound	heuristic	
moth called	matrix of the	in forming	algorithm	
transverse	network. The	the search	, and the	
orientation.	search space if	space for the	result	
The	formed using	Camonet	show that	
algorithm is	the position of	algorithm,	simulatio	
compared	moths, and its		n results	
with other	depend on		are	
meta-	parameters		presented	
heuristic	such as		graphical	
algorithm	dimensions,		ly for	
and is shown	lower bound		enhanced	
to produce	and upper		analysis	
near-optimal	bound. The		and the	
results for	Camonet		effective	
vehicular	algorithm is		ness of	
clustering.	compared with		Camonet	
ciustering.	other well-		in	
	known meta-		nn producin	
	KHOWH IIIeta-		producin	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

Email: editor@ijfmr.com

	[[1 • .•		.• 1	
				heuristic		g optimal	
				algorithm and		results is	
				the result		highlight	
				indicate that it		ed.	
				delivers			
				optimal results			
				for clustering			
				in VANETs.			
18	Asad	VANET	The theory of	The method	The	The	The research
	Ali et.	Clustering	this paper is	use in this	parameter	finding of	gaps in this
	al.,	Using	the use of the	paper is the	used in this	this paper	paper is the
	(2019)	Whale	Whale	Whale	paper	show that	need to find
		Optimizati	Optimization	Optimization	include the	the whale	the upper and
		on	Algorithm	Algorithm	distance	optimizat	lower bound
		Algorithm	(WOA) in	(WOA)	between	ion	for creating
			clustering		whales and	algorithm	vehicular
			VANET		the best	(WOA)	clusters in
			networks.		whales	performs	emergent 5G
			WOA is		obtained, the	better	vehicular
			inspired by		distance	that the	scenarios using
			the feeding		between	Compreh	realistic
			bahavior of		cluster	ensive	discrete-event
			humpback		cluster head	Learning	simulations.
			whales,		and cluster	Particle	This is
			specifically		member, the	Swarm	mentioned as a
			the spiral		location of	Optimiza	future work
			bubble- net		the best	tion	proposal in
			attacking		agent	(CLPSO)	paper.
			methods. The		obtained, the	in	
			algorithm		position	reducing	
			utilizes the		vector of	the	
			behaviour of		search	number	
			whales in		agents, the	of	
			searching for		cluster	clusters	
			prey as a		members of	in	
			basis for		each cluster,	VANETs	
			finding		and the	. The	
			optimal		coefficient	result	
			solutions in		vector used	also	
			forming		to choose	demonstr	
			vehicles		between	ates that	
			clusters. The		exploration	WOA	
			research		and	optimizes	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • En

• Email: editor@ijfmr.com

						41	
			compares the		exploitation	the	
			results of		behaviour	formation	
			GOA with		for updating	of	
			other		the position	vehicular	
			clustering		of search	cluster	
			algorithm		agents.	and	
			and shows			decrease	
			that WOA is			the end-	
			better at			to-end	
			reducing the			delays in	
			number of			communi	
			clusters in			cation.	
			VANET				
			network.				
19	Muham	Optimizati	The theory	The method	The	The	The research
	mad	on of	used in this	used in this	parameter	finding of	gap in this
	Fahad	Vehicular	paper is the	paper is the	used in this	this paper	paper is that
	et. al.,	Node	implementati	Gray Wolf	paper are	show that	the proposed
	(2017)	Clustering	on and	Optimization	follow:	the	method,
		Process	comparison	(GWO) based	Population	proposed	ICGWO is a
		using	of the	algorithm for	size	ICGWO	novel method
		Evolution	ICGWO	VANET.	(particle):	algorithm	that uses Gray
		ary	(Improved		100	in	Wolf
		Algorithm	Gray Wolf		Maximum	VANET	Optimization
		U	Optimizer)		iteration:	requires	for clustering
			algorithm in		150	the	in VANET
			VANET. The		Inertia	minimum	environments
			paper also		weight (W):	number	for the first
			discussed the		0.694	of	time. The
			comparison		C112,C212	clusters	paper also
			of ICGWO		Simulation	compared	mentions that
			with CLPSO		area:	to	other meta-
			(Comprehens		100m,200m,	CLPSO	heuristics such
			ive Learning		300m,400m.	and	as Moth Flame
			Particle		Lower	MOPSO	Optimization
			Swarm		Bound (lb):0	algorithm	and Dragon
			Optimization		Upper	. This led	Fly optimizer
) and		Bound (ub):	to	can be
			MOPSO		100	reduced	implemented
			(Multi		Dimension:	resources	for the same
			Objective		2	and	problem in
			Particle			improved	future
			Swarm			network	enhancement.
			Swaffii			network	ennancement.

	1		ſ	1	1	I	· · · · · · · · · · · · · · · · · · ·
			Optimization		Transmissio	performa	
) algorithm.		n range:	nce. This	
					10m – 60m	result	
					Mobility	also	
					model:	indicate	
					freeway	that the	
					mobility	packet	
					model.	delays	
					Simulation	and	
					runs: 10	routing	
					W1 (weight	costs are	
					of first	minimize	
					objective	due to	
					function):	reduced	
					0.5	number	
					W2 (weight	of	
					of second	clusters.	
					objective	The	
					function):0.5	graphical	
					Nodes:	result	
					30,40,50 and	demonstr	
					60	ate that	
						the	
						proposed	
						methodol	
						ogy	
						provides	
						optimize	
						d results	
						compared	
						to	
						competit	
						ors.	
20	Ghada	An	The theory of	The method of	The	The	The research
	H et.	Evolution	this paper is	this paper is to	parameters	finding of	gap on this
	al.,	ary	to optimize	optimize the	include	this paper	papers is that
	(2019)	Approach	the clustering	clustering	thresholds,	indicates	there is a need
		for	algorithm in	algorithm in	coefficients,	that the	for
		Optimized	VANET's by	VANET's by	timers and	proposed	optimization
		VANET	formulating	formulating it	counters that	optimizat	technique to
		Clustering	it as a many-	as a many-	govern the	ion	improve the
		0	objective	objective	behaviour of	approach,	performance of
			optimization	optimization	the	using the	clustering
			r	r			8

