
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 1 

 

Exploring Observability Design Patterns of 

Microservices: Challenges and Solutions 
 

AzraJabeen Mohamed Ali 
 

Independent researcher, California, USA 

Azra.jbn@gmail.com  

 

Abstract:  

This paper discusses the thorough exploration of the Observability design patterns associated with the 

Microservices. Microservices have transformed the software development sector by encouraging 

modularity, scalability, and maintainability, which enables businesses to react to shifting consumer needs 

and technology breakthroughs faster. The study's main research question explores the careful 

consideration of Observability design in microservice architecture due to its distributed nature of 

microservices. It also provides a thorough analysis of several microservice’s Observability patterns and 

the way it handles its own data for improved scalability, flexibility, and isolation. This paper is therefore 

meant to be more development-environment centered and infrastructure agnostic. Developers and 

architects who wish to concentrate on code, patterns, and implementation specifics will find this part 

most interesting.  

 

Keywords: Micro Services, Design patterns, Observability design patten, monolithic, Log aggregation, 

Distributed Tracing, Health Check 

 

1. Introduction 

Microservice Architecture: 

Microservice architecture is a design methodology that divides a large application into smaller, 

autonomous services, each of which focuses on a distinct business function. Therefore, the back end is 

the main focus of this method, even though the front end can also use a microservices design. Each service 

runs independently and communicates with other processes using protocols including HTTP/HTTPS, 

WebSockets, and AMQP.  

Business-critical enterprise applications need to provide updates fast, frequently, and reliably in order to 

thrive in today's unstable, uncertain, complex, and ambiguous reality. As a result, corporations are divided 

into small, cross-functional teams with limited connections. Each team uses DevOps methodologies to 

deploy software. Specifically, it makes use of continuous deployment. An automated deployment pipeline 

tests the team's stream of frequent, small modifications before they are put into production. The intention 

is to allow developers to leverage microservices to speed up application releases by allowing teams to 

deploy each microservice as needed. 

Why are Microservices Architectures used by Businesses? 

Most firms start by constructing their infrastructures as a collection of closely related monolithic 

applications or as a single monolith. The monolith does a number of things. All of the programming for 

those functionalities is included in a single, cohesive piece of application code. Because the code for these 

https://www.ijfmr.com/
mailto:Azra.jbn@gmail.com


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 2 

 

functions is so intertwined, it is difficult to understand. The code of an entire program may break as a 

result of a single feature addition or alteration in a monolith. This makes any change, no matter how 

simple, expensive and time-consuming. As upgrades are done, programming becomes more complicated 

until scaling and upgrading are practically impossible. 

Businesses can no longer make additional changes to their coding over time without starting over. 

Businesses may find themselves stuck with antiquated procedures for a long time after they should have 

modernized, as the process soon becomes too difficult to handle. 

In addition to other pertinent factors, company objectives will determine which pattern (or patterns) is 

best to use. For microservices, there are numerous design patterns, each with its own advantages and 

disadvantages. Design patterns are grouped according to their intended use like Decompose patterns, 

Observability patterns, Integration patterns, Database patterns, Cross-Cutting concern patterns. 

Observability design patterns, including Log Aggregation, Performance Metrics, Distributed Tracing, 

Health check  are the main topic of this article. 

Observability design pattern: 

The term "observability design pattern" describes a collection of procedures, resources, and frameworks 

that offer insights into how a system, application, or infrastructure functions inside. Observability is 

intended to help teams monitor a system's performance, dependability, and health while also helping them 

comprehend how the system acts in production. It is crucial for determining the underlying causes of 

problems, diagnosing them, and enhancing system performance. 

 

a. Log Aggregation: 

Logging: 

Logging is a critical aspect of software development and operations, providing a detailed record of system 

events, errors, and other important activities. Logs offer insights into the behavior of applications, helping 

developers, operators, and security teams to troubleshoot, monitor, and improve systems. Logs can be 

stored in several ways, and it is important to choose the right storage solution based on the system's 

requirements. In monolithic application, Logs are written to local files on the machine or server where the 

application runs. Logging to a flat file on a single computer is much less useful in a cloud setting. Due to 

containers moving between physical computers, the local disk may be extremely ephemeral or 

applications generating logs may not have access to it. Sometimes it can be difficult to find the right file-

based log file, even when monolithic applications are simply scaled up across numerous nodes. 

Challenge: 

An integral component of efficient troubleshooting is logging. It is a continuous record of all events that 

happen in an application. Logging captures information about events, errors, and changes. Logging in a 

microservices architecture can be challenging since log entries are dispersed over several services, each 

with its own log file. Even worse, service instances may be ephemeral, meaning that service instance only 

lasts for a short time. So the log files are lost when they terminate. 

