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Abstract 

This paper describes how RL agents in the Unity Environment can perform parking. The goal of the study 

is to propose a method that makes use of reinforcement learning techniques offered by the Unity ML- 

Agents framework within Unity’s realistic 3D simulation in order to solve the requirement for autonomous 

parking solutions. The suggested solu- tion’s design, execution, and assessment are highlighted in the 

paper. In complex situations, the system offers an adaptive and realistic frame- work for autonomous 

parking. The outcomes of thorough performance testing and comparative analysis highlight the usefulness 

and promise of the suggested approach in the area of autonomous car parking. The discussion of the 

results, difficulties faced, and prospects for additional study and advancement in autonomous car parking 

technology round up the report. 

 

Keywords: Unity ML-Agents, Unity Game Engine, Autonomous Park- ing System, Reinforcement 

Learning 

 

1 The Introduction 

The everyday evolution of Artificial Intelligence and Virtual Simulations is leading the way to new 

technological advancements. Within this paradigm, the task of au- tonomous parking requires great 

precision and adaptability for intricate scenarios. The problem can be addressed by the approaches of 

Machine Learning (ML) and Reinforcement Learning (RL). This paper focuses on utilising the capabilities 

of RL provided by the Unity ML-Agents framework, within the Unity3D simulation envi- ronment to 

solve the problem of autonomous vehicle parking. 

The question arises, what is Reinforcement learning? Let’s take the example of Volleyball (Fig 1). 

Initially, the agents do not have any information on how to play the game. They’ll start by taking random 

actions and through trial and error, they’ll learn that: [Zha] 

• If they hit the ball and it goes over the net to the other side of the court, they score points (positive 

feedback), 

• If they let the ball hit the floor on their side of the court, they lose a point (negative feedback). 

Doing the things that lead to positive outcomes will teach the agents to hit the ball over the net whenever 
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it’s on their side of the court. Technically, Reinforcement learning is a subdomain of machine learning 

which involves training an ‘agent’ (here the volleyball player) to learn the correct sequences of actions to 

take (hitting the ball over the net) in a given state of its environment (the volleyball game) to maximize its 

reward (scoring points) [Zha][SB18]. The RL training process includes 2 key steps/phases:   Exploration 

and Exploitation.    The developer’s training algorithm will decide when the agent should explore the 

environment and when to exploit the gained information. We will take a deeper look into this in further 

sections 

 
Figure 1: Reinforcement Learning 

The robust physics engine and realistic rendering provided by the Unity are ideal for creating simulated 

environments, they closely mimic the real-world challenges which further strengthens the training for our 

RL  agent.    As autonomous vehi- cle technology progresses, the development of intelligent parking 

systems becomes crucial. These types of systems can aid in transforming current automobiles into partially 

autonomous vehicles as they can be provided as third-party modules. This proposal leverages Unity’s 

capabilities to create a simulated environment where a virtual car equipped with an RL agent can learn to 

navigate diverse parking scenar- ios, hence addressing the pressing need for an automatic parking system. 

This paper is structured as follows: [JBT+20] 

• We begin with an introduction of the problem at hand, its significance, and the scope of this paper, 

• Then, we describe the current and previous works on the problem and also propose a series of 

solution(s), including our primary RL agent using Unity ML-Agent in the Unity3D Environment, 

• We then describe the Unity engine and Unity ML-Agents Toolkit, a general platform and discuss its 

ability to enable research and how we can achieve the proposed solution using them, 

• We next outline the architecture, functionality and tools provided by the Unity ML-Agents Toolkit 

which enables the deployment of RL Agent within Unity environments on example Parking Scenarios, 

• Then, we assess the outcome and conclude by proposing future avenues of our findings. 

 

2 The Problem 

With the increase in the popularity of self-driving cars, the world’s roads are pro- jected to be dominated 

by such cars in the next decade. But it also introduces various challenges, including but not limited to, 

Lane detection, Lane following, Signal detection, and obstacle detection and avoidance. For this paper, 

we will fo- cus on the task of parking. Car parking is a complex task which requires the driver to handle: 
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• spatial awareness, 

• trajectory planning, 

• real-time decision-making, and more (Fig 2). 

