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Abstract 

This article focuses on a bivariate vector autoregressive model of lag 1 with non-normal errors. We propose 

a bivariate error distribution using two identical marginals through a copula function. The copula used for 

the study is the Farlie-Gumbel-Morgenstern copula, which is considered to be one of the efficient class of 

copula in describing the dependence between two random variables. The model parameters are estimated 

using the method of inference functions for margins, and the finite sample properties of the model is 

illustrated through simulation studies. A real life example is considered to illustrate the applications of the 

proposed model. The adequacy of the copula model is examined using the two sample version of 

kolmogorov smirnov test statistic. 
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1. Introduction 

A vector autoregression model is mainly used in multivariate time series analysis, it is the generalisation 

of a univariate autoregressive model. A VAR model is generally a linear function of past lags where each 

variable depends on its own past lags and also on the past lags of other variables. It is considered to be an 

efficient model for forecasting the future of particular data. A bivariate VAR model of lag 1 consists of 

two target variables Y1 and Y2, in order to predict Y1 at time t the methodology of VAR works as using the 

past lags of Y1 and Y2 and similarly to predict Y2 at time t. One main criteria to perform forecasting 

techniques using VAR is that the model should be stationary in nature. The error terms in a time series 

model play a very vital role in order to obtain accurate forecast values but in most of the scenarios the 

error terms are considered to follow normal distribution or if it is a multivariate case(VAR) all the error 

terms follow one particular distribution with the help of copula there are possibilities of overcoming this 

situation wherein a copula helps in combining non-identical distributions together. Thus, in a VAR model 

there might exists more than one target variables that is a function of past lags of itself and other variables 

along with the error terms that might have non-identical distribution, a copula for a VAR model is useful 

and non-ambiguous for furthur analysis and forecast. 

The modelling of time series using a vector autoregressive model with the help of copulas is considered 

to be very limited. Sklar (1973) justifies the importance of modelling a multivariate random variable 

through a copula. Copulas help in modelling the dependence structure and the marginal behaviour of each 

non-identical distribution that is coupled together. I‘ene and Jan (1989) deal with the estimation of the 

density of a copula function in building a bivariate distribution function with respect to the product of its 

marginal distribution functions. Thus, using a copula, there is a high probability of constructing a wide 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240320508 Volume 6, Issue 3, May-June 2024 2 

 

variety of copula-based time series models, but in the literature, most of the models derived using copulas 

are based on either normal, exponential, and so on. Scaillet and Fermanian (2002) presented a non-

parametric method for estimating copulas over time. As there are many copulas considered in the literature, 

Ferhan and Hulya (2020) have proved that, among all the families of copulas, the Farlie-Gumbel-

Morgenstern (FGM) copula provides optimum results and is non-ambiguous due to its simple approach to 

algebraic techniques. Helen, Marie-Pier, Etienne, and Khouzeima (2013) have illustrated the possibilities 

of constructing a multivariate distribution using an FGM copula. There are certain assumptions that errors 

have to follow a normal distribution to construct a multivariate distribution, but Nimitha and Balakrishna 

(2019) have discussed the possibilities of constructing a bivariate distribution using errors that do not 

follow normal distribution. LK. Hotta, E. C. Lucas, and H. P. Palaro (2008) propose a method for 

estimating a VAR model using a copula and extreme value under the assumption that the model follows 

normal distribution Markku Lanne and Helmut Lu¨tkepohl (2012) argue that considering a vector 

autoregressive model with normal residuals appears to be limiting in a practical approach and that a VAR 

model can be built with non-normal residuals. Gediminas et.al 

(2012) have suggested a method of analysing the stationarity regions for a vector autoregressive model. 

Joe and Xu (2016) proposed a method for estimating the parameters separately by maximising the marginal 

likelihoods and then estimating the dependence parameter from the joint likelihood function.Christian et.al 

(2013) suggest the easier methodology of using the Kolmogorov-Smirnov test to test the goodness of fit 

of the copula. 