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	problem. The authors propose an	problem. The author	clustering	NSGA-	algorithm in
			algorithm.	III	VANETs
	propose an	proposes an	These	algorithm	network on
	approach to	approach to	parameters	uigointiini	Highway. The
	optimize the	optimize the	are	, improves	author address
1 1 1	configuration	configuration	optimized to	the	this gap by
	parameters of	parameters of	improve the	performa	proposing a
	the clustering	the clustering	performance	nce of the	many-objective
	algorithm	algorithm	of the	Double	optimization
	using the	using the	clustering	Head	approach using
	NSGA-III	NSGA -III	algorithm in	Clusterin	the NSGA-III
			terms of		
	many-	may-objective		g (DHC)	algorithm.
	objective	optimization	cluster	algorithm	They evaluate
	optimization	algorithm. The	lifetime and	in MANET?	the
	algorithm.	approach	clustering	VANET'	performance of
	The approach	consists of two	packet	s. The	the optimize
	consists of	stages: a	overhead.	optimal	clustering
	two steps: a	metaheuristic		configura	algorithm
	metaheuristic	optimization		tion	using a
	-	U			
	Ũ			e	
					-
		-		-	
	stage. In the	-		ion	optimized
	optimization	-		process	algorithm. The
	0			increase	results show
	NSGA-III	-		the	significant
	algorithm is	applied to the		cluster	improvements
	applied to the	clustering		lifetime	in cluster
	clustering	problem, and		by up to	lifetime and
	problem, and	in the solution		134%	clustering
	in the	evaluation		and	packet
	solution	stage, each		reduce	overhead.
	evaluation	suggested		the	
	stage, each	solution is		clustering	
	suggested	evaluated		packet	
	solution is	using a		overhead	
	evaluated	network		by up to	
	using a	simulator. The		30%. The	
	network	experimental		experime	
	simulator.	results		ntal	
	The	demonstrate		results	
	experimental	that the		show that	
	applied to the clustering problem, and in the solution evaluation stage, each suggested solution is evaluated using a network simulator. The	problem, and in the solution evaluation stage, each suggested solution is evaluated using a network simulator. The experimental results demonstrate		increase the cluster lifetime by up to 134% and reduce the clustering packet overhead by up to 30%. The experime ntal results	results show significant improvements in cluster lifetime and clustering packet

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

<u>г т т</u>	1.		.1	
	results	optimal	the	
	demonstrate	configuration	optimize	
	that the	can	d	
	optimal	significantly	configura	
	configuration	improve the	tion of	
	can	cluster lifetime	the	
	significantly	by up to 134%	clustering	
	improve the	and reduce the	algorithm	
	cluster	clustering	outperfor	
	lifetime by	packet	ms other	
	up to 134%	overhead by	clustering	
	and reduce	up to 30%.	schemes	
	the clustering		in term of	
	packet		cluster	
	overhead by		stability	
	up to 30%.		and	
			packet	
			overhead.	

2.3 Conclusion.

The current review focuses on the application of VANET clustering optimization using the MFO algorithm and K-Means clustering. The MFO algorithm is used to simulate the movement behavior of moths and update the position based on movements, while the K-Means clustering algorithm is used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster. The combination of the MFO algorithm and K-Means clustering is used to improve clustering efficiency, scalability, coverage, and clustering results, while reducing communication and energy consumption. This approach is used to optimize the clustering in VANET, leading to better network performance, more reliable communication, and improved efficiency.

The limitations of the studies include the lack of real-world implementation and the limited coverage of the database search. The studies are based on simulations and do not provide real-world implementation results. The database search is limited to Scopus, which may not cover all relevant studies in the field.

For future research, it is recommended to conduct real-world implementation studies to evaluate the effectiveness of VANET clustering optimization algorithms in real-world scenarios. Additionally, expanding the database search to include more sources may provide a more comprehensive view of the field.

2.4 Issue and Challenging.

The main issues and challenges for VANET clustering optimization revolve around cluster head selection, high mode mobility, stability in clustering and the need to enhance efficiency and communication within VANET networks. Addressing these challenges is crucial for optimizing clustering algorithms and improving the performance and reliability of VANET communication system.

2.4.1 Dynamic nature of the network topology in Vehicular Ad-Hoc Networks (VANETs) presents challenges due to the continuous movement of vehicles, changes in the network density and varying communication pattern.

To address these challenges, the introduction of the MFO (Moth-Flame Optimization) algorithm and K-Means clustering techniques has been proposed in research related to VANET clustering optimization. These algorithms aim to optimize clustering efficiency, scalability, coverage, and clustering results in VANET environments. The MFO algorithm simulates the movement behaviour of moths to update node positions based on movements, while the K-Means clustering algorithm partitions nodes based on their proximities, optimizing the distance between nodes within the same cluster. By combining these techniques, researchers seek to enhance network performance, reliability, and efficiency in VANET communication systems amidst the dynamic and challenging nature of vehicular networks.

2.4.2 The Cluster Head's role in Clustering and Optimization in VANETs is encompassing communication coordination, inter and intra clusters communication and mobility management. The selection of Cluster Heads in VANET's indeed challenging due to dynamic nature of vehicular environments.

The search results show that the K-Means clustering algorithm is an effective method for multi-clusters in VANETs. The algorithm can be used to partition nodes based on their proximities by optimizing the distance between nodes within the same cluster. The selection of Cluster Heads in VANETs is indeed challenging due to the dynamic nature of vehicular environments. To address this, the MFO (Moth-Flame Optimization) algorithm can be used to simulate the movement behaviour of moths and update the position based on movements. This algorithm has been proven to be effective and efficient for solving optimization problems in VANET clustering. By combining the MFO algorithm and K-Means clustering, researchers aim to improve clustering efficiency, scalability, coverage, and clustering results, while reducing communication and energy consumption. This approach can lead to better network performance, more reliable communication, and improved efficiency in VANET communication systems.

2.4.3 Optimizing the number of Clusters Heads to maintain the stability of VANET clustering in a highway scenario in both directions. Highlighted in experimental transmission range adjustment, node configuration and movement pattern.

To address this issue, the introduction of SUMO (Simulation of Urban Mobility) for simulating the highway environment is crucial. SUMO is a widely used traffic simulation software that can accurately model vehicular movement, interactions, and communication patterns in complex urban environments, including highways. By utilizing SUMO, researchers can simulate realistic highway scenarios, adjust parameters such as transmission range and node configurations, and analyze the impact of different movement patterns on clustering stability in VANETs. This comprehensive simulation approach can provide valuable insights into optimizing the number of Cluster Heads and enhancing the stability of VANET clustering in highway scenarios.

2.5 Conclusion/Significant of Study

The conclusion and significant of study utilizing the Scopus Database for research on VANET clustering optimization using MFO algorithm and K-Means clustering for emphasize the following key points.

1. Comprehensive Literature Review: Utilizing the Scopus database allows researchers to conduct a comprehensive literature review, ensuring access to a wide range of peer-reviewed journals,

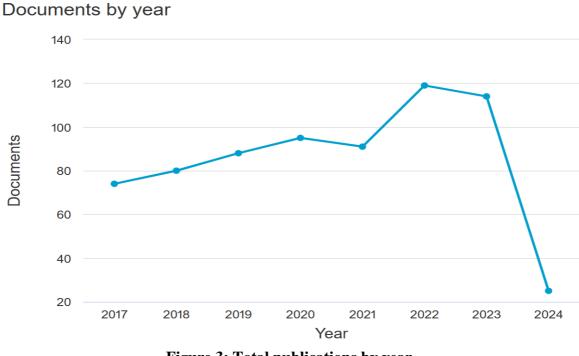
E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

conference proceeding and scholarly articles. This promotes a thorough understanding of existing knowledge, trends and advancements in the field of VANET clustering optimization.

- 2. Identification of influential Works: Scopus enables researchers to identify the most influential articles, authors and research contribution related to VANET clustering optimization. This ensure that the study is built upon a solid foundation of impactful and relevant literature.
- **3.** Enhanced Credibility and Validity: Utilizing a reputable database such as Scopus enhances the credibility and validity of the study, as it ensures that the research is grounded in high-quality, peer-reviewed literature and adheres to established academic standards.

