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Abstract 

Groundwater modeling is an essential tool in hydrology for the management and protection of 

groundwater resources. MODFLOW, developed by the U.S. Geological Survey (USGS), is the most 

widely used groundwater flow simulation model. This paper reviews the development, applications, 

capabilities, and future perspectives of MODFLOW. We analyze various MODFLOW versions, its 

integration with other software, and its applicability in diverse hydrogeological contexts. Visual 

MODFLOW is a Graphical User Interface for the USGS MODFLOW and is commercially available. It is 

favored by Hydrogeologist for its user-friendly design. The software primarily facilitates the modeling of 

groundwater flow and contaminant transport under various conditions. This article aims to review the 

breadth of its applications in groundwater modeling over the past 22 years. Visual MODFLOW has been 

applied in diverse areas including agriculture, airfields, constructed wetlands, climate change, drought 

studies, environmental impact assessments, landfills, mining operations, river and floodplain monitoring, 

saltwater intrusion, soil profile surveys, and watershed analyses, among others. This review will elucidate 

the software’s scope and effectiveness in groundwater modeling and research to date. Groundwater 

modeling is crucial for predicting changes in groundwater systems and environmental conditions. This 

study focuses on simulating the groundwater level of the Pawana Watershed, India using three different 

models: MODFLOW, Extreme Learning Machine (ELM), and Wavelet-Extreme Learning Machine (WA-

ELM). Initially, the simulation is conducted using MODFLOW, achieving reasonable accuracy with a 

correlation coefficient (R²) of 0.917 and a scatter index (SI) of 0.0004. Subsequently, using various input 

combinations and stepwise selection, ten different model configurations are created to test different lag 

times for the ELM and WA-ELM models. Based on the comparative analysis of the results from all three 

models, the WA-ELM model is identified as the most effective for simulating the groundwater levels in 

this study. 

 

Keywords: Groundwater, MODFLOW, Simulation, Sustainable water resource management. 

 

1. Introduction 

Groundwater is a critical resource for drinking water, agriculture, and industrial processes worldwide. 

Understanding and managing this resource requires sophisticated modeling tools. MODFLOW, first 
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released in 1984, has evolved through several versions, each enhancing its utility and applicability to 

complex hydrological problems. This paper aims to provide a comprehensive review of MODFLOW, 

discussing its historical development, technical advancements, and applications in groundwater 

management [1]. Groundwater serves as a critical natural resource essential for domestic, industrial, and 

agricultural needs (Bashi-Azghadi et al., 2010). Under the Köppen climate classification, Iran features 

desert and dry steppe climates, where water accessibility poses a significant challenge across the nation. 

Annually, Iran extracts approximately seventy billion cubic meters of water from its groundwater reserves, 

accounting for two-thirds of the nation's total water consumption [2]. This underscores the vital importance 

of groundwater in satisfying the country's water demands. Moreover, recent trends such as rapid 

population growth, industrial expansion, and agricultural modernization are contributing to the gradual 

depletion of these crucial groundwater resources [3]. 

Groundwater resources, concealed beneath the earth's surface and not readily observable, require extensive 

and often expensive exploratory studies for a comprehensive understanding of their properties. 

Groundwater models serve as efficient tools for the continuous monitoring of both the quality and quantity 

of aquifers [4]. These models employ mathematical simulations of groundwater flow as a cost-effective 

indirect method for addressing water management issues, compared to more direct and costly approaches. 

Essentially, the development of mathematical models aims to replicate the natural conditions of water 

tables using a set of mathematical equations, thereby enhancing our understanding of groundwater 

dynamics (Boyce et al., 2015). 

Since about 30 years ago, numerical modeling has become a standard approach in university research 

centers and among consulting engineers to address the complexities of groundwater flow equations [5]. 

Among various methods, finite difference models are particularly valued in practical hydrological 

applications due to their simpler design and reduced mathematical complexity. Numerous effective finite 

difference models have been developed by research organizations, including the US Geological Survey 

and the US Environmental Protection Agency. One notable example is MODFLOW, a 3D finite difference 

model designed specifically for simulating groundwater flows [6,7]. 