To the best of our knowledge, the literature has not yet studied the construction of a bivariate vector 

autoregressive model with errors following a logistic distribution using the FGM copula. Hence, this 

article takes advantage of formulating a forecasting structure using these methods. 

The article is organised as follows:In Section 2, we introduce the VAR model for lag 1 with errors 

generated using the FGM copula with marginals following logistic distribution. In Section 3, we discuss 

the inference procedure of the model. In Section 4, we discuss the simulation study and the results. Section 

5 illustrates the application of the model using a real data set. Section 6 summarises the conclusions. 

 

2. Model and properties 

Here, we focus on vector autoregressive model with copula errors. The explicit bivariate vector 

autoregressive model is given as 

Y1t = β11Y1t−1+β
12Y2t−1 + ε1t (1) 

Y2t = β21Y1t−1 + β22Y2t−1 + ε2t (2) 

where the above equations are vector autoregressive model with lag one. Now we assume that in this bi 

variate case the random variables ε1t and ε1t specified in Equation (1) and (2) follow identical marginals 

specified as standard logistic distribution at µ = 0 and s = 1 defined as: 

(3) 

(4) 

Thus, a bivariate distribution or a density function can be constructed using a dependence structure,C : 

[0,1]x[1,0] ⇒ [0,1] called as copula with the general structure specified as : 

H(X1,X2) (x1,x2) = C (FX1 (x1),FX2 (x2)) 

Let us consider the Farlie-Gumbel-Morgenstern( FGM) copula inorder to construct the density function. 
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C(u,v) = uv + θuv(1 − u)(1 − v),−1 < θ < 1 (5) 

The corresponding conditional copula densities are given by: 

 

 
Note that the aforementioned copula is a member of one parameter families of Archimedean copula which 

is useful for modelling positive-dependent data Remark 1: The generator of the FGM copula given in 

Equation(4) is 

ϕ(t) = −logt 

The generator is useful for finding the cumulative density function and useful for checking the goodness 

of fit. From the Sklar theorem, the joint density function of ε1t and ε2t using the marginals of

 

0 and the FGM copula defined in Equation(4) can be defined 

as: 

)) (6) 

It can be shown that the FGM copula has uniform marginals given by 

 
The properties of the joint density function are verified as 

 
The cumulative density function of the FGM copula T∗ = C(u,v) is given as 

 
where ϕ(t) is the generator of the defined copula and the Kc(t) value helps in analysing if the proposed 

copula is a good fit for the data by plotting the cumulative distribution, Kc(w) 

For the given joint distribution function, a bivariate probability density function is obtained by 

differentiating the density function with respect to the variables ε1t and ε2t 

 

where  can be furthur decomposed to 

 
Thus, the bivariate density function constructed using logistic marginals is of the form, 

(7) 

For a sample of T observations the conditional log-likelihood function is given as: 

)] (8) 

where Θ is the set of all parameters in the model. 

One of the best way to find the measure of dependence to the linear correlation coefficient is Kendall’s 

Tau measure of dependence and it is given as 
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Remark 2 : For the given copula function , the population version of Kendall’s tau is given by Cˆθ(u,v) = 

uv + θuv(1 − u)(1 − v),−1 < θ < 1 

 
Remark 3 : For the given copula function , the population version of Spearman’s correlation is given by 

Cˆθ(u,v) = 

uv + θuv(1 − u)(1 − v),−1 < θ < 1 

 
3. Estimation of copula 

This section deals with estimation of a copula-based vector autoregressive model using the method of 

inference functions for margins(IFM). 

