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Abstract 

The work in this study focuses upon the qualitative analysis of the nonlinear boundary value problem 

(BVP) via Hilfer fractional derivative. This study demonstrates the qualitative results for the uniqueness 

and existence of a solution utilizing the concepts of fixed point theory comprising Banach, Schaefer, and 

Krasnoselskii’s fixed point theorem. Subsequently, the stability of the solution of the amused differential 

equations is proposed via the theory of Ulam Hyers (UH) stability which adds significance to the quality 

of the findings. In order to demonstrate the application and validation of the derived results some 

numerical examples are also provided. 
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1  Introduction 

Fractional order differential equations have emerged as a more useful tool in the past few decades than 

integer order differential equations in the model formulation of many problems occurring in numerous 

fields of engineering and science. Differentials of fractional order are a crucial tool for describing the 

memory and inherited characteristics of distinct materials and processes (see [13, 17, 24]). 

Also, the applications of functional analysis in interpretation of differential equations of fractional order 

has become very significant during the past few years. The monographs by Deimling [2], Diethlem [3], 

Kilbas et al. [12] have emphasized the uses of functional analysis for differetial systems of fractional 

order. For further evolution of fixed point theory in order to study the differential equations involving 

derivative of fractional order can be seen in [14, 15, 19, 22]. Also, one essential element of the 

qualitative theory of dynamical systems is the notion of stability. As an outcome of applications, the 

theory of stability has received considerable interest in a number of different research domains. 

Particularly, the Ulam-Hyers stability analysis and its relevancy to many kinds of differential equations 

have drawn the attention of numerous researchers. The Hilfer fractional derivative, which is a 

generalization of the Riemann-Liouville fractional derivative as well as an interpolation between R-L 

and Caputo fractional derivative, was introduced by Hilfer [8]. Theoretical simulations of dielectric 

relaxation in glass-forming materials [9], a thermally sensitive resistor problem [20], etc. are all 

modelled using Hilfer fractional derivative. The first publication has been offered by Furati et al. [6] 
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involving Hilfer derivative in which the authors proposed the qualitative study about the uniqueness and 

existence of the solution for the initial value problem in 2012. Following the works of Furati et al. [6] 

the researchers have been continuously devoting their efforts to study the different phenomenon 

involving Hilfer derivative. Dhawan et al. [5] proposed anallytical study on the well-posedeness for the 

implicit fractional BVP, where the existence and uniqueness of the solution is derived using fixed point 

theorems and the stability is investigated using the approach of UH. For further information on the 

theoretical advancement of the differential equations involving Hilfer, one can go through                    

[1, 4, 7, 10, 18, 21, 23]. 

To the authors best knowledge, less research has been done on BVP with the Hilfer fractional derivative. 

In this study, which is driven by the literature, we will develop existence and uniqueness results for the 

solution to the nonlocal Hilfer fractional BVP provided below as well as examine its UH stability. 

{
𝐻𝐷𝜁,𝛼𝜒(𝔷) +∧ (𝔷, 𝜒) = 0, 𝔷 ∈ [𝔭, 𝔮], 𝔭 ≥ 0,

𝜒(𝔭) = 𝜒′(𝔭) = 0, 𝜒(𝔮) = 𝑘𝜒(𝜏),
 

(1) 

where 𝜒 ∈ 𝒞3([𝔭, 𝔮],ℝ), 2 < 𝜁 ≤ 3, 0 ≤ 𝛼 ≤ 1, 𝜏 ∈ (𝔭, 𝔮), 𝑘 ∈ ℝ, ∧: [𝔭, 𝔮] × ℝ → ℝ is a function such 

that ∧ (𝔷, 0) ≠ 0 and fractional derivative by Hilfer is denoted by  𝐻𝐷𝜁,𝛼 where 𝜁 is the order and 𝛼 is 

parameter. 

The rest of the article is structured as follows: In section 2, Some basic preliminary facts related to the 

definitions of fractional calculus and stability of differential equations are explained which would be 

used in the later sections. In section 3, we derive existence and uniqueness results of solution of nonlocal 

fractional Hilfer BVP problem (1). In section 4, we establish UH and gUH type stability results. To 

support our findings, Section 5 provides some examples which is followed by the conclusion of the work 

done in the manuscript. 