These challenges combined are so significant that a traditional algorithm can not overcome them. This 

paper identifies this problem and aims to train an RL agent to navigate and park a car autonomously, 

recognizing the dynamic and complex nature of the parking situation. The main reason to opt for the RL 

technique over other sorts of algorithms, and the Unity Environment is due to the facilities provided, we 

will take a closer look at the Unity Engine, and the Unity ML-Agents framework (including RL tools 

provided) in further sections. 

 

 
Figure 2: Perpendicular Parking Scenarios 

 

The proposal seeks to address fundamental questions such as: 

• How can we construct a system capable of parking a vehicle on its own? 

• What factors contribute to successful navigation in various parking scenarios? 

• and How efficient will the system be? 

By honing in on these challenges, the paper aims to contribute to the development of robust and adaptive 

RL models capable of handling the problems associated with automated car parking. Moreover, it will 

inform about the challenges of the field and whether the ML and RL approach is feasible and effective or 

not. 

 

2.1 Significance 

The paper is directly aimed at the advancement of autonomous vehicles and how to execute the car parking 

task autonomously, showing its significance in the field. Automated parking systems are an integral part 

of the broader self-driving technol- ogy, and demand intelligent agents capable of making swift and 

accurate decisions in real time. 

By employing RL techniques, this project endeavours to create a model that not only learns optimal 

parking strategies but also adapts to diverse scenarios, showcas- ing the adaptability necessary for real-

world applications. Moreover, the RL model will be evaluated in both training and testing phases which 

further outlines its effi- ciency and relevancy as a proposed solution. The paper also includes the prospect 

of the solution proposed which provides a peek into the autonomous parking future, it will also lay out the 

disadvantages of our approach which will further aid any research in the field. The paper, as stated earlier, 

makes use of Unity3D Engine and Unity ML-Agents framework. This shows the effectiveness of the 
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software and the framework in the field of machine learning-oriented research. 

The above-mentioned points promoted the need and proved the significance of this paper, also to conduct 

research and propose new more effective and feasible solutions by other fellow researchers. 

Objectives 

Before writing the objectives, we should take a look at the scope of the paper. This will increase our 

understanding of the objectives and what to expect. 

The scope of this paper encompasses the development of an autonomous car parking system using 

Reinforcement Learning (RL) within the Unity simulation environ- ment. The primary focus is on training 

a virtual agent to autonomously navigate and park a car in diverse scenarios, emulating real-world 

challenges. The system will address various aspects of automated parking, including spatial awareness, 

tra- jectory planning, and real-time decision-making. We will also evaluate the resulting model in the 

training and testing phase, and conclude with the results and future uses or alterations. We will also briefly 

discuss the impact of this approach on the field and what areas should future researchers pay utmost 

attention to. 

Now, various objectives of this paper include: 

• Develop an RL model tailored for car parking in Unity, integrating state-of- the-art algorithms to 

enable effective learning and decision-making. 

• Design and implement a simulation environment within Unity that encom- passes a range of parking 

scenarios, capturing the complexities of real-world parking challenges. 

• Train the RL agent to navigate and park a virtual car autonomously, em- phasizing adaptability to 

different parking space configurations and dynamic environments. 

• Evaluate the performance of the trained RL agent based on key metrics, in- cluding success rate, 

parking accuracy, and computational efficiency. 

• Contribute insights to the broader field of ML applications in simulated en- vironments, offering 

solutions and methodologies for training RL agents in complex tasks, specifically in the context of 

automated car parking. 

 

3 The Related Work 

Let’s take a look at previous and current works done on the autonomous parking problem. Most of the 

work is done utilising single and multi-agent Reinforcement Learning, and Machine Learning techniques. 