In conclusion, the use of the Scopus database in a study on VANET clustering optimization using the MFO algorithm and K-Means clustering facilitates a robust, evidence-based approach that adds depth and credibility to the research. Scopus indexes publications from around the world, offering a global perspective on research and scholarly communications.

2.6 Results and Findings


The trend of publications in VANET Clustering Optimization from 2017 to 2024 shows a fluctuation, with a significant increase in the number of publications from 2017 to 2018, followed by a decrease from 2018 to 2019. The number of publications then increased from 2019 to 2020, followed by a decrease from 2020 to 2021. The number of publications increased significantly from 2021 to 2022, but then decreased significantly from 2022 to 2023 and again from 2023 to 2024.

In summary, the trend of publications in VANET Clustering Optimization from 2017 to 2024 shows a fluctuation, with a need for optimizing the clustering process in VANETs to enhance the overall network performance. This can be achieved through the implementation of bio-inspired node clustering optimized approaches, such as the Moth Flame Optimization (MFO) and environment-aware clustering algorithms that can adapt themselves to follow the changes in the environment features. The search result provides insights into the growth of scientific publications over time, particularly focusing on Scopus data and output trends from 2017 to 2024.

Year	Total number of publications
2024	25
2023	114
2022	119
2021	91
2020	95
2019	88
2018	80
2017	74

Table 2: Growth of publication by year

Figure 3: Total publications by year

2.5.1 Type of Documents.

The documents related to VANET Clustering Optimization is that there is a significant amount of research and development focused on optimizing clustering strategies in Vehicular Ad hoc Networks (VANETs). The documents encompass a variety of document types, with a substantial number of articles (368), conference papers (246), conference reviews (37), book chapters (22), reviews (9), letters (2), and short surveys (2) dedicated to exploring and enhancing clustering algorithms in VANETs. These documents highlight the importance of clustering in improving the quality of service in various VANET protocols and applications, such as data dissemination, media access control, Internet of vehicles, and intrusion detection systems. Researchers are exploring innovative approaches, including machine learning-based frameworks and bio-inspired optimization algorithms like the Moth Flame Optimization (MFO), to optimize clustering algorithms by considering environmental factors and adapting to changes in the network environment.

Source Type	Total Publication
Article	368
Conference Paper	246
Conference Review	37
Book Chapter	22
Review	9
Short Survey	2
Letter	2

Table 3: Types of Documents.

2.5.2 Source Type of Documents.

These documents cover a range of topics related to VANET Clustering Optimization, including modelling and verifying clustering properties in VANET protocols, detailed analysis of VANET clustering strategies

from intelligence, mobility, and multi-hop perspectives, and optimization of environment-aware VANET clustering using machine learning. The documents also discuss the use of intelligent clustering approaches to optimize the routing of data packets throughout VANETs and the optimization of clustering algorithms' parameters based on the surrounding environment.

Table 4: Sources Type				
Source Type	Documents			
Journal	382			
Conference Proceeding	205			
Book Series	93			
Book	6			

Table 4: Sources Type

2.5.3 Language used for Publications

The majority of publications related to VANET Clustering Optimization are in English, with a total of 682 documents. This indicates that the research and development in this field are primarily conducted in English-speaking countries or by researchers who prefer to publish in English. The low number of publications in Chinese, only 4 documents, suggests that the research in this field is not as active in Chinese-speaking countries or that researchers in these countries prefer to publish in their native language. The language distribution also indicates the global nature of research in VANET Clustering Optimization, with contributions from researchers around the world.

 Table 5: Languages used for Publications

Language	Number of Publication
English	682
Chinese	4

2.5.4 Subject Area.

The conclusion drawn from this distribution is that the majority of publications related to clustering algorithms in VANETs are concentrated in the fields of Computer Science and Engineering, indicating a strong focus on technological advancements and practical applications in these areas. Mathematics also plays a significant role in contributing to the research on VANET clustering algorithms. Additionally, there is a notable presence of publications in Decision Sciences, Physics and Astronomy, Materials Science, and other interdisciplinary fields, showcasing the diverse range of disciplines involved in studying and optimizing clustering algorithms in VANETs

Subject Area	Total
	Publication
Computer Science	582
Engineering	396
Mathematic	115
Decision Sciences	75
Physics and Astronomy	53
Materials Science	47
Social Sciences	42
Energy	35

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Medicine	26
Environmental Science	18
Business, Management and Accounting	17
Biochemistry, Genetics and Molecular	11
Biology	
Multidisciplinary	8
Chemistry	7
Chemical Engineering	7
Economics, Econometrics and Finance	4
Neuroscience	2
Agricultural and Biological Sciences	2
Pharmacology, Toxicology and	1
Pharmaceutics	
Immunology and Microbiology	1
Earth and Planetary Sciences	1
Arts and Humanities	1

2.5.6 Authorship Analysis.

The search results show a list of authors and their total publications related to VANET Clustering Optimization. The authors with the most publications are "Undefined" with 37 publications, followed by "Sondi, P." with 8 publications, and "Singh, D.", "Sindhwani, M.", "Prakash, A.", "Yadav, R.S.", "Wahl, M.", "Tripathi, R.", "Trabelsi, H.", "Khattab, A.", "Hasson, S.T.", "Hamdi, M.M.", "Aliouat, Z.", "Aadil, F.", and "Senouci, O." with 7 publications each.

Overall, the search results show a significant amount of research and development in the area of VANET Clustering Optimization, with a focus on optimizing the clustering algorithms' performance, adapting to changes in the environment features, and considering various perspectives such as intelligence, mobility, and multi-hop. The documents also highlight the importance of using advanced techniques such as machine learning and many-objective optimization to improve the clustering algorithms' performance and adaptability.

No	Author Name	Total	No	Author Name	Total
110		Publication	110		Publication
1	Undefined	37	35	Kadoch, M.	4
2	Sondi, P.	8	36	Hosmani, S	4
3	Singh, D.	7	37	Hassan, A.	4
4	Sindhwani, M.	7	38	Ghaffari, A.	4
5	Prakash, A.	7	39	Ge, M.	4
6	Yadav, R.S.	6	40	Buhnova, B.	4
7	Wahl, M.	6	41	Bennis, H.	4
8	Tripathi, R.	6	42	Bangui, H.	4
9	Trabelsi, H.	6	43	Atiquzzaman, M.	4
10	Khattab, A.	6	44	Anitha, A.	4
11	Hasson, S.T.	6	45	Zhang, J.	3

Table 7: Authorship Analysis.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