Solution: 

Log aggregation as a microservices design pattern turns out to be a solution for these problems. It stores 

logs from various microservices on a centralized platform after normalizing and combining them. A 

centralized log service that compiles log files from each service instance is used in log aggregation. It 

easy to retrieve, visualize, and analyze logs through the centralized log service. 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 3 

 

Implementation of Log Aggregation: 

An application usually logs many types like  

Application logs: which capture events within the application (For instance, successful API requests, 

database queries, errors, or exceptions. Application logs help developers troubleshoot problems, track 

behavior, and improve performance),  

System logs: which are generated by the operating system or server infrastructure and provide insights 

into the health and performance of the system, such as disk space, memory usage, or hardware errors,  

Access logs: which capture HTTP requests in web applications or other types of request-response cycles. 

They include details like the requested URL, the HTTP method, response status code, IP address, and 

sometimes user-agent details.,  

Security logs: which track authentication, authorization, and access control events. They are important 

for monitoring suspicious activity, failed login attempts, unauthorized access, and other security-related 

events. 

A good approach of application’s design encourages to log frequently, due to which log level cam be 

increased when logs are gathered. For cloud-native apps, centralized logs are desirable due to the 

difficulties of utilizing file-based logs. Fig-1 Applications gather logs, which are then sent to a central 

logging program for indexing and storing. Every day, this type of machine can consume tens of gigabytes 

of logs. The logs are stored on the log server, which also handles their aggregation, storage, and 

searchability. Teams may retrieve, view, and analyze logs using the central logging server. They can also 

set up alerts to be sent out when particular messages or patterns show up in the logs. 

Fig-1 

 
 

b. Performance Metrics: 

Performance metrics, together with logs and traces, are one of the core pillars of the Observability Design 

Pattern. Metrics give teams a numerical assessment of the system's performance and health, enabling them 

to watch and observe system activity in real time. In order to identify performance problems, guarantee 

system dependability, and enhance user experiences, these metrics are essential. 

Challenge:  

Keeping an eye on transactions is essential when the microservice architecture expands the service 

portfolio. This allows for the monitoring of patterns and the sending of notifications in the event of a 

problem. How should metrics be gathered to track the performance of an application? 

Solution: 

The performance metrics pattern allows us to collect and aggregate information about certain processes 

(such CPU performance and latency). The pattern combines metrics from several services into a single 

metrics service with the ability to report and modify.  

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 4 

 

Key Performance Metrics: 

Performance metrics are numerical values that capture various aspects of a system's performance. These 

can include things like latency, throughput, error rates, resource usage, and more. Metrics provide insights 

into system behavior, performance, and bottlenecks, helping teams make data-driven decisions. The Key 

Performance Metrics in the Observability Pattern are  

Latency: Refers to the time it takes for a system or service to respond to a request. High latency can 

indicate performance bottlenecks, which can degrade the user experience. Latency can be measured in 

milliseconds (ms). API response time and Database query latency are the examples of Latency. By 

tracking latency, teams can identify slow parts of the system and optimize them. 

Throughput(Request Rate): Throughput measures how many operations (e.g., requests, transactions) a 

system can handle in a given period. Throughput helps measure system capacity. A sudden drop in 

throughput could indicate performance degradation or service overload. Requests Per Second (RPS) and 

Transactions Per Second (TPS) are examples of Throughput. Monitoring throughput allows teams to 

detect load spikes or saturation points, providing insight into whether the system is able to handle the 

traffic load. 

Error Rate: Error rate refers to the percentage or count of failed requests or operations compared to the 

total number of requests or operations. A high error rate can signal system instability, bugs, or operational 

issues, which can negatively affect the user experience. HTTP 4xx and 5xx error codes and Service Failure 

Rate are the examples of Error Rate. By tracking error rates, teams can identify failing services, 

problematic endpoints, or issues with user-facing functionality. 

Availability (Uptime): Availability refers to the proportion of time a service or system is operational and 

able to handle requests. Downtime or service unavailability can significantly impact user experience and 

business operations. Monitoring availability ensures systems are up and running. Service uptime 

percentage and Availability per region are the examples of Availability. Availability metrics can trigger 

alerts when services go down, enabling teams to take quick action to restore service. 

CPU and Memory Usage: These metrics measure the amount of computational resources (CPU) and 

memory (RAM) used by a service or system. High CPU or memory usage can lead to degraded 

performance, increased latency, or even system crashes. It’s important to monitor these resources to 

ensure the system operates within acceptable limits. CPU utilization And Memory Consumption are the 

examples of CPU and Memory usage. These metrics help in capacity planning and performance 

optimization, as well as identifying resource constraints. 

Disk I/O and Network I/O: These metrics capture the rate of data being read from or written to disk 

(Disk I/O) and the rate of data being sent or received over the network (Network I/O). Disk and network 

I/O are critical for systems that rely on heavy data storage or communication with external services. 