3.1. Inference functions for margins(IFM). 

This approach consists of obtaining the maximum likelihood estimates of model parameters based on 

marginal likelihood function and maximum likelihood estimate of dependency parameter based on the 

whole likelihood function. The conditional log-likelihood functions for the univariate marginals are given 

as: 

) (9) 

) (10) 

where Θ1 =(β11,β12) and Θ2 =(β21,β22).The corresponding log-likelihood function with respect to the joint 

distri- 

bution is: 

XT 

L(θ,β11,β12,β21,β22)= log h(εit;,β11,β12,β21,β22) t=1 

XT 

= log[cθ (F (ε1t),F (ε2t).f (ε1t)f (ε2t)] 

t=1 

The procedure of IFM works as follows: first we obtain the estimates of Θ1 and Θ2 by maximising the 

condition log-likelihood functions given the above equations. If βˆ
11,β

ˆ
12,β

ˆ
21,β

ˆ
22 are the estimates obtained 

from the first step we obtain the estimate of θ by maximising, 

 
with respect to θ Now we apply the procedure to the models (1) and (2). The log-likelihood function based 

on the logistic errors ε1t is given by: The log-likelihood equations are obtained as: 
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On solving the likelihood equations numerically, we will get the estimates of β11,β12,β21,β22 and we call 

them as βˆ
11,β

ˆ
12,β

ˆ
21,β

ˆ
22 We do not have analytically closed form expressions for the estimators.The MLE’s 

of the parameters β11,β12,β21,β22 are obtained as: Once the marginal parameters are obtained, the function 

L(θ,βˆ
11,β

ˆ
12,β

ˆ
21,β

ˆ
22) is maximized over θ to get θˆ On differentiating the log-likelihood function over the 

maximized set of parameters with respect to θ implies: where 

ε1t = Y1t − β11Y1t−1−β12Y2t−1 

ε2t = Y2t − β21Y1t−1 − β22Y2t−1 

 
(a) θ =-0.3 

 
(b) θ =-0.5 
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(c) θ =0.5 

 
(d) θ =0.7 

Figure 1: Bivariate density plots and contours with Logistic marginals 

 

4. Simulation 

We carried out a simulation study to evaluate the efficiency of the estimates obtained by IFM method. For 

the simulation study, we obtain the bivariate data (ε1t,ε2t) using the available packages in R for generating 

data based on FGM copula for a specified choice of dependent parameter, θ. Then for different model 

parameter values, we simulated the bivariate data (Y1t,Y2t) using the equations (1) and (2) using the IFM 

method mentioned in section 3.1. For each specif ed value of the parameter, we repeated the experiment 

50 times.Alternatively, we calculated the dependency parameter θ using the population version of 

Kendall’s tau measure given in Remark 1, . 
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The estimates of IFM along with their root mean squared error are reported in Tables 1-2. 

Table 1. Estimates and MSE of the model parameters based on IFM for θ = 0.5 

n β11 β12 β21 β22 βˆ11 βˆ12 βˆ21 βˆ22 

100 0.4 0.2 0.2 0.4 0.436 

(0.001) 

0.02 

(0.032) 

0.165 

(0.001) 

0.331 

(0.005) 

 0.6 0.3 0.3 0.6 0.592 

(0.01) 

0.188 

(0.013) 

0.297 

(0.02) 

0.572 

(0.001) 

 0.5 0.4 0.4 0.5 0.487 

(0.03) 

0.3 (0.01) 0.392 

(0.02) 

0.482 

(0.01) 

 0.2 0.1 0.1 0.2 0.253 

(0.003) 

0.081 

(0.033) 

0.059 

(0.002) 

0.134 

(0.004) 

 0.3 0.1 0.1 0.3 0.351 

(0.003) 

0.088 

(0.035) 

0.061 

(0.001) 

0.221 

(0.006) 

250 0.4 0.2 0.2 0.4 0.473 

(0.005) 

0.204 

(0.02) 

0.166 

(0.001) 

0.474 

(0.005) 

 0.6 0.3 0.3 0.6 0.629 

(0.001) 

0.292 

(0.001) 

0.323 

(0.001) 

