
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240320160 Volume 6, Issue 3, May-June 2024 1 

 

Treatment-Naïve Primary Osteosarcoma's 

Cellular and Molecular Heterogeneity is 

Revealed by Single-Cell RNA Sequencing in 

Canines 
 

N. Ranga Sree1, V. V. N. Sivanjaneyulu Gatte2, Bellapukonda Indra Devi3   
 

1Assistant Professor, Department of Computer Science and Engineering, Krishna University, 

Machilipatnam, Andhra Pradesh, India. 

2Assistant Professor, Department of Mechanical Engineering, Krishna University, Machilipatnam, 

Andhra Pradesh, India 
3Assistant Professor, Department of Computer Science and Engineering, Sri Vasavi Institute of 

Engineering and Technology, nandamuru, Pedana, Andhra Pradesh, India 

 

ABSTRACT:  

A diverse, aggressive bone cancer that disproportionately affects children and teenagers is called 

osteosarcoma (OS). The complicated tumor microenvironment (TME) of OS contributes to the paucity 

of therapeutic treatments. Therefore, in six treatment-naïve dogs with TME, we utilized single-cell RNA 

sequencing (scRNAseq) to characterize its cellular and molecular makeup. Primary OS that arises on its 

own. By examining 35,310 cells, we were able to characterize eight tumor-associated macrophage 

(TAM) populations, mature regulatory dendritic cells (mregDCs), and follicular helper T cells, among 

other 41 transcriptomically different cell types. According to cell-cell interaction study, TAMs and 

mregDCs are important players in the regulation of T cell-mediated immunity. Additionally, we 

discovered a high degree of similarity after completing a cross-species cell type gene signature 

homology study. 

 

Keywords: RNA Sequencing 

 

Introduction 

Children and adolescents are disproportionately affected by osteosarcoma (OS), an aggressive bone 

cancer. Though the condition has a significant impact on the lives of those affected, there are currently 

no viable therapies available, and progress in developing combined surgical 1986 saw excision and 

adjuvant chemotherapy. A portion of the reason for the slow progress in developing OS treatments is the 

very uncommon occurrence that restricts patient enrollment in clinical trials. Large animal models have 

drawn more attention recently as a means of assessing and validating the promise of immunotherapeutics 

for a range of malignancies.Because dogs have a higher illness incidence, similar genetics and 

pathology, and are immunologically competent, spontaneously occurring canine OS is thought to be an 

ideal model of human OS. Dogs have, however, Malignant osteoblasts, osteoclasts, fibroblasts, 

macrophages, lymphocytes, and several other stromal and immunological components make up the 
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complex TME of osteosarcoma. When combined, the OS TME produces an environment that suppresses 

immunity, impeding antitumor immunological responses5. To better understand and target the biological 

components that support immune suppression, researchers have turned to the TME. Contrary to many 

other cancer types, findings in both humans and dogs indicate that an increase in macrophage abundance 

in OS lowers the rate of metastasis and improves survival. This surprising discovery emphasizes the 

need for a more thorough understanding of OS pathobiology, as do the unclear mechanisms of immune 

suppression in the OS TME. 

Single-cell RNA sequencing, or scrRNA-seq, has become a useful technique for examining the 

transcriptomes of individual cells in heterogeneous tissues in recent years. The strategy gets beyond 

species-specific characteristics constraints by depending on an all-encompassing transcript capture 

technique that is only constrained by the accuracy of genome annotations. Significantly, the recently 

published human scRNA-seq landscapes of primary, recurrent, and metastatic OS provide as a 

benchmark for comparing cell type homology between canine and human OS. The current study's 

objectives were to assess human and canine cell type transcriptomic homologies and finish a molecular 

dissection of the canine OS TME using scRNA-seq. 

Six primary osteosarcoma-affected dogs without prior therapy were included in the single-cell RNA 

sequencing reference dataset created for this investigation.There are 41 transcriptomically different cell 

types, according to our analysis. studied canine OS and demonstrated that the gene signatures for cell 

types in both canine and human OS are preserved. All things considered, the information produced here 

can help identify conserved OS TME characteristics and make it easier to investigate the canine 

osteosarcoma tumor microenvironment in more detail. 