 

2  Preliminaries 

The authors have put together a complete set of requirements for the existence of the solutions to the 

nonlocal Hilfer BVP (1). We give some fundamental ideas in fractional calculus and some of its 

associated features with suitable justifications in order to move forward analysis. 

Definition 1. [12] “The Riemann-Liouville fractional integral of order 𝜁 > 0 for 𝜒: (𝔭,∞) → ℝ is 

defined as 

𝐼𝜁𝜒(𝔷) =
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝜒(𝑠)𝑑𝑠,                                                                                    (2) 

provided the integral converges at the right sides over (𝔭,∞), 𝔭 ≥ 0." 

Definition 2. [12] “The Riemann-Louville fractional derivative of order 𝜁 > 0, for a function 

𝜒 ∈ 𝒞𝑛((𝔭,∞),ℝ), 𝔭 ≥ 0 is defined as 

 𝑅𝐿𝐷𝜁𝜒(𝔷) =
1

Γ(𝑛−𝜁)

𝑑𝑛

𝑑𝔷𝑛
∫
𝔷

𝔭
(𝔷 − 𝑠)𝑛−𝜁−1𝜒(𝑠)𝑑𝑠, (3) 

𝑛 − 1 < 𝜁 ≤ 𝑛, where 𝑛 = [𝜁] + 1, provided that the right hand side is point wise defined on (𝔭,∞)." 

Definition 3. [12] “The Caputo fractional derivative of order 𝜁 > 0, for a function 𝜒 ∈ 𝒞𝑛((𝔭,∞),ℝ), 

𝔭 ≥ 0 is defined as 

 𝐶𝐷𝜁𝜒(𝔷) =
1

Γ(𝑛−𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝑛−𝜁−1

𝑑𝑛

𝑑𝑠𝑛
𝜒(𝑠)𝑑𝑠, (4) 

𝑛 − 1 < 𝜁 ≤ 𝑛, where 𝑛 = [𝜁] + 1, provided that the right hand side is point wise defined on (𝔭,∞)." 

Definition 4. [8] “The generalized Riemann-Liouville fractional derivative or Hilfer fractional 

derivative of order 𝜁 > 0 and parameter 𝛼 of a function 𝜒 ∈ 𝒞𝑛((𝔭,∞),ℝ), 𝔭 ≥ 0 is defined by 
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 𝐻𝐷𝜁,𝛼𝜒(𝔷) = 𝐼𝛼(𝑛−𝜁)𝐷𝑛𝐼(1−𝛼)(𝑛−𝜁)𝜒(𝔷),                                                                              (5) 

where 𝑛 − 1 < 𝜁 ≤ 𝑛, 0 ≤ 𝛼 ≤ 1, 𝐷 =
𝑑

𝑑𝔷
." 

Remark 1. If 𝛼 = 0 , then Hilfer fractional derivative given by definition 4 is brought down as 

Riemann-Louville fractional derivative presented by definition 2, also if 𝛼 = 1, then Hilfer 

fractional derivative is reduced to Caputo derivative given by definition 3. 

Lemma 1. [12] Let 2 < 𝜁 ≤ 3, 𝔷 > 𝔭, then 

𝐼𝜁(𝑅𝐿𝐷𝜁𝜒(𝔷)) = 𝜒(𝔷) − 𝑐1(𝔷 − 𝔭)
𝜁−1 − 𝑐2(𝔷 − 𝔭)

𝜁−2 − 𝑐3(𝔷 − 𝔭)
𝜁−3.                       (6) 

Next we give the definitions of UH Stability and gUH stability for the fractional differential equation 

(1). 

Definition 5. [16] “For every 𝜖 > 0, the function 𝑧 ∈ 𝒞3([𝔭, 𝔮],ℝ) satisfies 

|𝐻𝐷𝜁,𝛼𝑧(𝔷) +∧ (𝔷, 𝑧(𝔷))| ≤ 𝜖, 𝔷 ∈ [𝔭, 𝔮],                                                                               (7) 

where the function ∧ is defined in (1). Let 𝑥 ∈ 𝒞3([𝔭, 𝔮],ℝ) be a solution of the problem (1). If there is a 

positive constant 𝐾 such that 

|𝑧(𝔷) − 𝑥(𝔷)| ≤ 𝐾𝜖, 𝔷 ∈ [𝔭, 𝔮].                                                                                              (8) 

Then the problem (1) is said to be UH stable.” 