10	11 1. 14 14	6	10	71 D	2
12	Hamdi, M.M.	6	46	Zhang, D.	3
13	Aliouat, Z.	6	47	Wu, W.	3
14	Aadil, F.	6	48	Villas, L.A.	3
15	Senouci, O.	5	49	Touil, A.	3
16	Rivoirard, L.	5	50	Tanwar, S.	3
17	Rashid, S.A.	5	51	Sulistyo, S.	3
18	Jabbar, M.K.	5	52	Srinivasan, S.	3
19	Harous, S.	5	53	Singh, R.	3
20	Gupta, N.	5	54	Singh, C.	3
21	Fahmy, Y.A.	5	55	Singh, B.K	3
22	Audah, L.	5	56	Shrivastava, P.K.	3
23	Alsuhli, G.H.	5	57	Shankar, K.	3
24	Alaya, B.	5	58	Sellami, L.	3
25	Abassi, R.	5	59	Ramat, E.	3
26	Zhang, T.	4	60	Radhika, D.	3
27	Talib, M.S.	4	61	Peixoto, M.L.M.	3
28	Pal, R.	4	62	Patil, R.	3
29	Noor, R.M.	4	63	Patheja, P.S.	3
30	Moussaoui, S.	4	64	Ozera, K.	3
31	Kchaou, A.	4	65	Ouahou, S.	3
32	Katiyar, A.	4	66	Ngo, D.T.	3
33	Kandali, K.	4	67	Mukhtaruzzaman,	3
				М.	
34	Kakkar, D.	4	68	Moulahi, T.	3
69	Kadoch, M.	4	139	Mohanty, A.	3
70	Hosmani, S	4	140	Mohammed, S.J.	3
71	Hassan, A.	4	141	Mathapati, B	3
72	Ghaffari, A.	4	142	Maqsood, M.	3
73	Ge, M.	4	143	Malik, A.W.	3
74	Buhnova, B.	4	144	Maia, A.H.O.	3
75	Bennis, H.	4	145	Liu, Y.	3
76	Bangui, H.	4	146	Kumar, P.	3
77	Atiquzzaman, M.	4	147	Krishnaraj, N.	3
78	Anitha, A.	4	148	Khan, M.F.	3
79	Zhang, J.	3	149	Khan, J.Y.	3
80	Zhang, D.	3	150	Kandar, D.	3
81	Wu, W.	3	151	Joshi, G.P.	3
82	Villas, L.A.	3	152	Ikeda, M.	3
83	Touil, A.	3	153	Hussin, B.	3
84	Tanwar, S.	3	154	Hajlaoui, R.	3
85	G 1' / G	3	155	Gupta, S.K.	3
00	Sulistyo, S.	5	155	Oupia, S.K.	5

E-ISSN: 2582-2160 • Website: www.ijfmr.com • I

• Email: editor@ijfmr.com

07	0: 1 D	2	1.57	C D	2
87	Singh, R.	3	157	Gruyer, D.	3
88	Singh, C.	3	158	Ghadi, F.	3
89	Singh, B.K	3	159	Elhoseny, M.	3
90	Shrivastava, P.K.	3	160	Chyne, P.	3
91	Shankar, K.	3	161	Chebbi, E.	3
92	Sellami, L.	3	162	Bylykbashi, K.	3
93	Ramat, E.	3	163	Bhuvaneswari, A.	3
94	Radhika, D.	3	164	Bennis, L.	3
95	Peixoto, M.L.M.	3	165	Aravindhan, K.	3
96	Patil, R.	3	166	Darabkh, K.A	2
97	Patheja, P.S.	3	167	Dahiya, P.K.	2
98	Ozera, K.	3	168	Choo, K.K.R.	2
99	Ouahou, S.	3	169	Cho, W.	2
100	Ngo, D.T.	3	170	Cheng, X.	2
101	Mukhtaruzzaman, M.	3	171	Cheng, J.	2
102	Moulahi, T.	3	172	Chen, Y.	2
103	Mohanty, A.	3	173	Chaurasia, B.K.	2
104	Mohammed, S.J.	3	174	Alioua, A.	2
105	Mathapati, B	3	175	Ali, A.	2
106	Maqsood, M.	3	176	AlQahtani, O.	2
107	Malik, A.W.	3	177	Ahmad, M.	2
108	Maia, A.H.O.	3	178	Abdulrazzak, H.N.	2
109	Liu, Y.	3	179	Abdulelah, A.J.	2
110	Kumar, P.	3	180	Abbas, Z.H.	2
111	Krishnaraj, N.	3	181	Abbas, G.	2
112	Khan, M.F.	3			
113	Khan, J.Y.	3			
114	Kandar, D.	3			
115	Joshi, G.P.	3			
116	Ikeda, M.	3			
117	Hussin, B.	3			
118	Hajlaoui, R.	3			
119	Gupta, S.K.	3			
120	Guemara, S.	3			
121	Gruyer, D.	3			
122	Ghadi, F.	3			
144	Olluul, I.				
122	Elhoseny, M.	3			
		3			

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

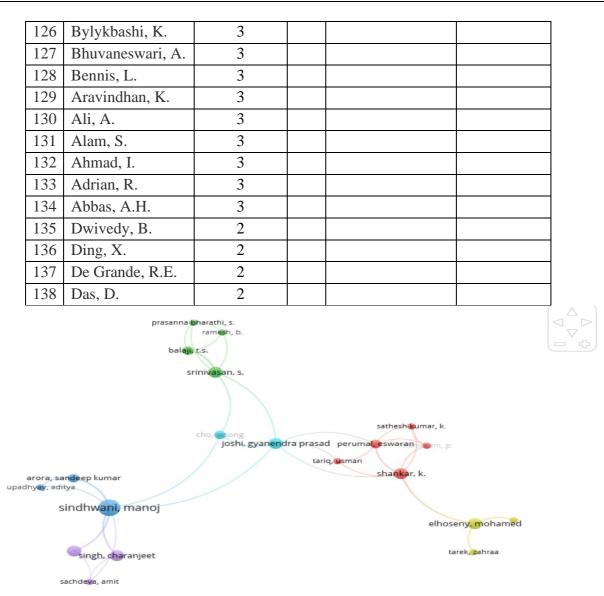
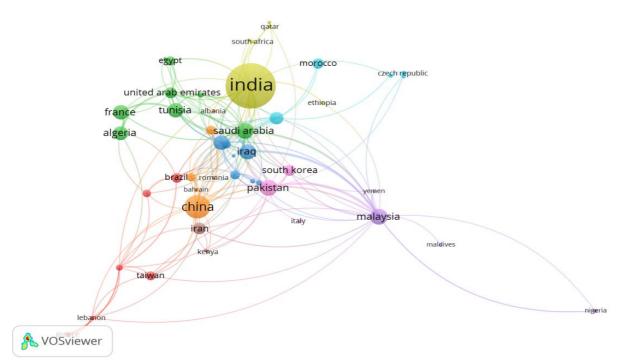



Figure 3: Network visualisation map of the co-authorship based on authors

Network visualization map of authors' co-authorship analysis. The size of the node indicates co-authorship frequency. A line between two nodes indicates collaboration between two authors. The line thickness between two nodes corresponds to the line strength, which varied depending on the number of papers co-authored. Stronger collaboration is indicated by thicker lines. Authors with high levels of collaboration are depicted by nodes of the same colour.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Figure 4 Network visualisation map of the co-authorship based on countries

Based on the provided sources, the network visualization map of co-authorship based on countries includes the following information for "Arab Saudi":

- Clusters 9.
- Links 22.
- Total links strength 36000.
- Documents 36.

In this context, "Arab Saudi" is part of a network visualization map that involves 36 documents and is clustered into 9 clusters with 22 links and a total link strength of 36,000. This information indicates the collaborative relationship and intensity of co-authorship involving "Arab Saudi" within the network visualization map based on countries.