 
Figure 1: Sample Images from the dataset 

 

Methods 

Examine animals  

Dogs in the trial were chosen based on the existence of a primary tumor in the appendix and the lack of 

prior treatment intervention. Every dog had radiographic evidence of OS, and the diagnosis was 

confirmed by a subsequent histological examination. The damaged limb of each research dog was 

amputated, and samples were gathered for single-cell RNA sequencing processing in less than 30 

minutes. After that, the severed leg was delivered to the Colorado State University Veterinary 

Diagnostic Laboratory, where representative tumor samples were examined in order to validate the 

clinical diagnosis histopathologically. Based on pathology findings for each sample, the osteosarcoma 

subcategorization shown in Table 1 was verified by another veterinary pathologist. Every study received 

approval from Colorado State University (CSU). 

 

Sample setup 

The severed limb was cut down to the tumor's level using a stainless steel Three to five biopsy cores 

were taken from the tumor using a Michele trephine biopsy needle, which was used to target locations 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240320160 Volume 6, Issue 3, May-June 2024 3 

 

with visible mass effects and/or cortical bone lysis. After that, phosphate was used to wash the biopsy 

cores. Buffered saline (PBS), chopped with a knife, and digested for 45 minutes at 37 °C with agitation 

using collagenase type II (250 U/mL) in Hanks’ Balanced Salt Solution (HBSS) (Thermo Fisher 

Scientific Inc.). Samples were centrifuged for five minutes at 400 rcf after passing through a 70 µm cell 

strainer and being cleaned with PBS. Trypan blue exclusion was used to determine the presence of live 

cells in each of the individually obtained biopsies, and Thermo The mixed cell culture was placed onto a 

3-mL Ficoll Paque (Cytiva; Marlborough, MA) and centrifuged for 30 minutes at 400 rcf with an 

acceleration of 9 and a brake of 0. This was done to enrich for live cells and eliminate debris. After 

density centrifugation, the layer interacting with the cell was collected, once more cleaned with PBS, 

and then allowed to resuspend for three to seven minutes at room temperature in a 10-mL Ammonium-

Chloride-Potassium lysis buffer. A final wash was performed for 15 minutes at 100 rcf in order to get rid 

of platelets and tiny debris. Trypan blue exclusion was used to demonstrate that the cells had a viability 

more than 90%. The cells were then resuspended in 0.04% molecular grade BSA (Sigma-Aldrich; St. 

Louis, MO) in PBS and sent to a Chromium iX instrument (10x Genomics; Pleasanton, CA) for cell 

capture. Every sample was recorded. 

 

Assembly and sequencing of libraries 

Using a Chromium iX device, single cells were separated and molecular barcodes were applied with a 

goal of 5000 cells per sample. Two samples from each of the six dogs (dogs 1 and 2) were processed 

using a 5000-cell aim, with a combined goal of 10,000 cells for canines 1 and 2. Chromium Next GEM 

Single Cell 3ʹ v3.1 Kit and a standard Illumina library dual index library construction kit (10x 

Genomics) were used to process single cells. With a goal of 100,000 150 bp paired-end reads per cell, 

the sample quality was assessed using a LabChip (PerkinElmer; Waltham, MA) before being submitted 

for sequencing on an Illumina NovaSeq 6000 sequencer (Novogene Corporation; Sacramento, CA). 

 

Examine the quantification and mapping 

Reads were aligned to the canine genome, a count matrix was produced, and raw FASTQ sequencing 

data was processed using a Cell Ranger analytic pipeline (version 6.1.2, 10× Genomics). "Cell ranger 

count" was performed with the default parameters and aligned to a CanFam3.1 reference (Ensemble 

release 104) made in the manner previously mentioned21. 