However, few researchers have also implemented Unity3D and Unity ML-Agents framework for the task. 

Some of the previous works are: 

Clara Barbu and Stefan Alexandru Mocanu: On the development of Autonomous Agents using Deep 

Reinforcement Learning. [BM21] : The pa- per presents a general study of autonomous agents with their 

development powered by deep reinforcement learning. This is combined with autonomous vehicles via an 

example of a vehicle agent parking autonomously in the virtual 

parking environment provided by the Unity3D Engine. The agent is utilizing Deep Q-Learning, Double 

Deep Q-Learning, and Experience Replay. 
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Figure 3: The  Agent  (blue car)  and  its environment  created  in Unity  [Source: [BM21]] 

 

The paper resulted in a model (Fig 3.1) able to park a car using Deep Q- Learning techniques, but the 

model took more than 72 hours to train. The results for a more general application (Ball-Cube) were more 

promising and quick utilising the Double Deep Q-Learning. 

Mohamed Fethi Dellali and  Mohamed  El Mahdi  Bouzegzeg:  Au- tonomous Parking Simulation using 

Unity Game Engine and Reinforcement Learning. [DB22] : The report implemented an autonomous 

parking simu- lation using Unity3D Game Engine, Unity ML-Agents framework, and Rein- forcement 

Learning. They started with a discussion of various artificial intel- 

ligence (AI) subsets and their methods, followed by a detailed discussion of reinforcement learning, Unity 

game engine, and ML-Agents. 

The report resulted in a model which can seek out the empty parking lot in a parking area and execute the 

parking task correctly. The model trained for over 12 million steps in 12 hours with a theoretical success 

rate of 97% during the training phase. 

Omar Tanner: Multi-Agent Car Parking using Reinforcement Learning. [Tan22] : The paper aimed to 

train a model able to perform in a multi-agent system (Fig 3.2) where other cars can also communicate 

and aid in parking tasks. 

 
Figure 4: Multi-Agent System for Autonomous Parking [Source: [Tan22]] 
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The fixed goals and obstacles environment yielded a model using up to 7 agents with a success rate of 

98.1%. If the model only implemented 2 agents instead of 7, the rate bumped up to 99.3%. This proved 

the effectiveness of the multi-agent system in the autonomous parking scenario. 

• Yusef   Savid,   Reza   Mahmoudi,   Rytis   Maskeliu¯nas,   and   Robertas Damaˇseviˇcius:  Simulated  

Autonomous  Driving  Using  Reinforcement  Learn- ing: A Comparative Study on Unity’s ML-Agents 

Framework. [SMMD23] : The paper compares the performance of several different RL algorithms and 

configurations on the task of training kart agents to successfully traverse a racing track (Fig 3.3) and 

identifies the most effective approach for training kart agents to navigate a racing track and avoid obstacles 

in that track. 

 
Figure 5: The Race Track environment in Unity [Source: [SMMD23]] 

 

The paper also explored the effectiveness of behavioural cloning; a technique of copying human skills or 

inputs and training the model to closely mimic them, in the area of racing simulators. The results when 

compared to the Proximal Policy Optimization algorithm, noticed only a deviation of 23.07% in value loss 

and only a 10.64% deviation in cumulative reward, hence confirming the usefulness of behavioural 

cloning for improving the performance of intelligent agents for racing tasks. 

Now let’s propose our solution for Autonomous Parking: 

We tackle the situation using Reinforcement Learning, specifically using the Prox- imal Policy 

Optimization (PPO) algorithm. We will utilise Unity ML-Agents to implement this RL model using the 

PPO. The model will be trained, tested, and evaluated in the Unity Engine. The agent will be using the 

“Ray Perception Sensors” component provided by Unity for sensing the environment. They behave as 

real-life Lidar sensors. The agent will be able to access a CarController script which will provide the 

actions the agent can perform (drive, steer, brake). The agent will be placed in a dynamic simulation 

environment which will constantly change with each episode to promote the adaptability of the RL model. 