2.5.7 Most active institutions.

The total publication on VANET clustering optimization from Malaysia universities is as follows:

- University Malaya: 7 publications
- University Tun Hussein Onn: 5 publications
- University Technology Malaysia: 4 publications
- University Kebangsaan Malaysia: 4 publications
- University Technical Malaysia (UTeM): 4 publications
- University Tenaga Nasional: 2 publications

These publications cover various aspects of VANET clustering optimization, including the use of machine learning-based frameworks to enhance clustering algorithms, optimizing environment-aware VANET clustering, and exploring different strategies and challenges related to VANET clustering.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

The research output from these universities reflects a significant focus on improving the quality of service in VANET protocols and applications through innovative clustering approaches that adapt to changing environmental features and road structures to enhance clustering performance.

Institutions	Total Publication
Motilal Nehru National Institute of Technology Allahabad	14
Lovely Professional University	13
University of Sfax	11
University of Babylon	11
Ministry of Education of the People's Republic of China	10
Université Gustave Eiffel	10
SRM Institute of Science and Technology	9
Université du Littoral Côte d'Opale	9
K L Deemed to be University	9
Saveetha School of Engineering	9
Laboratoire d'Informatique Signal et Image de la Côte d'Opale	9
United Arab Emirates University	8
Vellore Institute of Technology	8
Anna University	8
Al Qassim University	8
Ecole Nationale d'Ingénieurs de Sfax	8
King Saud University	7
Annamalai University	7
Universiti Malaya	7
Université Ferhat Abbas Sétif 1	7
Université des Sciences et de la Technologie Houari Boumediene	7
Université de Lille	7
Saveetha Institute of Medical and Technical Sciences	7
Laboratoire Électronique Ondes et Signaux pour les Transports (COSYS-	7
LEOST)	
CNRS Centre National de la Recherche Scientifique	6
Cairo University	6
Beijing University of Posts and Telecommunications	6
École de Technologie Supérieure	6
Université de Gabès	6
Tongji University	6
Noorul Islam University	6
University of Misan	6
The Islamic University, Najaf	6
Faculty of Engineering	5
Dr. B.R. Ambedkar National Institute of Technology	5
Harbin Institute of Technology	5

Table 9: Most active institutions.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Beijing Jiaotong University	5
Sejong University	5
The University of Oklahoma	5
University of Carthage, Ecole Supérieure des Communications de Tunis	5
Universiti Tun Hussein Onn Malaysia	<mark>5</mark>
University of Engineering and Technology, Peshawar	5
Imam Ja'afar Al-Sadiq University	5
Al Maarif University College	5
COMSATS University Islamabad, Attock Campus	5
Yeungnam University	4
College of Sciences	4
University of Electronic Science and Technology of China	4
Mansoura University	4
Université Moulay Ismaïl	4
Alagappa University	4
Universiti Teknologi Malaysia	4
Sun Yat-Sen University	4
Islamic Azad University, Tabriz Branch	4
Tianjin University of Technology	4
Masaryk University	4
Universiti Teknikal Malaysia Melaka	4
Faculty of Computer and Information	3
Universiti Kebangsaan Malaysia	2
Universiti Tenaga Nasional	2

Keywords analysis

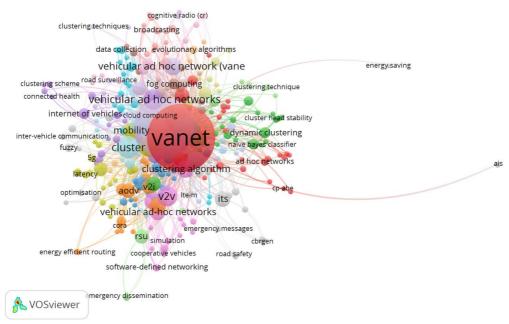


Figure 5 Network visualisation map of the author keywords.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

In the specific example provided, the network visualization map includes 53 nodes, 12 clusters, 174 links, and a total link strength of 187,000. This indicates that there are 53 unique keywords in the publications, which are grouped into 12 clusters based on their co-occurrence. There are 174 pairs of keywords that co-occur in the same publication, and the total link strength of 187,000 indicates the overall strength of the co-occurrence relationships between the keywords. The network visualization map of author keywords can be used to identify the most frequently occurring keywords, the clusters of keywords that are closely related, and the strength of the relationships between the keywords. This information can be used to identify trends and patterns in the research related to social justice and social injustice, and to identify areas for further research

2.5.8 Top 20 Keywords.

These keywords are frequently used in research papers, articles, and studies related to VANET Clustering Optimization. The purposes for their use are to discuss various aspects of VANET Clustering Optimization, such as optimizing the clustering process, improving network performance, and including environment-awareness in clustering algorithms. The keywords also cover the use of meta-heuristic algorithms and machine learning techniques to optimize the clustering process in VANET.

No	Keywords	Total	No	Keywords	Total
		Publications			Publications
1	Vehicular Ad Hoc	480	9	Intelligent	98
	Networks			Systems	
2	VANET	311	10	Intelligent	66
				Vehicle Highway	
				Systems	
3	Clustering	246	11	Roads And	59
				Streets	
4	Clustering Algorithms	235	12	Intelligent	57
				Transportation	
				Systems	
5	Vehicular Adhoc	212	13	Cluster Analysis	54
	Networks (VANETs)				
6	Vehicles	196	14	Routing	53
7	Vehicle To Vehicle	148	15	Traffic	52
	Communications			Congestion	
8	Clustering	115	16	Vehicle	49
				Transmissions	
17	Ad Hoc Networks	49	74	V2I	14
18	Mobile	48	75	Medium Access	14
	Telecommunication			Control	
	Systems				
19	Vehicular Networks	47	76	Cluster-based	14
20	Quality Of Service	47	77	AODV	14
21	Network Security	47	78	Transportation	13

Table	10:	Тор	20	keywords
-------	-----	-----	----	----------

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

22	Vehicular Ad Hoc	44	79	Number Of	13
	Network			Vehicles	
23	VANETs	44	80	Multi-hop	13
				Clustering	
24	Optimization	44	81	Clustering	13
				Approach	
25	Topology	43	82	Cluster Head	13
				Selection	
26	Motor Transportation	42	83	Accident	13
				Prevention	
27	Cluster Head	41	84	Roadside	12
28	Security	38	85	Dynamic	12
				Clustering	
29	K-means Clustering	36	86	Vehicular	11
				Communication	
30	Internet Protocols	36	87	Vehicle To	11
				Infrastructure	
31	Cluster-heads	34	88	V2V	11
				Communications	
32	Cluster	34	89	Smart City	11
33	Network Routing	33	90	Simulation	11
34	Information	33	91	Traffic	10
	Dissemination			Information	
35	Routing-protocol	32	92	Scalability	10
36	Internet Of Things	31	93	Intelligent	10
				Transport System	
37	Accidents	31	94	Street Traffic	9
				Control	
38	Routing Algorithms	29	95	Road Vehicles	9
39	Cluster-head Selections	29	96	MATLAB	9
40	Routings	28	97	Internet Of	9
				Vehicle	
41	Network Architecture	28	98	Gateways	9
				(computer	
				Networks)	
42	Energy Efficiency	28	99	Dynamic	9
				Topologies	
43	Packet Delivery Ratio	27	100	Evolutionary	8
				Algorithms	
44	Machine Learning	27	101	Edge Computing	8
45	V2V	26	102	Comparative	8
				Analysis	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

