

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240320886 Volume 6, Issue 3, May-June 2024 1

Database Version Control: AWS and RDS

Integration with Python

Abhay Chopde1, Mufaddal Habibi2

1,2Vishwakarma Institute of Technology, India

Abstract

This paper presents an automated approach for managing database versioning and upgrades through the

integration of Amazon Web Services Relational Database Service (AWS RDS) metadata into MongoDB

using Python. By leveraging this integration, the system streamlines the process of version control and

upgrade planning, improving efficiency and reliability compared to manual methods. Through

experiments, we demonstrate the effectiveness and scalability of our approach, offering a practical solution

to enhance database management workflows.

Keywords: Automated database management, Amazon Web Services (AWS), Relational Database

Service (RDS), MongoDB

1. INTRODUCTION

In the landscape of modern data-driven applications, effective management of databases is pivotal for

ensuring robust performance, scalability, and reliability. Amidst the array of available solutions, Amazon

Web Services (AWS) has emerged as a cornerstone in cloud computing, offering a comprehensive suite

of services tailored to meet the evolving needs of businesses and developers worldwide. Central to AWS's

offerings is the Amazon Relational Database Service (RDS), a managed database service that provides a

scalable and cost-effective solution for deploying, managing, and scaling relational databases in the cloud.

Concurrently, the rise of NoSQL databases has introduced a paradigm shift in data management, offering

flexible alternatives to traditional relational databases. MongoDB, in particular, has gained prominence as

a leading NoSQL database, revered for its document-oriented data model, horizontal scalability, and

developer-friendly features. MongoDB's ability to handle diverse data types and evolving schemas makes

it a preferred choice for modern applications requiring agility and versatility in data storage and retrieval.

In this paper, we address the critical challenge of database versioning and upgrade management, a task

that is often labor-intensive, error-prone, and resource-intensive. We present an innovative approach that

leverages the strengths of AWS RDS and MongoDB, combined with the versatility of Python scripting,

to automate and streamline the process of managing database versions and upgrades. By integrating AWS

RDS metadata into MongoDB, our solution facilitates seamless tracking of database versions and provides

actionable insights for upgrade planning, thereby enhancing operational efficiency, reducing manual

overhead, and mitigating risks associated with version inconsistencies.

This paper contributes to the burgeoning field of cloud-based database management by offering a novel

and practical solution to a pervasive challenge faced by organizations across industries. Through a series

of experiments and real-world use cases, we demonstrate the efficacy and scalability of our approach,

underscoring its potential to revolutionize database management practices and empower organizations to

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240320886 Volume 6, Issue 3, May-June 2024 2

adapt swiftly to evolving business requirements.

2. LITERATURE REVIEW

In the expansive landscape of cloud computing, Amazon Web Services (AWS) has cemented its position

as a premier platform for hosting a diverse array of applications, Python-based solutions among them. The

seamless integration of Python applications with AWS necessitates meticulous adherence to best practices,

ensuring not only optimal performance but also robust security and reliability. Utilizing static analysis

techniques provides a proactive methodology for identifying and enforcing these best practices, thereby

enhancing code quality and mitigating potential security vulnerabilities [1]. Moreover, delving beyond

mere code deployment, the intricacies of data processing within AWS environments underscore the

paramount importance of effectively utilizing cloud resources. In-depth guides elucidating machine

learning processes, deployment strategies, and model productionization highlight the pivotal role of AWS

infrastructure in facilitating efficient machine learning workflows [2]. Furthermore, exhaustive

explorations of various RDS databases expand the understanding of database options within AWS

ecosystems, empowering stakeholders to make informed decisions regarding database selection and

implementation strategies [3], [4].

Conducting performance analyses related to database migrations within AWS ecosystems provides

invaluable insights into optimizing database infrastructure to meet evolving demands. Similarly, studies

focusing on storage technologies offer guidance in selecting suitable solutions for real-time big data

applications, thereby enhancing the efficiency and effectiveness of data processing within AWS

environments [5], [6]. Furthermore, research efforts directed towards document retrieval techniques and

comparative evaluations of distributed database systems contribute significantly to the development and

optimization of applications deployed on AWS. These insights not only enhance the functionality of

document-centric applications but also inform decisions regarding database technology selection for

cloud-based deployments [7], [8].