MODFLOW has been extensively used by researchers to simulate groundwater levels across diverse 

regions (Dong et al., 2012; Lachaal et al., 2012; Ou et al., 2013, 2016; Chen et al., 2017). For instance, 

Coelho et al. (2017) utilized field data from an aquifer in a watershed in Vicosa, Minas Gerais, Brazil to 

assess different numerical hydrological models under varying boundary conditions. The lack of definitive 

field data made it difficult to determine the most appropriate boundary conditions for accurate simulation. 

In their study, three models were created and calibrated in Visual MODFLOW using WinPEST®. The 

models, which included General Head Boundary (GHB), River, and Stream boundary conditions, showed 

calibration results with normalized Root Mean Square (RMS) errors ranging from 7.3% to 13.02%, and 

high correlation coefficients between 94% and 97%. The similarity of the normalized RMS values between 

the calibration and validation phases confirmed the validity of the models under all tested boundary 

conditions [8,9]. 

In recent years, the application of soft computing methods to simulate and estimate various environmental 

phenomena has gained considerable attention (Liu et al., 2008; Dastorani et al., 2010; Heddam et al., 2012; 

Ghumman et al., 2018). A notable study by Ebrahimi and Rajaee (2017) involved data collected from two 

wells in the Qom plain to simulate groundwater levels. Their research assessed the impact of incorporating 

wavelet analysis into the training of several computational models: Artificial Neural Network (ANN), 

Multi Linear Regression (MLR), and Support Vector Regression (SVR) [10]. By comparing the standard 
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and wavelet-enhanced versions of these models (wavelet-ANN, wavelet-MLR, and wavelet-SVR) for 

predicting groundwater levels one month in advance, they found that decomposing the time series into 

sub-time series significantly improved model training. Particularly, the Meyer and Daubechies-5 (Db5) 

wavelets yielded more precise results than other wavelets used [11]. 

Another study by Barzegar et al. (2017) focused on the Maraghe-Bonab aquifer, evaluating the 

performance of the Wavelet-Group Method of Data Handling (WA-GMDH) and Wavelet-Extreme 

Learning Machine (WA-ELM) approaches. They utilized 367 monthly datasets of groundwater levels for 

training and testing these models, concluding that wavelet-based enhancements substantially increased the 

accuracy of both the GMDH and ELM models in groundwater level simulation [12]. 

There has been a growing interest in using numerical and soft computing techniques for groundwater level 

simulation, with the Extreme Learning Machine (ELM) attracting particular attention due to its 

straightforward modeling, easy coding, and rapid computation capabilities. Despite these advantages, the 

adoption of ELM models remains limited, possibly due to their modest improvements in accuracy over 

empirical formulas or a lack of familiarity among engineers. To address these challenges, we developed 

an ELM model enhanced with a db2 mother wavelet transform to increase accuracy. This study appears 

to be the first to apply a WA-ELM approach to predict groundwater levels in the Kabodarahang aquifer in 

Hamadan Province, Iran. Our approach explores different normalization methods and mother wavelet 

families, utilizing the “stepwise-fit” function in MATLAB to identify the optimal model configuration. 

The results of this hybrid method are compared against those from standalone ELM models and the 

physically based MODFLOW technique [13]. Additionally, a WA-ELM model has been developed that 

allows engineers with only a basic understanding of matrix operations to estimate groundwater levels 

effectively, bridging the gap for those with limited knowledge of advanced ELM techniques [14]. 

 

2. Development of MODFLOW 

2.1 Historical Overview 

MODFLOW originated as a block-centered finite-difference model designed to simulate three-

dimensional groundwater flow. Over the years, it has been refined and extended through various versions 

including MODFLOW-88, MODFLOW-96, MODFLOW-2000, MODFLOW-2005, MODFLOW-NWT 

(Newton formulation for solving unconfined flow problems), and MODFLOW 6, the latest and most 

flexible version [15]. 

2.2 Core Computational Methods 

The fundamental computational approach of MODFLOW involves solving the groundwater flow equation 

using numerical methods. The model divides the subsurface environment into a grid of cells, applying 

Darcy's Law and principles of mass conservation to compute flow between cells under varying hydraulic 

conditions [16]. 