46	Data Dissemination	26	
47	Vehicular	24	
	Communications		
49	Clustering Techniques	24	
50	Vehicle To Vehicles	23	
51	Stability	23	
52	Particle Swarm	22	
	Optimization (PSO		
53	Optimisations	22	
54	Mobile Ad Hoc Networks	22	
55	5G Mobile	22	
	Communication Systems		
56	Vehicular Ad Hoc	21	
	Network (VANET)		
57	Traffic Control	21	
58	Fuzzy Logic	21	
59	Data Transfer	21	
60	Clustering Algorithm	21	
61	Wireless	20	
	Telecommunication		
	Systems		
62	Optimization Algorithms	19	
63	Mobility	19	
64	MANET	19	
65	Ad-hoc Networks	19	
66	K-means	18	
67	Cluster Stability	18	
68	Vehicle Ad-hoc Networks	17	
69	ITS	17	
70	Cluster Computing	16	
71	RSU	15	
72	Fog	15	
73	Clustering Scheme	15	

2.5.9 Citation analysis

Top cited articles in VANET Clustering Optimization research.

 "Optimizing Environment-aware VANET Clustering using Machine Learning" by Yasser Fahmy, Ghazi Alsuhli and Afnan Khattb, published in the International Journal of Intelligent Transportation System Research in 2023. This paper proposed a machine learning-based framework to include environment-awareness in clustering algorithms, optimizing the clustering algorithms parameters

based on road structure and traffic features to improve the quality of service in VANET protocols and applications.

- 2. "Optimized Node Clustering in VANETs by using Meta-Heuristic Algorithms" by Waleed Ahsan, Muhammand Fahad Khan, Farhan Aadil, Muazzam Maqsood, Staissh Ashraf, Yunyoung Nam and Seungmin Rho, published in electronic in 2020. This paper propose a grasshoppers optimized-based node clustering algorithm for VANETs (GAO) for optimal cluster head selection.
- 3. "An Evolutionary Approach for Optimized VANET Clustering" by Muhammad Fahad Khan, Khurram Shahzad and Muhammad Zeeshan Shakir, published in IEEE Access in 2021. This paper formulates the clustering algorithm optimization problem as a many-objective's parameters using a multi-objective optimization algorithm.
- 4. "Increasing Cluster Stability in VANET by Candidate Cluster Head Nomination Algorithm" by Muhammad Fahad Khan, Khurram Shahzad and Muhammad Zeeshan Shakir, published in the International Journal of Intelligent Transportation Systems Research in 2023. This paper proposes a candidate's cluster head nomination algorithm to select the optimal clusters head and stabilize the VANET environment, improving the routing efficiency.

2.6.0 Publication by source title.

This summary outlines the distribution of publications related to VANET clustering optimization across different source types, indicating the varying levels of research output in this area.

No	Source Title	Total Publica	No	Source Title	Total Publica
		tion			tion
1	IEEE Access	23	25	International Journal Of	4
				Intelligent Networks	
2	Wireless Personal	22	26	International Journal Of	4
	Communications			Computer Networks	
				And Applications	
3	Advances In Intelligent	19	27	Intelligent Automation	4
	Systems And Computing			And Soft Computing	
4	Lecture Notes In Networks	16	28	IEEE Vehicular	4
	And Systems			Technology Conference	
5	Communications In Computer	12	29	Annales Des	4
	And Information Science			Telecommunications	
				Annals Of	
				Telecommunications	
6	Vehicular Communications	11	30	Ad Hoc And Sensor	4
				Wireless Networks	
7	International Journal Of	11	31	Sensors	3
	Communication Systems				
8	IEEE Transactions On	11	32	Mobile Networks And	3
	Intelligent Transportation			Applications	
	System				

 Table 12 Most active source title

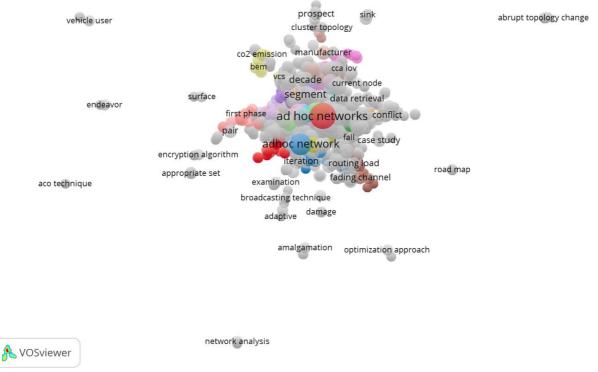
9	Ad Hoc Networks	11	33	Mathematics	3
10	Lecture Notes Of The Institute	10	34	Ksii Transactions On	3
10	For Computer Sciences Social	10	0.	Internet And	C
	Informatics And			Information Systems	
	Telecommunications			information by stemb	
	Engineering Lnicst				
11	Lecture Notes In Computer	10	35	Journal Of Ambient	3
	Science Including Subseries	10	00	Intelligence And	0
	Lecture Notes In Artificial			Humanized Computing	
	Intelligence And Lecture			Trainainzea comparing	
	Notes In Bioinformatics				
12	Journal Of Advanced Research	10	36	International Journal Of	3
14	In Dynamical And Control	10	50	Scientific And	5
	Systems			Technology Research	
13	Procedia Computer Science	9	37	International Journal Of	3
15	ribeedia computer Science		57	Interactive Mobile	5
				Technologies	
14	Wireless Networks	8	38	International Journal Of	3
17	WITCHESS INCLWOIKS	0	50	Intelligent Engineering	5
				And Systems	
15	Wireless Communications	8	39	International Journal Of	3
15	And Mobile Computing	0	57	Information Technology	5
				Singapore	
16	ACM International Conference	7	40	International Journal Of	3
10	Proceeding Series	,	-0	Engineering Trends And	5
	Troceeding beries			Technology	
17	Lecture Notes In Electrical	6	41	IFIP Advances In	3
17	Engineering	0	71	Information And	5
	Lingineering			Communication	
				Technology	
18	International Journal Of	6	42	IEEE Transactions On	3
10	Advanced Computer Science	0	12	Vehicular Technology	5
	And Applications			venieului reennorogy	
19	Electronics Switzerland	6	43	Computer Systems	3
17	Licentonies 5 witzerfund	0	13	Science And	5
				Engineering3	
20	Computers Materials And	6	44	Computer Networks	3
20	Continua	0			J
21	Transactions On Emerging	5	45	Computer	3
<u> </u>	Telecommunications	5		Communications	5
	Telecontinuositorie				
	Technologies			Communications	