Monitoring these metrics helps identify bottlenecks or slowdowns caused by disk or network constraints. 

Disk read/write operations and Network throughput are the examples of Disk I/O and Network I/O. These 

metrics are valuable for detecting resource saturation, disk failures, or network congestion. 

Queue Length / Backlog: Queue length refers to the number of requests or tasks waiting to be processed 

by a system, typically in a message queue or job queue. A growing backlog can indicate that the system 

is overwhelmed and may be unable to keep up with incoming traffic or workload. This can lead to latency 

spikes and eventual service failure. Pending requests and Job processing Queue Size are the examples of 

Queue Length / Backlog. Monitoring queue length can alert teams to scaling issues or resource contention. 

Saturation: Saturation refers to how close a system is to reaching its maximum capacity for a given 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 5 

 

resource (e.g., CPU, memory, disk I/O). If a system becomes saturated, its performance will degrade, and 

it may fail to process requests. CPU saturation and Memory Saturation are examples of Saturation. 

Saturation metrics help to predict when the system will reach capacity, allowing teams to take proactive 

steps to scale the system before it fails. 

Implementation of Performance Metrics:  

A consolidated view of the performance of microservices architecture is offered by this pattern. In order 

to gather the necessary data that reveals the system's performance and health, instrumentation must be 

first set up for different services. There are two models for aggregating metrics from a service: 

• Push: The service pushes metrics to the metrics service 

• Pull: The metrics services pull metrics from the service 

 

c. Distributed Tracing: 

Challenge: 

Requests in microservices architecture frequently span several services. Every service responds to a 

request by executing one or more tasks across several services. Then, how can we troubleshoot a request 

by following through from beginning to end? 

Solution: 

In distributed systems, especially microservices architectures, understanding how requests flow across 

services is crucial for diagnosing performance issues, identifying bottlenecks, and tracing the root cause 

of failures. Traditional logging or monitoring might not provide a clear view of how different services 

interact, but distributed tracing solves this problem by stitching together the request path across all 

relevant services. Distributed tracing is used to monitor applications that consist of multiple, 

interconnected services. It helps to track how a request or transaction propagates through different 

microservices or components in the system. By capturing a trace for each request, distributed tracing 

provides a clear view of each step and the interactions between services. Distributed Tracing is a key 

component of the Observability Design Pattern, offering detailed insights into the flow of requests as they 

travel through different services in a distributed system. It allows teams to track the lifecycle of a request, 

from its entry point through various services, to understand the latency, performance bottlenecks, and 

potential failures in microservices architectures. 

How Distributed Tracing Works in a Microservices Architecture: 

A single user request may go through numerous services and communicate with various elements, such 

as databases, third-party APIs, or queues, in a distributed microservices system. Distributed tracing 

operates as follows: 

Client Initiates a Request: When a user makes a request, the first service (such as an API gateway) 

records it. After that, a trace ID is created and attached to the request. 

Context Propagation: The trace context (trace ID and span IDs) is spread via the request headers (or any 

other context-propagating method) as the request moves between services. 

Spans are Created: To document its operation, including start and end times and any metadata (such 

error information), each service that handles the request generates a new span. 

Trace Aggregation: A distributed tracing system, like Jaeger, Zipkin, or OpenTelemetry, gathers the 

trace data, including all spans. The spans are stitched together into a single trace by the system's 

aggregation and correlation. 

Analysis: The trace is stored and visualized in a tracing platform (e.g., Jaeger UI or Zipkin Web Interface), 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 6 

 

where developers and operators can view the request journey, identify latency, track errors, and monitor 

dependencies across services. 

 

d. Health Check: 

Challenge: 

When using microservices architecture, it is possible for a service to be operational but unable to process 

transactions. For instance, a recently launched service instance may still be initialized, or a software flaw 

may have caused a service to freeze without fully crashing. A service that has lost access to its database 

or whose database is overcrowded and not accepting connections is another example of a service that is 

operational but not operating correctly. If so, how can we make sure a request doesn't end up in those 

unsuccessful cases? 

Solution: 

Implementing health check APIs is the solution to lessen the issues brought on by unhealthy services. In 

the observability pattern, a Health Check API plays a vital role in ensuring the reliability, availability, and 

proper functioning of a system. It allows for quick verification of the operational status of services and 

systems, helping to detect failures early and ensuring that the system is ready to handle requests. 

Implementation of Health Check API: 

A Health Check API is often a simple endpoint exposed by a service, which returns the health status of 

that service or system. It is typically used by monitoring tools, load balancers, and orchestrators (like 

Kubernetes) to perform periodic checks to verify that the service is functioning correctly. By 

implementing liveness, readiness, and custom health checks, it is ensured that the systems remain resilient, 

highly available, and responsive to issues. 