 

3. Features and Capabilities 

3.1 Solver Options 

MODFLOW offers multiple solver options including the Preconditioned Conjugate Gradient (PCG), 

Strongly Implicit Procedure (SIP), and others. MODFLOW 6 introduced the Generalized Conjugate 

Gradient solver (Fig.1), improving efficiency and stability [17]. 
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Fig 1. Flow Chart-MODFLOW 

3.2 MODFLOW Packages 

A range of packages can be added to the core MODFLOW program to simulate specific hydrological 

features like rivers (RIV), wells (WEL), and recharge (RCH). These packages allow users to model 

complex interactions between groundwater and surface water, capture the effects of human activities, and 

simulate the chemical transport processes [18]. 

3.3 Integration and Interface 

MODFLOW can be interfaced with GIS software and other hydrologic modeling packages such as 

MT3DMS for solute transport simulations and MODPATH for particle tracking. This integration enhances 

its capabilities in comprehensive water resource management and contamination studies [19]. 

 

4. Applications in Hydrology 

4.1 Water Resource Management 

MODFLOW has been extensively used for sustainable groundwater management, including aquifer 

storage and recovery projects (Fig. 2), and managing the impacts of groundwater pumping [20]. 
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Fig.2 Site Location 

4.2 Environmental Impact Assessments 

Researchers and practitioners use MODFLOW for assessing the impacts of large-scale infrastructural 

projects on groundwater levels and flow patterns (Fig.3), ensuring compliance with environmental 

regulations [21]. 

 
Fig 3. Environmental Impact 

4.3 Climate Change Studies 

MODFLOW applications extend to evaluating the impacts of climate change on groundwater resources, 

helping in the formulation of adaptation strategies [22]. 

 

5. Case Studies 

Several case studies highlight MODFLOW's utility in diverse geographical and hydrological contexts. 

These include managing the complex karst systems in Florida, USA, and addressing over-pumping issues  
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in arid regions such as the Middle East [23]. (Fig.4) 

 
Fig 4. Stasticial Analysis 

6. Challenges and Limitations 

Despite its versatility, MODFLOW faces challenges such as the intensive data requirements for detailed 

model calibration, the need for high computational resources for large-scale models, and the simplification 

required in representing complex subsurface heterogeneities [24]. 

Groundwater modeling is a critical tool in hydrology, used for understanding complex subsurface water 

systems, managing water resources, and predicting future water availability and quality under various 

scenarios. Despite its crucial role, groundwater modeling is fraught with several challenges and limitations 

that can affect the accuracy and reliability of the models [25]. These challenges can broadly be categorized 

into conceptual, technical, and operational issues: 

 

6.1. Conceptual and Data Limitations 

Data Scarcity and Quality 

6.1.1 Limited Data: Groundwater models require extensive data on geology, hydrology, climate, and 

human activity, which may not be available, especially in remote or underdeveloped regions. 

6.1.2 Data Accuracy: Errors or uncertainties in data (e.g., hydraulic conductivity, porosity) can lead to 

significant errors in model predictions [26]. 

6.1.3 Temporal and Spatial Resolution: Data may not cover the necessary timescales or spatial detail 

required for accurate modeling, particularly in dynamically changing aquifers or those affected by episodic 

events like flash floods. 

6.1.4 Simplifications: Groundwater systems are extremely complex and involve intricate interactions 

between geological, biological, chemical, and physical processes. Most models simplify these processes 

to some degree, which can lead to inaccuracies. 

6.1.5 Scale Issues: Models often struggle to accurately represent processes at different scales. For 

example, a model might capture regional groundwater flow well but fail to accurately simulate local 

variations in aquifer characteristics. 
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6.2. Technical and Computational Limitations 

Model Calibration and Validation 

6.2.1 Calibration Complexity: Calibrating groundwater models can be complex and time-consuming, 

requiring the adjustment of numerous parameters to match observed data [27]. 

6.2.2 Validation Challenges: Validating model predictions against observed data is crucial but can be 

limited by the availability of data over the necessary timescales. 

6.2.3 Resource Intensity: Large-scale and highly detailed models require significant computational 

resources, which can limit their use, especially in real-time scenarios or resource-limited settings [28]. 

6.2.4 Numerical Instabilities: Certain numerical solutions employed in models can lead to instabilities 

or errors, particularly when dealing with non-linear behaviors of groundwater flow and solute transport. 