Moreover, comprehensive overviews of AWS infrastructure and DevOps practices provide organizations

with a deeper understanding of cloud technologies, enabling them to leverage AWS services effectively

for infrastructure and development operations [9]. Studies focusing on database migrations to Amazon

RDS offer practical guidance and best practices, facilitating seamless transitions and ensuring optimal

resource utilization for database management and scalability within AWS environments [10].

3. METHODOLOGY

An insight into the systematic approach adopted to develop and implement the proposed system. We delve

into the methodology employed to conduct a comprehensive literature review, focusing on the integration

of Amazon Web Services (AWS) functionalities with Python and the implementation of best practices in

cloud computing. We outline our strategy for identifying, selecting, and analyzing relevant studies,

emphasizing the criteria used for inclusion and the data extraction process. Additionally, we discuss the

methods employed to synthesize findings and assess the quality of the selected studies. By elucidating our

research process, we aim to offer transparency and clarity regarding the development and validation of the

system, thereby facilitating a deeper understanding of its functionalities and implications.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240320886 Volume 6, Issue 3, May-June 2024 3

Fig.1 Block Diagram of system architecture

Fig.1. shows the sequential steps of the system's operation. It commences with the initiation of the process,

followed by the establishment of a connection with MongoDB for data management. Subsequently, the

system retrieves information pertaining to available versions of Amazon RDS (Relational Database

Service). Upon obtaining this data, it proceeds to retrieve detailed information about engine versions

associated with each RDS version. Finally, the process concludes, marking the completion of the system's

workflow. This visual representation offers insight into the systematic progression of tasks involved in

establishing connections with MongoDB and acquiring information regarding RDS engine versions.

3.1. Data Retrieval and Processing

The methodology begins with establishing connections to both MongoDB and AWS to facilitate seamless

data transmission. Leveraging the boto3 library, an RDS client is instantiated to retrieve real-time engine

version data from Amazon RDS. This step ensures that the code stays synchronized with the latest updates

in the RDS ecosystem.

3.2. Data Insertion and Storage

Upon retrieving engine version data, the code systematically iterates through a predefined array of

supported database engines. Special attention is given to data consistency and completeness during this

process, with provisions made to handle missing fields and ensure data integrity. The extracted data,

including valid upgrade targets for each engine version, is then stored in MongoDB, enhancing the

comprehensiveness of the database.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240320886 Volume 6, Issue 3, May-June 2024 4

Algorithm 1-workflow of the algorithm

1. Import Libraries

2. Connection with mongodb server.

3. Connection with AWS server.

4. Loop through the logic.

5. Retrieve engine versions.

6. Retrieve specific data for different engine versions

7. Store the data in mongodb servers.

3.3. Automation and Efficiency:

Throughout the process, the code adheres to predefined data structures and formatting conventions to

ensure uniformity and clarity in the stored information. By automating the update process, manual effort

is significantly reduced, enhancing overall efficiency in managing database version information. This

systematic approach not only facilitates efficient data management but also simplifies subsequent data

retrieval and analysis tasks.

3.4 Error Handling and Logging:

The methodology includes robust error handling mechanisms to address potential issues during data

retrieval, processing, and storage. Error logs are generated to capture any anomalies or exceptions

encountered during the execution of the code. This proactive approach enables timely identification and

resolution of errors, ensuring the reliability and accuracy of the database version control system.

Fig.2. Block Diagram-2

The implemented methodology shown in fig.2. ensures the efficient management of Amazon RDS engine

versions within MongoDB, simplifying database version control in cloud environments. By automating

processes and addressing potential errors, the system enhances reliability and accuracy, providing a robust

foundation for database management.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240320886 Volume 6, Issue 3, May-June 2024 5

4. RESULT AND DISCUSSION

The implementation of the methodology yielded promising outcomes in terms of efficiently managing

Amazon RDS engine versions within MongoDB. By automating the retrieval and storage processes, the

system significantly reduced manual effort and potential errors, thereby enhancing overall efficiency in

database version control. Furthermore, the systematic approach to data handling ensured the completeness

and accuracy of the stored information, providing a reliable foundation for database management tasks.