23	Measurement Sensors	5	47	Telecommunication Systems	3
24	International Journal Of Innovative Technology And Exploring Engineering	5	48	Scientific Reports	2
49	Proceedings Of The International Conference On Electronics Communication And Aerospace Technology Iceca 2017	2	73	Bulletin Of Electrical Engineering And Informatics	2
50	Proceedings Of The 2018 International Conference On System Modeling And Advancement In Research Trends Smart 2018	2	74	Applied Sciences Switzerland	2
51	Proceedings 2023 12th IEEE International Conference On Communication Systems And Network Technologies Csnt 2023	2	75	6th Iraqi International Conference On Engineering Technology And Its Applications Iiceta 2023	2
52	Proceedings 2022 International Conference On Algorithms Data Mining And Information Technology Admit 2022	2	76	4th International Conference On Electrical Communication And Computer Engineering Icecce 2023	2
53	Proceedings 2021 IEEE 10th International Conference On Communication Systems And Network Technologies Csnt 2021	2	77	2023 13th International Conference On Information Technology In Asia Cita 2023	2
54	Proceedings 2017 3rd International Conference On Advances In Computing Communication And Automation Fall Icacca 2017	2	78	2022 2nd International Conference On Intelligent Technologies Conit 2022	2
55	Plos One	2	79	2020 IEEE 19th International Symposium On Network	1

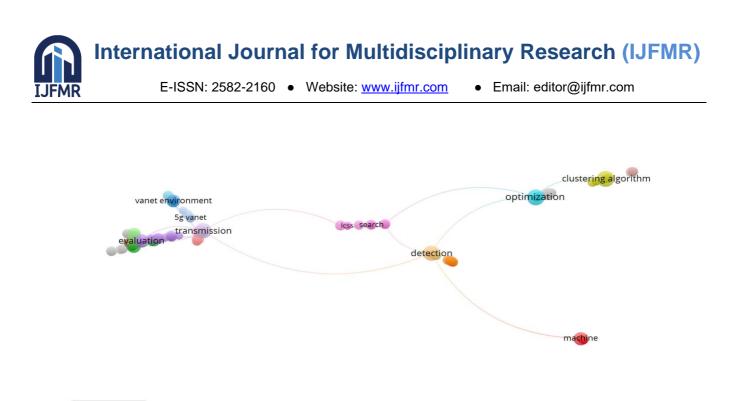
				Computing And	
56	Pdgc 2022 2022 7th	2	80	Applications NCA 2020 2023 31st International	1
30	International Conference On	2	80	Conference On Software	1
	Parallel Distributed And Grid			Telecommunications	
	Computing			And Computer Networks Softcom 2023	
57	Mobile Information Systems	2	81	2023 2nd International	1
57	Mobile Information Systems	2	01	Conference On	1
				Advances In	
				Computational	
				Intelligence And	
				Communication Icacic	
50			00	2023	1
58	Materials Today Proceedings	2	82	2023 1st International	1
				Conference On	
				Advances In Electrical	
				Electronics And	
				Computational	
				Intelligence Icaeeci 2023	
59	Journal Of Physics Conference	2	83	2023 1st IEEE Afro	1
	Series			Mediterranean	
				Conference On Artificial	
				Intelligence Amcai 2023	
				Proceedings	
60	Journal Of Network And	2	84	2022 International	1
	Systems Management			Wireless	
				Communications And	
				Mobile Computing	
				Iwcmc 2022	
61	Journal Of High Speed	2	85	2022 International	1
	Networks			Mobile And Embedded	
				Technology Conference	
				Mecon 2022	
62	Journal Of Green Engineering	2	86	2022 International	1
				Conference On	
				Information Science	
				And Communications	
			<u> </u>	Technologies Icisct 2022	
63	Journal Of Communications	2	87	2022 3rd International	1
				Conference For	
				Emerging Technology	
				Incet 2022	

64	Journal Of Circuits Systems	2	88	2022 3rd International	1
04	And Computers	2	00	Conference For	1
	And Computers			Emerging Technology	
				Incet 2022	
65	Internet Technology Letters	2	89	2022 2nd Asian	1
03	Internet Technology Letters	2	89		1
				Conference On	
				Innovation In	
				Technology Asiancon	
		2	00	2022	1
66	Internet Of Things Energy	2	90	2022 19th IEEE	1
	Industry And Healthcare			International Multi	
				Conference On Systems	
				Signals And Devices	
			6.1	Ssd 2022	
67	International Journal On	2	91	2022 2nd Asian	1
	Technical And Physical			Conference On	
	Problems Of Engineering			Innovation In	
				Technology Asiancon	
				2022	
68	International Journal Of	2	92	2022 19th IEEE	1
	Vehicle Information And			International Multi	
	Communication Systems			Conference On Systems	
				Signals And Devices	
				Ssd 2022	
69	International Journal Of	2	93	2021 International	1
	Communication Networks			Symposium On	
	And Distributed Systems			Networks Computers	
				And Communications	
				Isncc 2021	
70	International Journal Of	2	94	2021 IEEE International	1
	Applied Engineering Research			Conference On	
				Computing Icoco 2021	
71	International Journal Of	2	95	2021 9th International	1
	Advanced Science And			Conference On	
	Technology			Reliability Infocom	
				Technologies And	
				Optimization Trends	
				And Future Directions	
				Icrito 2021	
96	International Conference On	1	116	2021 4th International	1
	Communication Technology			Seminar On Research Of	
	Proceedings ICCT			Information Technology	

972022 2nd Asian Conference11172017 InternOn Innovation In TechnologyConference O	t Systems
97 2022 2nd Asian Conference 1 117 2017 Intern	
On Innovation In Technology Conference O	
Asiancon 2022 Communicat	
Analytics A	and Soft
Computing Ice	ecds 2017
982022 19th IEEE International11182017 Intelligen	nt Systems 1
Multi Conference On Systems Conference I	Intellisys
Signals And Devices Ssd 2022 2017	7
992021 International Symposium11192017 IEEE Sy	mposium 1
On Networks Computers And On Commun	nications
Communications Isncc 2021 And Vehi	icular
Technology S	Scvt 2017
10 2021 IEEE International 1 120 2017 IEEE Sm	
0 Conference On Computing Ubiquitous Int	telligence
Icoco 2021 And Comp	puting
Advanced An	d Trusted
Computed S	Scalable
Computing	g And
Communication	ons Cloud
And Big	Data
Computing In	nternet Of
People And S	mart City
Innovation Sn	nartworld
Scalcom U	Jic Atc
Cbdcom Iop S	SCI 2017
Conference Pr	oceedings
10 2021 9th International 1 121 2017 IEEE 8t	_
1 Conference On Reliability Ubiquitous Co	omputing
Infocom Technologies And Electronics Ar	
Optimization Trends And Communic	cation
Future Directions Icrito 2021 Conference	Uemcon
2017	7
102021 4th International Seminar11222017 2nd International	ernational 1
2 On Research Of Information Conference	ce On
Technology And Intelligent Emerging Cor	mputation
Systems Isriti 2021 And Inform	
Technologies	Icecit 201
10 2021 29th International 1 123 2016 Intern	
3 Conference On Software Conference	ce On
Telecommunications And Information Te	echnology
Incite 2016 T	