0.636 

(0.001) 

 0.5 0.4 0.4 0.5 0.529 

(0.001) 

0.391 

(0.001) 

0.426 

(0.001) 

0.531 

(0.001) 

 0.2 0.1 0.1 0.2 0.291 

(0.008) 

0.113 

(0.002) 

0.039 

(0.004) 

0.271 

(0.005) 

500 0.4 0.2 0.2 0.4 0.353 

(0.002) 

0.202 

(0.002) 

0.243 

(0.002) 

0.435 

(0.001) 

 0.6 0.3 0.3 0.6 0.583 

(0.005) 

0.31 

(0.004) 

0.352 

(0.003) 

0.612 

(0.001) 

 0.5 0.4 0.4 0.5 0.486 

(0.003) 

0.406 

(0.003) 

0.453 

(0.003) 

0.51 

(0.003) 

 0.2 0.1 0.1 0.2 0.155 

(0.002) 

0.091 

(0.002) 

0.113 

(0.002) 

0.217 

(0.002) 

 0.3 0.1 0.1 0.3 0.252 

(0.002) 

0.098 

(0.001) 

0.12 

(0.001) 

0.327 

(0.001) 

1000 0.4 0.2 0.2 0.4 0.374 

(0.001) 

0.33 

(0.017) 

0.059 

(0.02) 

0.486 

(0.007) 

 0.6 0.3 0.3 0.6 0.583 

(0.003) 

0.35 

(0.002) 

0.241 

(0.004) 

0.651 

(0.003) 
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 0.5 0.4 0.4 0.5 0.482 

(0.002) 

0.453 

(0.003) 

0.341 

(0.004) 

0.552 

(0.003) 

 0.2 0.1 0.1 0.2 0.155 

(0.002) 

0.254 

(0.024) 

0.081 

(0.033) 

0.285 

(0.007) 

 0.3 0.1 0.1 0.3 0.26 

(0.002) 

0.243 

(0.02) 

0.072 

(0.03) 

0.384 

(0.007) 

 

Table 2. . Average Values and MSE of Dependency Parameter Estimates based on IFM (θˆ
IFM) 

and Kendall’s 

tau Measure (θˆ
τ) for θ = 0.5 

n β11 β12 β21 β22 θˆIFM θˆτ 

100 0.4 0.2 0.2 0.4 0.632 

(0.005) 

0.64 

(0.005) 

 0.6 0.3 0.3 0.6 0.501 

(0.001) 

0.511 

(0.002) 

 0.5 0.4 0.4 0.5 0.632 

(0.005) 

0.60 

(0.002) 

 0.2 0.1 0.1 0.2 0.632 

(0.005) 

0.60 

(0.025) 

 0.3 0.1 0.1 0.3 0.632 

(0.005) 

0.60 

(0.002) 

250 0.4 0.2 0.2 0.4 0.771 

(0.005) 

0.71 

(0.002) 

 0.6 0.3 0.3 0.6 0.514 

(0.004) 

0.54 

(0.001) 

 0.5 0.4 0.4 0.5 0.771 

(0.005) 

0.671 

(0.002) 

 0.2 0.1 0.1 0.2 0.771 

(0.005) 

0.671 

(0.002) 

500 0.4 0.2 0.2 0.4 0.697 

(0.053) 

0.655 

(0.001) 

 0.6 0.3 0.3 0.6 0.262 

(0.057) 

0.158 

(0.003) 

 0.5 0.4 0.4 0.5 0.697 

(0.005) 

0.655 

(0.003) 
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 0.2 0.1 0.1 0.2 0.697 

(0.005) 

0.655 

(0.003) 

 0.3 0.1 0.1 0.3 0.697 

(0.005) 

0.655 

(0.003) 

1000 0.4 0.2 0.2 0.4 0.681 

(0.057) 

0.651 

(0.002) 

 0.6 0.3 0.3 0.6 0.501 

(0.005) 