 

Integration and filtering of data 

Using the Read10X() function, the count matrix for each sample was imported into R, and the 

CreateSeuratObject() function was used to transform it into a Seurat object18. Using 

PercentageFeatureSet() to count all reads mapped to features with the prefix "MT-," the percentage of 

reads mapping to mitochondrial chromosomes per cell ("percent.MT") was determined in order to 

estimate the number of dead/poor quality cells. Only cells that satisfied the following criteria were kept 

in each object: 200 < nFeature_RNA < 5500, percent.mt < 12.5, and 100 < nCount_RNA < 75000. The 

next step involved using DoubletFinder to locate and exclude potential cell doublets59. Seurat's 

alignment workflow48 was used to combine all of the samples into a single object after each sample had 

undergone quality control filtering and been normalized using SCTransform (Pearson residuals of 

regularized negative binomial regression). The steps in the alignment workflow were as follows: (1) 

determining which samples' variable characteristics were, (2) calculating the data for those features, (3) 
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pairwise integration of the data; (4) canonical correlation analysis (2000 integration anchors utilized) for 

the detection and filtering of conserved variable features (also known as "anchors") between samples. In 

order to reduce the effect of mitochondrial readings on dimension reduction and integration60, we 

employed the "percent.MT" value as a latent variable in a linear regression framework during the data 

scaling stage. After the data was integrated, the dataset was examined, and three low-quality clusters—

which were distinguished by low UMI counts—were found and eliminated. After that, the filtered 

dataset was split up per sample into a list of count matrices and as the removal of cells may change the 

selection of variable features, Seurat's alignment method was repeated. The R program clustree61 was 

used to calculate the ideal clustering parameters (res = 0.8, dims = 45, n.neighbors = 40, min.dist = 

0.35). After the completion of dimension reduction and visualization, two-dimensional, non-linear 

uniform manifold approximation and projection (UMAP) plots were used to project the data. 

 

Analysis of subclustering 

We subset the integrated dataset onto the population of interest for each major cell type in order to 

remove any extraneous cells. Following the division of the subset dataset into a list of count matrices by 

sample, the previously outlined Seurat alignment method was carried out. During the process of carrying 

out the integration of the reintegrated dataset, new variable features were found that can improve the 

capacity to identify uncommon cell types through unsupervised grouping. The following were the 

parameters for integration, dimension reduction, and clustering: tumor/stroma: min.dist = 0.5, 

n.neighbors = 50, dims = 40, res = 0.5, integration anchors = 3000, T cell: min.dist = 0.3, n.neighbors = 

50, dims = 40, res = 0.6, integration anchors = 2500, Integration anchors for dendritic cells are 2000, res 

is 0.3, dims is 35, n.neighbors is 50, min.dist is 0.3, and integration anchors for macrophages and 

osteoclasts are 2500. 

 

Classification of cells 

Using gene set enrichment analysis, unsupervised clustering results, and manual annotation based on the 

literature for human cell type markers, high level cell type annotations were established. Essentially, 

characteristics such as CD3E/CD5/CD7 for T cells were employed to distinguish key cell types. The 

osteoclasts are represented by CTSK/ACP5/ATP6V0D2, the macrophages by CD68/AIF1/MRC1, the 

neutrophils by S100A12/CD4/CXCL8, the tumor/fibroblasts by COL1A1/ALPL/FAP, the dendritic cells 

by FLT3/CD1C/DNASE1L3, the endothelial cells by ESAM/PLVAP/CD34, the cycling cells by 

TOP2A/H1-5/MKI67, and the mast cells by FCER1A/GATA2/MS4A2. To support immune cell 

classifications, singleR and reference mapping to a canine leukocyte atlas were finished in addition to 

the use of canonical markers. Additional high-resolution identification of cells was finished using 

subclustering analysis on cells that belonged to each of the five primary cell populations: T cells, 

osteoclasts, dendritic cells, macrophage/monocyte, tumor/fibroblast, and so on. Supplementary Data 1 

contains the cell type gene signatures that were found in this dataset using the FindAllMarkers() method 

(Wilcoxon Rank Sum test). Supplementary Data 2 and Supplementary contain curated short gene 

signatures for each cell type in addition to the complete gene signatures. 