	Computer Networks Softcom		
	1		Generation IT Summit
	2021		On The Theme Internet
			Of Things Connect Your
			Worlds
10	2020 Systems Of Signal	1	
4	Synchronization Generating		
	And Processing In		
	Telecommunications		
	Synchroinfo 2020		
10	2020 International Wireless	1	
5	Communications And Mobile		
	Computing Iwcmc 2020		
10	2020 International Conference	1	
6	On Intelligent Systems And		
	Computer Vision Iscv 2020		
10	2019 International Conference	1	
7	On Automation Computational		
	And Technology Management		
	Icactm 2019		
10	2019 IEEE Student	1	
8	Conference On Research And		
	Development Scored 2019		
10	2019 IEEE International	1	
9	Conference On Vehicular		
	Electronics And Safety Icves		
	2019		
11	2019 IEEE International	1	
0	Conference On Consumer		
	Electronics Taiwan Icce TW		
	2019		
11	2018 Proceedings Of The	1	
1	Japan Africa Conference On		
	Electronics Communications		
	And Computations Jac Ecc		
	2018		
11	2018 International Conference	1	
2	On Smart Communications In		
	Network Technologies		
	Saconet 2018		
11	2018 International Conference	1	
3	On Emerging Trends And		
	Innovations In Engineering		

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com


	And Technological Research			
	Icetietr 2018			
11	2018 IEEE Wireless	1		
4	Communications And			
	Networking Conference			
	Workshops Wcncw 2018			
11	2018 10th International	1		
5	Conference On Advanced			
	Computing Icoac 2018			

Title and abstract analysis

Figure 6: VOS viewer visualisation of a term co-occurrence network based on title and abstract fields.

Interpreting a VOSviewer visualization of a term co-occurrence network based on title and abstract fields involves understanding the relationships between terms extracted from the titles and abstracts of academic publications. Interpreting a VOSviewer visualization of a term co-occurrence network based on title and abstract fields involves analysing the size and proximity of nodes, identifying clusters, understanding thematic patterns, and gaining insights into the relationships between terms extracted from academic publications.

A VOSviewer

Figure 7: VOS viewer visualisation of a Term co-occurrence network based on title fields

By analysing the terms, clusters, links, and total link strength, you can gain insights into the relationships between the terms and the structure of the network. This can help you identify key terms, clusters of related terms, and the overall connectedness of the network. The size variation and network density parameters can be adjusted to customize the visualization to your needs.

2.7 Conclusion and future recommendation.

The research on VANET clustering optimization using the MFO algorithm and K-Means clustering has shown promising results, but there is still a need for further research and development to address the challenges and limitations of VANET clustering optimization. Integrating advanced optimization techniques, developing dynamic clustering algorithms, exploring hybrid clustering, conducting real-world implementation studies, and addressing security and privacy concerns are key areas for future research and development in VANET clustering optimization.

References

- 1. Craig Cooper, Daneil Franklin, Montserrat Ros, Farzad Safei, Mehran Albolhassan (2017), A Comparative Survey of VANET Custering Technique. DOI: 10.1109/COMST.2016.2611524. *IEEE Communication Surveys & tutorial.*
- 2. Dmitry Zelikman and Michael Segal (2015). Reducing Interferences in VANET's. DOI: 10.1109/TITS.2014.2348498. *IEEE Transcations on Intelligent Transportation System*.
- Wenshuang Liang, Zhuorong Li, Hongyang Zhang, Shenling Wang, and Rongfang Bie (2015), Vehicular Ad Hoc Networks: Architectures, Research Issues, Methodologies, Challenges and Trends. <u>https://dx.doi.org/10.1155/2015/745303</u>. International Journal of Distribution Sensor Network, Volume 2015, Article ID 745303, 11 pages.
- Chaudhary, Saira Gilani, Sana Ajmal and Amir Qayyum (2017), Vehicular Ad Hoc Network (VANET): A Survey, Challenges and Applications. DOI: 10.1007/978-981-10-3503-6_4. Advances in Intelligent Systems and Computing. (Access on: https://www. researchgate.net/publication/315512136.

- 5. Ismail Ghazi Shayeb, Abdel Rahman Hamzah Hussein, Ayman Bassam Nassuora (2011) . A survey of Clustering Schemes for Mobile Ad-Hoc Network (MANET). Access on: https://www.researchgate.net/publications/316058967.
- 6. Kaushik Padmanabhan, Ilango Jeyasubramanian, Jagadish Pandian, Jai Vaignesh Rajendran (2016). Improving QoS in VANET Using Dynamic Clustering Technique. Conference International Journal of Networks and Communications 2016, 6(4):72-79 DOI: 10.5923/j.ijnc.20160604.02. Access to: <u>http://journal.sapub.org/ijnc</u>.
- Kandali, K., Bennis L., and Bennisi H. (2021) A new Hybrid Routing Protocol using Modified K-Means Clustering Algorithm and Continuos Hopfield Network for VANET. DOI 10.1109/ACCESS.2021.3068074. *IEEE Volume 9. Access to:* https://www.researchgate.net/publication/350301258.
- Mohammed Shehab, Laith Abualingah, Hanadi Al Shawabkah, Nagham Azmi (2021). Enhanced a Hybrid Moths Flame Optimization Algorithm using new selection scheme. *Engineering with Computers October 2021*. DOI:10.1007/s00366-020-00971-7. Access to: <u>https://www.researchgate.net/publication/339416829</u>.
- Monika Jain and Rahul Saxena (2017), Overview of VANET: Requirement and its Routing Protocol. DOI: 10.1109/ICCSP.2017.8286742T. International Conference on Communication and Signal Processing. April 6-8, 2017 India.
- Mohammad Mukhtaruzzaman and Mohammed Atiquzzaman (2020). Clustering in Vehicular Ad-Hoc Network: Algorithm and Challenges. *Researchgate and accepted paper in Elsevier Jornal pf Computers* & *Electrical* Engineering. Access to: <u>https://www.researchgate.net/publication/344150047</u>.
- Sadeep N Kugali, Basaveshar Karnataka (2020). Venicular Ad Hoc Network (VANET), A brief knowledge. International Journal of Engineering Research & Technology (IJERT). DOI: 10.17577/IJERTV9IS060784. Access to: <u>https://www.researchgate.net/publication/342529669</u>.
- Saroj Kumar, Saho Apu Kumar, Absalom, Jefrey O, Anath (2022). Moths Flame Optimization: Theory, Modification, Hybridzation and Application. Archives of Computational Methods in Engineering (2023) 30-391-426. <u>https://doi.org/10.1007/s11831-022-09801-z</u>.
- Sanaz Khakpour, Richard W. Pazzi, Khalil El-Khatib (2016). Using Clustering for Target in Vehicular Ad-Hoc Network. Accepted Manuscript. DOI: <u>https://dx.doi.org/10.1016/j.vehcom.2017.02.002</u>. Reference: VEHCOM 78
- Yaser.A., Aaadil, F., Khalil, A., Assam, M., Abunadi, I, Alluhaidan, & A.S., & Al-Wesabi F.N (2022). An Evolutionary Algorithm Based Vehicular Clustering Technique for VANET. DOI 10.1109/ACCESS.2022.3145905. *IEEE Access*.
- 15. Sham Rizal, Sazlina and Shamala K.Subramaniam (Prof.Dato'Dr). Cluster Optimization in VANET using MFO Algorithm and K-Means Clustering. 2023 13th International Conference on Information Technology in Asia (CITA).DOI: 10.1109/CITA58204.2023.10262579.