The reward system for the agent will promote “reverse parking” over the traditional front parking to induce 

good parking etiquette. Additionally, it will penalise the agent on a collision to promote task completion. 

The agent will be evaluated in 2 ways: parking success and model parameters. In the former one, we 

evaluate the “Efficiency Percentage” or the total parking agent did in a number of cases over a limited 

period of time during both training and testing. In the latter, we refer to Tensorboard for model parameters 

such as extrinsic reward, episode length, policy loss, etc. during the training phase. The final results are a 
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combination of both and the final statement will be derived from both findings. 

 

4 The Tools & Technologies Used 

Let’s look into brief details of specific tools (Unity Engine and Unity ML-Agents) and software 

technologies or methods (Reinforcement Learning, Artificial Neural Networks, and Proximal Policy 

Optimization) we have utilised for our work. 

4.1 Unity Engine 

Unity is a cross-platform game engine developed by Unity Technologies, first an- nounced and released 

in June 2005 at Apple Worldwide Developers Conference as a Mac OS X game engine [Wik]. Over the 

years, it has grown into a cross-platform powerhouse, supporting development for a multitude of devices 

and platforms, from desktop and mobile to consoles and virtual reality. 

4.1.1 Key Features 

1. Physics Simulation: The engine includes a built-in physics engine that en- ables realistic simulation 

of object interactions, collisions, and dynamics. 

2. Scripting and Programming: Unity3D supports scripting and program- ming in C#. Developers can 

write custom scripts to define game logic, be- haviour, and interactions. 

3. Asset Pipeline: Unity3D features a streamlined asset pipeline that facilitates the import, management, 

and manipulation of various asset types, including 3D models, textures, audio files, animations, and 

shaders. 

4. Cross-Platform Development: One of Unity3D’s defining features is its cross-platform development 

capabilities. Developers can write code once and deploy their games to a wide range of platforms. 

 

4.2 Unity ML-Agents 

The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that enables games 

and simulations to serve as environments for training 5intelligent agents [Tec] 

4.2.1 Key Features 

1. It supports various training situations and environment configurations. 

2. Several Deep Reinforcement Learning algorithms (PPO, SAC, MA-POCA, self-play) are supported for 

training single-agent, multi-agent cooperative, and multi-agent competitive situations. 

3. Assistance for using two imitation learning algorithms (GAIL and BC) to learn from demonstrations. 

It supports training with several instances of the Unity environment running at once. This speeds up the 

process without compromising the adaptability. 

 

4.3 Reinforcement Learning 

Reinforcement Learning can be defined as a technique for problem-solving where an intelligent agent is 

trained using experiences. The agent will be put in the problem environment at a particular state or 

situation, where it can perform certain actions that will generate rewards or penalties and transfer it into a 

new state. A state can be defined as a particular scenario in a problem and used by the agent to perform 

actions and get to a solution. The reward is a positive incentive the agent receives when it comes close to 

the desired output whereas the penalty is a negative reward which is given when the agent either deviates 

from the solution or makes a blunder. Penalties are significantly higher than the rewards to make sure the 

agent never repeats the negative actions. 
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The reinforcement learning process generally results in a model capable of per- forming the task it was 

trained for with great efficiency. The model is typically represented with an artificial neural network, a 

multilayer feed-forward neural net- work in our case, which has node functions and weights calculated 

according to its learned behaviour from the training phase. 

 

4.4 Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are computational models inspired by the struc- ture and functioning 

of biological neural networks in the human brain. ANNs consist of interconnected nodes, or neurons, 

organized in layers, allowing them to learn com- plex patterns and relationships from data. 

Feedforward   Neural   Networks:   Feedforward   Neural   Networks   (FNNs):   FNNs are the simplest 

type of neural networks, where information flows in one direction from the input layer to the output layer 

without feedback loops. 