 

Visualization of features  

Feature plots, dot plots, and violin plots were used to visualize the feature expression. The traits that 

were picked were based on previous biological understanding and classification of features with the 
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FindAllMarkers() function as statistically significant. For violin plots inside of a figure, the Y-axis scales 

are fixed. Normalized expressions for each feature on variable scales are displayed in feature plots. 

Gray/light purple coloration denotes low expression for all feature plots, while dark purple coloration 

denotes high expression. Scaled expression data is used in dot plots to show the variation in a gene's 

average value among the sampled cells. 

 

Analysis of differential gene expression  

Pseudobulk conversion was used to finish the differential gene expression (DGE) analysis, which was 

then processed using the DESeq2 pipeline64. Low abundance features—defined as features with fewer 

than 10 raw counts—were used before DESeq2. were eliminated from all tested cells. Statistically 

significant features were those with an adjusted P-value of less than 0.05 (calculated using the Benjamini 

and Hochberg correction method) and a log2 (fold change) larger than 0.5865. 

 

Analysis of gene set enrichment 

When the gene lists produced by DGE analysis were subjected to follow-up gene set enrichment analysis 

(GSEA), the significantly upregulated and Features that were downregulated were handled differently. 

The clusterProfiler and msigdbr R packages were utilized to evaluate the upregulated and downregulated 

gene lists and infer pathway activity. Terms that, after applying the Benjamin and Hochberg correction 

procedure, with an adjusted P value of 0.05 or below were considered significantly enriched. We 

completed GSEA on cell type clusters using the R package singleseqgset in addition to applying GSEA 

after DGE analysis. A competitive gene set enrichment test, based on a Correlation Adjusted Mean 

RAnk gene set test68, was employed in the analysis. The mean and log2 (fold change) To perform 

GSEA, the expression for each feature within each cell type was computed. False discovery rate (FDR) 

was used to adjust P values for multiple comparisons. The resulting corrected P values were then filtered 

to keep only terms where the value of at least one cell type was less than 0.05.  A heatmap was used to 

illustrate the top pathways (weighted by P value) after the enrichment values had been scaled. 

 

Analysis of copy number variation  

CopyKAT was used to perform copy number variation (CNV) analysis on cells containing more than 

2000 unique molecular identities (UMIs)14. To put it briefly, the method divided the human genome 

into variable genomic bins of 220 kb each in order to create a genome-wide copy number profile at a 

resolution of roughly 5 Mb for every single cell. When determining the CNV status, each Eash sample 

was analyzed separately using a known normal cell population made up of osteoclasts, neutrophils, 

macrophages, and T cells. After being taken out of the CopyKat output files and added to the integrated 

dataset, the CNV status was shown in the UMAP space for each individual cell classification. This 

method was limited to determining if a cell was diploid or aneuploid. We did not assess individual 

chromosomal alterations because of incompatibility. We also used the infer CNV algorithm on the 

dataset as a supplement to the Copy KAT analysis, and the results were comparable in terms of the 

aneuploid and diploid classifications15. In short, an ordered gene file created with the Ensembl 

CanFam3.1.104 gene transfer tool was used to execute the infer CNV method. format (.gtf) file that 

served as the foundation for the single-cell data alignment reference. The canine gene locations were 

then used to generate an infercnv object, and endothelial cells and macrophages were chosen as the 
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"normal" reference populations. After that, Infer CNV was used with the default parameters and the 

suggested "cutoff" option set to 0.1. 

 

Activity of regulators  

The Single-Cell Regulatory Network Inference and Clustering (pySCENIC) Python implementation was 

utilized to deduce the activities of cell types' gene regulatory networks. In order to conclude this study, 

the function convert_orthologs() from the orthogene R package71 was used to convert the gene symbols 

from canine to human. Genes with duplicate mappings in the canine or human annotations were 

removed from the matrix and not included in the subsequent analysis during the conversion process. 