0.511 

(0.002) 

 0.5 0.4 0.4 0.5 0.681 

(0.005) 

0.621 

(0.002) 

 0.2 0.1 0.1 0.2 0.681 

(0.057) 

0.621 

(0.003) 

 0.3 0.1 0.1 0.3 0.681 

(0.005) 

0.621 

(0.002) 

5. Data Analysis 

In order to illustrate the developed model we consider some real life data sets. The data set consists of 52 

observations for the import and export of non-oil products for the period 1970-2022. All the variables have 

been transformed into their natural logarithm. The data set is downloaded from the website of Reserve 

Bank of India. 

The plot obtained from the log-transformed data indicates that the time series is non-stationary. Using the 

Augmented-Dickey Fuller test we also confirm that the time series is non stationary as the p-value for both 

imports and exports is 0.4811 and 0.1535 respectively, indicating that both the variables are non-stationary 

in nature. 

 
(a): Time series plot of import of non-oil products (b): Time series plot of export of non-oil products 

Figure 2: Time series plot 

 

By performing a second order differencing we make the data stationary and by again performing The 

Augmented Dickey Fuller test the p-value is obtained as 0.01 for both the data. We perform the IFM 

method to obtain the parameter estimates of the VAR parameters and the copula parameters which is 

obtained as θˆ = 0.3869938 ,βˆ
11 = 0.690695,βˆ

12 = 0.2826458,βˆ
21 = 0.2972279, βˆ

22 = 0.1423185. Similarly 

the dependency parameter is also 
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(a): Residual histogram of import of non-oil products (b): Residual histogram of export of non-oil 

products 

Figure 3: Residual plots 

 
(a): Residual PP-plot of import of non-oil products (b): Residual PP-plot of export of non-oil 

products 

Figure 4: Probability-Probability plot 

 

Now the residuals obtained from the vector autoregressive model as mentioned in (1) and (2) is given as: 

ε1t = Y1t − β11Y1t−1 − β12Y2t−1 

ε2t = Y2t − β21Y1t−1 − β22Y2t−1 

Using all the above mentioned estimates, we tested whether the residuals follow logistic distribution 

using Kolmogrov-Smirnov test. The marginals of the data can be fitted by logistic [0.690695,0.2826458] 

and [0.2972279,0.1423185] with Kolmogrov-Smirnov test statistics values are 0.1635 and 0.218 

respectively. 

estimatedfromKendall’staumeasureofdependenceusingtheformula ˆ θ τ = 9 τ 
2 =0 . 08599863. 
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Figure 5: Plots of Kc(t) and Kc(w) 

The cdf Kc(t) with θ = 0.3869938 and the empirical distribution function Kc(w) from the data are plotted 

in 

Figure 5. In order to test whether the FGM copula is suitable for the data, we test the hypothesis H0 : C(u,v) 

= C(u,v,θˆ) using the Kolmogrov-Smirnov test statistic given by Franq et.al(2000), where Dn is the 

Kolmogrov statistic. For the 5 percent level of significance and sample size equal to 52, the limiting 

distribution is given as 1.358. The obtained Dn valuue, using Mathematica, is 0.714273 and as 0.714273 

< 1.358; thus, we cannot reject the null hypothesis, and hence the given copula can be fitted by 

C(u,v,0.3869938). Hence, we can conclude that the defined distribution is better and suitable for the data. 

 

6. Conclusion 

In this article, we introduced a bivaraiate vector autoregressive model of lag 1 with errors following 

logistic distribution that is generated using the FGM copula. We have considered FGM copula to generate 

a bivariate distribution considering logistic marginals. Using the method of IFM we have estimated the 

model parameters and from the simulation study we have concluded that the estimates are efficient as there 

is a decrease in mean square errors. The applicability of the proposed model using the dependence structure 

is analyzed and is illustrated by using some financial variables like import and export of non-oil products. 
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