 

4.5 Proximal Policy Optimization 

Based on policy gradient approaches, proximal policy optimization (PPO) seeks to maximize predicted 

cumulative rewards by repeatedly improving an agent’s policy. Fundamentally, PPO makes use of a 

surrogate objective function to direct policy updates while guaranteeing effective and consistent learning 

dynamics. 

 

5 The Architecture & Working 

5.1    Working 

The solution can work in 2 modes inside the Unity Editor: Training and Testing. 

Training: During Training mode, the agent operates  without  any  Neural  Net- work guidance initiating 

the training process. To commence the training we execute the following command in the appropriate 

environment in the anaconda command prompt.mlagents-learn   --run-id="modelNameOrId" 

The run-id defines the model name and is used by the tensorboard for model stats. The behaviour during 

this process is defined by the trainer config.yaml, which dictates actions such as periodic Neural Network 

exports and checkpoint creation. These actions are crucial for preserving progress. 

 

Testing: During Testing mode within the Unity Editor, a Neural Network is essen- tial. This passed Neural 

Network, or model is subsequently put to the test in various parking scenarios. The performance 

assessment occurs agent by agent, facilitated by EfficiencyCal.cs, and collectively for all agents, managed 

by EfficiencyComb.cs. This process persists endlessly and can only be halted by selecting “Stop” in the 

Unity Editor. 
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Figure 6: Flow chart showing the working in Unity Editor 

In the exported application, the solution works only in testing mode. Testing begins when the user selects 

“Start” and chooses a model from the list provided. We’ve included a total of 7 models, comprising 4 

development models and 3 export models, all saved on the drive. Following this selection, the “Final 

Scene” is loaded, functioning akin to “Unity Editor: Testing Mode”. Moreover, users can opt to “Reset” 

the scene, “Go Back” to the main menu to try another model, or “Quit” the application. 
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Figure 7: Flow chart showing the working in exported Application 

 

6 The  Results 

We created a total of 7 models for this purpose and compared training and testing results of each. The 

training results mainly consisted of model or policy parameters such as the “Cumulative Reward”, 

“Episode Length”, “Policy Entropy” etc. Addi- tionally, we calculated the parking efficiency during 

training. The testing results is the parking efficiency of the model over an evaluation period of 4hrs. Let’s 

define the training specific terms first then take a look at the training and testing results for our most 

effective model (iPark Export [02]). At the end, we will discuss the distribution and how the reader can 

use the application himself. 

6.1 Training Results Related Terminology 

1. Cumulative Reward: Cumulative Reward in TensorBoard graphs tracks the total reward obtained by 

the agent during training or evaluation. It offers a quick overview of the agent’s overall performance 

and its ability to achieve goals within the environment. 

2. Episode Length: Episode Length in TensorBoard graphs represents the du- ration of each episode 

during training. It indicates how long the agent interacts with the environment before reaching a 

terminal state or completing a task. Tracking episode length helps monitor the efficiency and 

effectiveness of the agent’s decision-making process over time. 

3. Policy Loss: Policy Loss in TensorBoard graphs reflects the discrepancy be- tween the predicted 

actions of the agent and the optimal actions determined by the policy during training. It measures how 
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well the agent’s policy approx- imates the desired behaviour and provides insights into the training 

progress and stability of the reinforcement learning algorithm. 

4. Value Loss: In TensorBoard, the Value Loss metric tracks the error between predicted and observed 

returns during training. A good performance shows a decreasing trend over time, indicating improved 

accuracy in predicting future rewards. Fluctuations may occur, but overall, the curve should converge 

to a low and stable level, signalling successful learning by the agent. 

5. Policy Entropy: Policy  Entropy  in  TensorBoard  measures  the  uncertainty or randomness of the 

agent’s action selection. A good agent should maintain a moderate level of entropy to encourage 

exploration and prevent premature convergence to suboptimal policies. An ideal scenario shows a 

decreasing trend in entropy as the agent learns to make more confident and informed decisions over 

time, but without diminishing too quickly, ensuring a balance between exploration and exploitation. 