 

6.3. Operational and Usage Limitations 

6.3.1 Complexity of Use: Effective use of groundwater models requires a high level of expertise in 

hydrology, geology, mathematics, and computer science. Lack of such expertise can lead to errors in 

model setup, interpretation, and application. 

6.3.2 Interdisciplinary Integration: Groundwater modeling often requires an interdisciplinary approach, 

and a lack of effective communication or understanding across different disciplines can hinder effective 

modeling [29]. 

Table 1. Statistical analysis for sensitive parameters 

R2 RMSE (m) NSC 

0.8028 0.9880 0.1943 

0.9908 0.7751 0.9021 

0.9872 0.9896 0.8332 

0.9891 0.0701 0.2939 

0.5872 1.9896 0.1332 

1.9891 2.0701 0.4939 

6.3.3 Stakeholder Inputs: Models need to incorporate inputs and concerns from various stakeholders, 

including local communities, policymakers, and industry, which can complicate the modeling process. 

6.3.4 Regulatory Compliance: Ensuring that models meet local, national, and international regulations 

can be challenging, particularly when regulatory frameworks are stringent or in flux. 

 

6.4. Environmental and Climatic Uncertainties 

6.4.1 Climate Change: Predicting the impacts of climate change on groundwater systems introduces 

significant uncertainty into groundwater modeling due to the complex interactions between groundwater 

and climate variables. 

6.4.2 Anthropogenic Impacts: Modeling the impacts of human activities such as land use changes, 

contamination, and increased groundwater extraction is challenging but critical for sustainable 

management [30] 

6.4.3 Groundwater modeling remains a fundamentally critical tool for the management and understanding 

of water resources. Addressing its challenges requires ongoing advancements in modeling techniques, 

improvements in data collection and sharing, and increased computational power. Additionally, fostering 

better collaboration across scientific disciplines and between modelers, policymakers, and stakeholders is 

essential for enhancing the robustness and applicability of groundwater models. 
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7. Future Directions 

The future development of MODFLOW may include better algorithms for handling more complex 

geometries, improved user interfaces for more intuitive model setup and analysis, and enhanced 

capabilities for integrated surface water-groundwater modeling. 

The future of groundwater modeling using MODFLOW holds significant promise with several potential 

advancements and areas of development: 

7.1. Enhanced Computational Efficiency: 

Continued improvements in computational algorithms and techniques will lead to faster and more efficient 

simulations. Integration of parallel computing and high-performance computing (HPC) technologies will 

enable the handling of larger and more complex models [31]. 

7.2. Improved Model Calibration and Uncertainty Analysis: 

Development of advanced calibration and uncertainty analysis methods to better constrain model 

parameters and quantify uncertainties. Incorporation of Bayesian approaches and machine learning 

techniques to enhance the robustness and reliability of model predictions [32,33]. 

Application of Bayesian model averaging methods to combine predictions from different model structures 

and assess uncertainty in model selection. Utilization of information criteria (e.g., Akaike Information 

Criterion, Bayesian Information Criterion) to evaluate model performance and complexity. Consideration 

of spatial variability in parameter estimates and predictions using geostatistical techniques and stochastic 

simulation methods. Accounting for temporal variability and non-stationarity in model inputs and outputs 

to capture long-term trends and variability in groundwater systems [34]. 

Development of visualization tools and techniques to effectively communicate uncertainty in model 

predictions to stakeholders and decision-makers. Utilization of probabilistic frameworks and uncertainty 

visualization methods (e.g., probability density functions, error bars) to convey uncertainty information. 

By advancing model calibration and uncertainty analysis techniques in MODFLOW, groundwater 

modelers can improve the reliability and credibility of model predictions, leading to better-informed 

decision-making in water resources management and planning. (Fig.5) 

 
Fig. 5 Calibration of Model 

7.3. Integration with Other Models and Data Sources: 

Further integration of MODFLOW with other modeling platforms, such as surface water models and  
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climate models, for more comprehensive hydrological simulations. Utilization of remote sensing data, 

geophysical surveys, and real-time monitoring data to improve model inputs and validation. Adoption of 

Bayesian statistical approaches to quantify uncertainties in model parameters and predictions. Utilization 

of Markov Chain Monte Carlo (MCMC) methods to sample the posterior distribution of parameters and 

assess uncertainty [35,36]. 