Purpose of Health Check APIs in Observability: 

Service Availability: Ensures that the service is up and running. This is especially critical in distributed 

systems where multiple services depend on each other. 

Proactive Monitoring: Health check endpoints are polled regularly by monitoring systems (e.g., 

Prometheus, Datadog, AWS CloudWatch) to track the health of a service. If the health check fails, it 

triggers an alert to the operations team. 

Graceful Failover: Health check APIs are used by load balancers and orchestrators to perform graceful 

failovers. If a service fails the health check, the orchestrator can remove it from the load balancer pool 

and route traffic to healthy instances. 

System Resilience: Health checks are part of creating fault-tolerant and self-healing systems. Services 

that are deemed unhealthy can be restarted or re-provisioned automatically. 

Scaling Decisions: By integrating health checks with auto-scaling tools (such as Kubernetes Horizontal 

Pod Autoscaler), services can be scaled based on health indicators, such as resource utilization or service 

response. 

Benefits of Observability: 

• Faster Issue Resolution: By providing real-time insights and detailed context, observability enables 

faster detection and resolution of issues. 

• Proactive Monitoring: Instead of waiting for problems to arise, observability allows for proactive 

management, helping teams detect potential issues before they impact users. 

• Improved User Experience: By monitoring and maintaining system health, observability helps 

ensure high availability, low latency, and seamless user experiences. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240221600 Volume 6, Issue 2, March-April 2024 7 

 

• Continuous Improvement: Continuous observability helps teams identify patterns, optimize 

performance, and refine their systems over time. 

 

Conclusion: 

In summary, the Observability Design Pattern is about creating a system that provides comprehensive 

visibility into the behavior, health, and performance of applications, particularly in complex distributed 

systems. It uses metrics, logs, and traces as the core data sources to monitor, troubleshoot, and optimize 

systems. Observability is a more comprehensive approach that allows teams to deeply understand why 

and how systems behave, going beyond simple monitoring to support in-depth troubleshooting, system 

analysis, and performance optimization.  Performance metrics are a crucial component of the observability 

design pattern. They provide essential insights into the health, performance, and scalability of systems 

and services. By continuously tracking and analyzing metrics like latency, throughput, error rates, and 

resource usage, teams can detect issues early, optimize performance, ensure availability, and make 

informed decisions on scaling and resource allocation. The integration of performance metrics with tools 

for real-time monitoring, alerting, and visualization helps organizations maintain reliable, high-

performing systems. By integrating distributed tracing with logging and metrics, teams can create a 

comprehensive observability strategy, enabling faster root cause analysis, performance optimization, and 

improved user experiences in modern cloud-native applications. Health Check API ensures that services 

can be continuously monitored and that any failures are detected early. 

 

References 

1. Chris Richardson “Pattern: Log Aggregation” 

https://microservices.io/patterns/observability/application-logging.html   (2019 ) 

2. Chris Richardson “Pattern: Distributed Tracing”  

https://microservices.io/patterns/observability/distributed-tracing.html  (2019) 

3. DZone “Microservices Design Patterns: Essential Architecture and Design Guide” 

https://dzone.com/articles/design-patterns-for-microservices (Jun 06, 2023) 

4. Microsoft “Observability patterns” https://learn.microsoft.com/en-us/dotnet/architecture/cloud-

native/observability-patterns (Apr 02, 2022) 

5. Lumigo “What Should You Observe When Deploying Microservices?” 

https://lumigo.io/microservices-monitoring/microservices-observability/ (2022) 

6. Hiren Dhaduk “6 Observability Design Patterns for Microservices Every CTO Should Know“ 

https://www.simform.com/blog/observability-design-patterns-for-microservices/ (Jan 06, 2023) 

7. Vinicius Feitosa Pacheco “Microservice Patterns and Best Practices: Explore patterns like CQRS and 

event sourcing to create scalable, maintainable, and testable microservices” Packt publishing (Jan 29, 

2018) 

8. Sam Newman “Building Microservices: Designing Fine-Grained Systems” O’Reilly (Feb 9, 2022) 

9. Angela Davis “An In-Depth Guide to Microservices Design Patterns” 

https://www.openlegacy.com/blog/microservices-architecture-patterns/  (Dec 23, 2023) 

10. Chris Richardson “Microservice Architecture Pattern” 

https://microservices.io/patterns/microservices.html   (2019) 

 

https://www.ijfmr.com/
https://microservices.io/patterns/observability/application-logging.html
https://microservices.io/patterns/observability/distributed-tracing.html
https://dzone.com/articles/design-patterns-for-microservices
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/observability-patterns
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/observability-patterns
https://lumigo.io/microservices-monitoring/microservices-observability/
https://www.simform.com/blog/observability-design-patterns-for-microservices/
https://www.openlegacy.com/blog/microservices-architecture-patterns/
https://microservices.io/patterns/microservices.html