 

6.2 iPark Export [02] Training Results 

 
Figure 8: Cumulative Reward for iPark Export [02] 

The cumulative reward graph starts at 50k steps with a reward value of 0.1434, and ends at 10M steps 

with a value of 0.5269 in 3 hours 28 mins. This shows clearly that the model is learning to park. The graph 

is increasing steadily throughout the period. This shows that the model was learning new behaviours and 

did not mature early. 

 

 
Figure 9: Episode Length for iPark Export [02] 
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The episode length graph starts at 50k steps with an episode length of 242 and ends at 10M steps with a 

length value of 32 (32.37). This shows that the model was learning new optimal behaviours and was able 

to park with fewer steps in each episode. Moreover, the graph was almost flat from 4M steps (36.35) which 

shows that the model was able to find optimal settings very early. 

 

 
Figure 10: Policy Loss for iPark Export [02] 

The policy loss graph starts at 50k steps with a value of 0.03426 and ends at 10M steps with a value of 

0.03257. This decrease in value show that the model was able to find a optimal policy function. Moreover, 

the graph is constantly declining, meaning that the model was improving throughout the training period. 

The fluctu- ations show that the agent is learning from the environment. 

 

 
Figure 11: Value Loss for iPark Export [02] 

The value loss graph starts at 50k steps with a value of 5.768e-3 (0.005768) and ends at 10M steps with a 

value of 9.9214e-3 (0.0099214). Value loss shows the differ- ence between the predicted value of state-

action pairs by the agent’s value function and the actual observed returns received during training. An 

ideal behaviour will be a decreasing or constant graph. The graph initially increased till 4.75M steps, but 

then it declined and stayed continuous from 7M steps. Morover, the overall increase was very low 

(0.0041534) which shows the model really performed well in value loss and find an optimal solution. 
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Figure 12:  Policy Entropy for iPark Export [02] 

The policy entropy graph starts at 50k steps with a value of 1.417 and ends at 10M steps with a value of 

1.146. The decreasing trend is favourable here. It shows that the agent was able to balance between 

exploration and exploitation without converging to a sub-optimal solution. 

 

Training Parking Efficiency 

# training efficiency reported in the " Efficiency . txt"   by the performance metric component 

08 -05 -2024    15:30:55   ( Training    Model) 

Efficiency    79 .27053 % 

Total    Park    170392 

Total    Collision    44558 

Total    Cases    214950 

The EfficiencyCal and EfficiencyCombined scripts reported this efficiency of the model. This is for 

whole of the training period and will differ from real testing. 

 

6.2.1 Graph Analysis 

The cumulative graph demonstrates significant progress, with the final value ex- ceeding the average 

(0.5269). Notably, the training period was the shortest among all, showcasing efficient learning. However, 

relying solely on this metric may not accurately predict the model’s performance in test scenarios. 

Similarly, the episode length graph displays an ideal trend, with the final value among the lowest, indicat- 

ing the successful optimization of episode length by the model. The policy loss graph also exhibits a 

consistent decline, reflecting effective policy improvement throughout training.   However, the value loss 

presents a challenge, with a continuous rise for most of the training period, though the model managed to 

stabilize it towards the end. Despite these challenges, the policy entropy remains ideal, indicating proper 

functionality of the Proximal Policy Optimization (PPO) algorithm. Although the efficiency data during 

training is promising, it’s essential to note that it may not nec- essarily correlate with testing results. 

Further insights into the model’s performance will be gained during the testing phase. 

 

6.3 iPark Export [02] Testing Results 

# training    efficiency    reported   in   the 

" Efficiency . txt"   by   the    performance    metric    component 
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16 -05 -2024    14 :34 :04   ( Testing    Model   " iPark    Export    [02] 

-10000076   ( Unity. Barracuda . NNModel )") 

Efficiency    89 .37852 % 

Total    Park    31539 

Total    Collision    3748 

Total    Cases    35287 

The 4-hour evaluation test resulted in the agent attempting a total of 35,287 parking scenarios. It parked a 

total of 31,539 times and collided 3,748 times. This gives us an 89.37852% efficiency which is 10.10799% 

more than training data. 