In addition, the robust error handling mechanisms implemented in the system contributed to its reliability

by promptly identifying and addressing any anomalies encountered during execution. This proactive

approach to error management facilitated timely resolution of issues, minimizing disruptions to the

database update process.

Fig.3. Output

As shown in fig.3. the proposed system successfully retrieved and stored Amazon RDS engine version

data within the MongoDB database, as per the methodology outlined. The database now contains

comprehensive information, including engine types, versions, parameter group families, and descriptions,

essential for effective database versioning.

By leveraging MongoDB, the system ensures scalability and flexibility in handling large datasets

efficiently. The structured organization of data facilitates easy access and retrieval, enabling streamlined

database management operations.

Furthermore, the implemented error handling mechanisms effectively identify and address any anomalies

encountered during data retrieval and storage, ensuring the accuracy and reliability of the stored

information.

5. CONCLUSION

In conclusion, the system developed for managing Amazon RDS engine versions within MongoDB has

showcased notable efficiency and reliability. By systematically retrieving and storing engine version data,

the system ensures comprehensive coverage of relevant information crucial for database versioning tasks.

The utilization of MongoDB as the storage solution offers scalability and flexibility, enabling seamless

handling of large datasets. The structured organization of data within MongoDB facilitates easy access

and retrieval, enhancing overall system usability.

Additionally, the robust error handling mechanisms incorporated into the system bolster its reliability by

promptly addressing any anomalies encountered during data operations. This proactive approach

contributes to the accuracy and integrity of the stored information, ensuring the system's effectiveness in

real-world scenarios. The developed system offers a viable solution for efficient management of Amazon

RDS engine versions, establishing a robust foundation for streamlined database version control in cloud

environments. Further enhancements and optimizations hold the potential to refine the system's

capabilities, addressing evolving requirements in cloud-based database management.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240320886 Volume 6, Issue 3, May-June 2024 6

ACKNOWLEDGEMENT

We sincerely thank Professor (Dr) Abhay Chopde for their crucial advice. Thank you to Vishwakarma

Institute of Technology for providing such a positive atmosphere. A special thanks to the researchers'

efforts and our teammates collaborative spirit.

REFRENCES

1. Mukherjee, Rajdeep, Omer Tripp, Ben Liblit, and Michael Wilson. "Static analysis for AWS best

practices in Python code." arXiv preprint arXiv:2205.04432 (2022).

2. Singh, Himanshu, and Himanshu Singh. "Data Processing in AWS." Practical Machine Learning with

AWS: Process, Build, Deploy, and Productionize Your Models Using AWS (2021): 89-117.

3. Penberthy, William, and Steve Roberts. "Other RDS Databases." In Pro. NET on Amazon Web

Services: Guidance and Best Practices for Building and Deployment, pp. 331-360. Berkeley, CA:

Apress, 2022.

4. Soni, Ravi Kant, Namrata Soni, Ravi Kant Soni, and Namrata Soni. "Deploy MySQL as a database in

AWS with RDS." Spring Boot with React and AWS: Learn to Deploy a Full Stack Spring Boot React

Application to AWS (2021): 77-102.

5. Butelli, Carlo. "PERFORMANCE ANALYSIS OF A DATABASE LAYER’S MIGRATION FROM

RDBMS TO A NOSQL SOLUTION IN AMAZON AWS." PhD diss., Vrije Universiteit Amsterdam,

1984.

6. Jamal, Alaa, Rita Fleiner, and Eszter Kail. "Performance Comparison between S3, HDFS and RDS

storage technologies for real-time big-data applications." In 2021 IEEE 15th International Symposium

on Applied Computational Intelligence and Informatics (SACI), pp. 000491-000496. IEEE, 2021.

7. Kim, Daniel, Fadi Durah, Xavier Pleimling, Brandon Le, and Matthew Hwang. "AWS Document

Retrieval." (2020).

8. Boscain, Simone. "AWS Cloud: Infrastructure, DevOps techniques, State of Art." PhD diss.,

Politecnico di Torino, 2023.

9. Ljungdahl, Viktor. "Performance comparison of distributed MySQL andMongoDB in a cloud

environment." (2023).

10. Lakshmi, Narasimhan G. "Database Migration on Premises to AWS RDS." EAI Endorsed

Transactions on Cloud Systems 3, no. 11 (2018).

https://www.ijfmr.com/