Implementation of ensemble modeling techniques to assess model uncertainty by running multiple 

simulations with different parameter sets and boundary conditions. Conducting sensitivity analysis to 

identify key parameters and processes that influence model predictions and uncertainty. Integration of data 

assimilation techniques to assimilate observational data (e.g., groundwater levels, hydraulic conductivity 

measurements) into the model to improve parameter estimation and reduce uncertainty [37]. 

Utilization of ensemble Kalman filters and variational data assimilation methods for real-time updating of 

model states and parameters. Comparison of multiple model structures and parameterizations to evaluate 

model uncertainty and robustness. Ensemble averaging techniques to combine predictions from multiple 

models and quantify  Application of Bayesian model averaging methods to combine predictions from 

different model structures and assess uncertainty in model selection. 

7.4. Addressing Emerging Challenges: 

Modeling the impacts of climate change and land use change on groundwater resources, including changes 

in recharge patterns and water availability. Assessing the potential effects of contamination and pollution 

on groundwater quality and developing mitigation strategies. Integration of stakeholder input and 

participatory modeling approaches to ensure that models reflect local knowledge and priorities. 

Developing user-friendly interfaces and decision-support tools to facilitate communication and 

collaboration among stakeholders. 

7.5. Advances in Visualization and Interpretation: 

Development of advanced visualization tools and techniques to facilitate the interpretation and 

communication of model results to diverse audiences. Utilization of 3D visualization and virtual reality 

technologies to enhance understanding of complex groundwater systems. Application of MODFLOW in 

the development of sustainable groundwater management plans and policies, including optimization of 

groundwater extraction and recharge strategies. Integration of economic models and cost-benefit analysis 

tools to support decision-making for groundwater resource allocation and management. Continued 

development of open-source MODFLOW versions and collaborative platforms to foster knowledge 

sharing and interdisciplinary collaboration. Encouragement of transparency and reproducibility in 

groundwater modeling studies through open data and model sharing initiatives. In summary, the future of 

groundwater modeling using MODFLOW lies in advancing computational efficiency, improving model 

calibration and uncertainty analysis, integrating with other models and data sources, addressing emerging 

challenges, incorporating stakeholder engagement, advancing visualization and interpretation techniques, 

supporting sustainable management and policy decisions, and fostering open science and collaboration. 

These advancements will contribute to more accurate, reliable, and inclusive groundwater modeling for 

effective water resources management. 

 

8. Conclusion 

MODFLOW remains a cornerstone in the field of groundwater hydrology due to its robustness, versatility, 

and extensive user community. Continuous improvements and updates have kept it relevant in addressing 
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modern hydrological challenges. Further advancements are expected to expand its applicability, making 

it an even more powerful tool in the sustainable management of groundwater resources. 

Estimating groundwater levels is a crucial aspect of water resource management. In this study, 

groundwater levels in Pawana Watershed, India were simulated using three different models: 

MODFLOW, Extreme Learning Machine (ELM), and Wavelet-Extreme Learning Machine (WA-ELM). 

Initially, ten unique models were developed for both the ELM and WA-ELM using varied input 

parameters. The optimal activation function for the ELM models was selected, and the most effective 

mother wavelet was identified for the WA-ELM models. The performances of the ELM and WA-ELM 

models were evaluated to determine the most effective soft computing approach. The best-performing 

artificial intelligence model, the WA-ELM, was then compared with the physically based MODFLOW 

model. The comparative analysis revealed that the WA-ELM model achieved higher accuracy in 

simulating groundwater levels. Specifically, the top-performing model registered Mean Absolute Error 

(MAE) and Root Mean Square Relative Error (RMSRE) values of 0.344 and 0.0002, respectively. 

Additionally, a matrix to simulate groundwater levels was developed for the superior WA-ELM model. 

Uncertainty analysis of the WA-ELM model indicated an underestimation in its performance, with a 95% 

prediction error interval ranging from -0.090 to -0.096. This analysis helps in understanding the reliability 

and limitations of the predictive capabilities of the WA-ELM model in groundwater level simulation. 
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