After loading the count matrices containing the transformed gene symbols into SCANPY, a normal 

pySCENIC procedure was carried out using the default settings. The regulatory feather files utilized in 

the analysis were named hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather and were 

downloaded from https://resources.aertslab.org/cistarget/. hg38__ refseq-r80__tss.mc9nr.feather, 500 

bps up and 100 bps down. Regulon specificity scores (rss) were computed using AUCell following the 

prediction of regulon activity with pySCENIC. The rss values were then utilized to infer regulon activity 

in the cell types examined. 

 

Analysis of inference for cell-cell interactions  

Cell-cell interactions within the tumor microenvironment were inferred using the R package CellChat35. 

With a list of recognized Using human receptor-ligand pairings obtained from CellChat, we computed 

the intensity and weight of the interaction scores, which indicate the likelihood of two cells interacting. 

The final completely annotated dataset containing 41 cell types was used for initial analysis, and a subset 

of just immune cells (excluding the four main cell types—fibroblast, endothelium, osteoblast, and 

cycling osteoblast) were used for secondary analysis. As mentioned in the "Regulon activity" section, 

the raw count matrices were removed before analysis, and the gene symbols were changed from canine 

to human. In general, the research assessed how ligand-expressing cells—also known as senders or 

outgoing signals—interacted with receptor-expressing cells. Based on the law of mass action and the 

average expression values of receptors and ligands within cell types, conclusions on possible 

interactivity were then drawn. Permutation testing was utilized to ascertain the statistical enrichment of 

interaction networks, and an adjusted P value < 0.05 was employed to establish importance. After 

identifying the enriched cell-cell interaction networks, we used the reported receptor and ligand 

expression patterns to further classify each enriched pathway as "immune specific," "immune related," 

and "non-immune" The process of categorizing a subset of interaction networks (PD-L1, CD80, and 

CD86) as immune regulatory was part of the analysis of the immune cell subset. 

 

Analysis of human OS homology  

Six human OS samples without any treatment were acquired using the NCBI GEO database accession 

GSE16245412. The count matrices that were provided by the The six dog OS tumor samples from 

earlier studies were preprocessed using the same settings, and those objects were put into the filter as 

Seurat objects. Low resolution unsupervised clustering was used to annotate the human dataset, with 

reference to the original publication, in an effort to replicate the original annotations. The raw count 

matrices from each dataset were retrieved, and canine gene symbols were translated from canine to 

human as mentioned in the "Regulon activity" section, before data integration between species took 
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place. After gene symbols were converted, the 12 OS samples—six canine and six human—were 

combined into a single object using the The Seurat alignment process remained the same, as previously 

said, but 3000 variable features were chosen as anchors. Then, using the hclust() function and technique, 

hierarchical clustering was finished using SCTransform normalized counts. "Complete" is selected. 

FindAllMarkers() was used to create subsequent cell type gene signatures, and the corresponding 

dataset's DGE analysis was used to contrast the different cell types within each species. A Jaccard 

similarity index was computed using the resulting cell type gene signatures, and scatter plots were 

produced using the signed P values, which were given a sign (+/−) based on the log2 (fold change). 

 

Statistics and reproducibility 

Raw data from a total of 8 canine scRNA-seq osteosarcoma samples were generated in this study. Two 

of the 8 samples were technical replicates, which were considered as one sample when completing 

computational analysis to retain a total of 6 biological replicates. Biological replicates were used for 

pseudobulk differential gene expression analysis, while cellular replicates were used for all other 

analysis completed in this study. Detailed descriptions of the statistical analyses and significance 

thresholds used in this study are provided in the respective methods section. 

 

Reporting summary 

Further information on research design is available in the Nature Portfolio Reporting Summary linked to 

this article. 

 

Data availability  

Raw sequencing data are available on the NCBI Gene Expression Omnibus database under the accession 

number GSE252470. The annotated dataset is availablefor browsing at the UCSC Cell Browser 

(https://cells.ucsc.edu/?ds= canine-os-atlas) 74, and the processed data (Seurat v4.3.0 RDS objects) are 

available on Zenodo (https://doi.org/10.5281/zenodo.10666968) 75. Results of all differential gene 

expression analysis and cell type gene signatures are provided in Supplementary Data files. 
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