6.3.1 Data Analysis 

The 4-hour evaluation test resulted in the agent attempting a total of 35,287 parking scenarios. It 

successfully parked 31,539 times and collided 3,748 times, resulting in an efficiency of 89.37852%. This 

efficiency is 10.10799% higher than the training data, representing the highest improvement recorded. 

The model also performed exceptionally well in every training parameter, establishing itself as the best-

suited model for the task. 

6.3.2 All model comparison 

Training Efficiency Testing Efficiency 

Model Name Efficiency 

% 

Model Name Efficiency 

% 

iPark [01] 21-11-2023 – iPark [01] 21-11-2023 78.56705% 

iPark [02] 28-03-2024 74.95232% iPark [02] 28-03-2024 84.407% 

iPark [03] 29-03-2024 84.70142% iPark [03] 29-03-2024 86.45386% 

iPark [04] 30-03-2024 79.63393% iPark [04] 30-03-2024 88.92231% 

iPark Export  [01]  04- 

05-2024 

75.3954% iPark Export  [01]  04- 

05-2024 

85.36852% 

iPark Export  [02]  06- 

05-2024 

79.27053% iPark Export  [02]  06- 

05-2024 

89.37852% 

iPark Export  [03]  08- 

05-2024 

79.2570% iPark Export  [03]  08- 

05-2024 

88.61481% 

Table 1: Comparing models on their respective training and testing data 

 

6.4 Deployment 

The deployed application setup can be found here: 

iParkSetup.exe [https://github.com/KushagraYashu/iPark/releases/download/setup 

/iParkSetup.exe] 

After downloading, the program can be installed by running and following the in- structions in the setup. 

 

7 The Conclusion 

In conclusion, this research successfully demonstrates the viability and effectiveness of employing 

Reinforcement Learning (RL) agents within the Unity3D environment to tackle the complex problem of 

autonomous parking. By integrating the Unity ML-Agents framework, we have shown that virtual agents 

can be trained to nav- igate and park vehicles autonomously in a variety of scenarios that closely mimic 

real-world conditions. The RL approach, particularly within the robust and versa- tile Unity simulation, 

https://www.ijfmr.com/
https://github.com/KushagraYashu/iPark/releases/download/setup/iParkSetup.exe
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proved to be a powerful method for developing adaptive and intelligent parking systems. 

Throughout this study, the RL agents displayed significant capabilities in spatial awareness, trajectory 

planning, and real-time decision-making. The performance metrics, including success rate and parking 

accuracy, indicated that the RL agents could consistently and efficiently execute parking maneuvers across 

different config- urations and dynamic environments. These results underscore the potential of RL 

techniques in advancing autonomous vehicle technologies, particularly in enhancing the functionality and 

reliability of self-parking systems. 

Moreover, this research contributes valuable insights into the broader application of machine learning in 

simulated environments, offering a blueprint for future stud- ies aiming to train RL agents for complex 

tasks. The use of Unity3D as a simulation platform not only provided a realistic training ground but also 

facilitated the explo- ration of various parking scenarios, thereby enhancing the agent’s learning process. 

Looking ahead, there are several avenues for further research. Future work could ex- plore the integration 

of additional sensors and real-world data to improve the realism and robustness of the simulation. 

Additionally, investigating other RL algorithms and hybrid approaches could further enhance the 

efficiency and effectiveness of the autonomous parking system. The insights gained from this study pave 

the way for more sophisticated and adaptable autonomous systems, contributing to the ongoing evolution 

of intelligent transportation solutions. 

In summary, the development and evaluation of the autonomous parking system utilizing RL agents within 

the Unity3D environment demonstrate a promising step forward in the realm of autonomous vehicle 

technology. The findings from this research highlight the practical applications of RL and set the stage for 

future in- novations in automated parking and beyond. 
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