Definition 6. [16] “Assume that 𝑧 ∈ 𝒞3([𝔭, 𝔮],ℝ) satisfies the inequality (7) and 𝑥 ∈ 𝒞3([𝔭, 𝔮],ℝ) is a 

solution of the problem (1). If there is a function 𝜙∧(𝜖) ∈ 𝒞(ℝ
+, ℝ+) with 𝜙∧(0) = 0 satisfying 

|𝑧(𝔷) − 𝑥(𝔷)| ≤ 𝜙∧(𝜖), 𝔷 ∈ [𝔭, 𝔮].                                                                                         (9) 

Then the problem (1) is said to be gUH stable." 

Remark 2. If there is a function 𝜓 ∈ 𝒞([𝔭, 𝔮],ℝ)(independent of 𝑧),such that 

1.  |𝜓(𝔷)| ≤ 𝜖, for all 𝔷 ∈ [𝔭, 𝔮], 

2. 𝐻𝐷𝜁,𝛼𝑧(𝔷) +∧ (𝔷, 𝑧(𝔷)) = 𝜓(𝔷), 𝔷 ∈ [𝔭, 𝔮]. 

Then a function 𝑧 ∈ 𝒞3([𝔭, 𝔮],ℝ) is a solution of inequality (7). 

3  Qualitative Results 

In this section, the authors have derived a set of sufficient conditions such that the nonlocal Hilfer BVP 

possesses a solution. In order to achieve the desired goals we have used the theory of fixed point 

theorems as a consequence of integral equations. Applications of certain fixed point theorems, like 

Banach, Schaefer and Krasnoselskii’s fixed point theorems (see [12]) are also demonstrated. 

To get going the analysis further, let us define the Banach space of the continuous functions, 𝜒 from 

[𝔭, 𝔮] → ℝ denoted by 𝒞 = 𝒞3([𝔭, 𝔮]) equipped with 

∥ 𝜒 ∥= sup
𝐭∈[𝔭,𝔮]

|𝜒(𝔷)|. 

Lemma 2. Let 

Δ = (𝔮 − 𝔭)𝛾−1 − 𝑘(𝜏 − 𝔭)𝛾−1 ≠ 0,                                                                                  (10) 

then the solution 𝜒 of nonlocal fractional Hilfer BVP 

{
𝐻𝐷𝜁,𝛼𝜒(𝔷) + ℎ(𝔷) = 0, 𝔷 ∈ [𝔭, 𝔮], 𝔭 ≥ 0,

𝜒(𝔭) = 𝜒′(𝔭) = 0, 𝜒(𝔮) = 𝑘𝜒(𝜏),
 

 

               

(11) 

is presented by 
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𝜒(𝔷) =
1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠) (𝔷 − 𝔭)𝛾−1

−
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠 

(12) 

 

where 𝜒 ∈ 𝒞3([𝔭, 𝔮],ℝ) , 2 < 𝜁 ≤ 3 , 0 ≤ 𝛼 ≤ 1 , 𝜏 ∈ (𝔭, 𝔮) , 𝑘 ∈ ℝ , ℎ: [𝔭, 𝔮] → ℝ  is a continuous 

function, 𝛾 = 𝜁 + 3𝛼 − 𝜁𝛼. 

 

Proof. The fractional differential equation in (11) can be written as 

𝐼𝛼(3−𝜁)𝐷3𝐼(1−𝛼)(3−𝜁)𝜒(𝔷) + ℎ(𝔷) = 0. 

Imposing the fractional integral of 𝜁 order on both sides to obtain 

𝐼𝜁𝐼𝛼(3−𝜁)𝐷3𝐼(1−𝛼)(3−𝜁)𝜒(𝔷) + 𝐼𝜁ℎ(𝔷) = 0. 

Indeed 

𝐼𝜁𝐼𝛼(3−𝜁)𝐷3𝐼(1−𝛼)(3−𝜁)𝜒(𝔷) = 𝐼𝛾𝐷3𝐼(3−𝛾)𝜒(𝔷) = 𝐼𝛾(𝑅𝐿𝐷𝛾𝜒(𝔷)), 

and therefore, we have 

𝐼𝛾(𝑅𝐿𝐷𝛾𝜒(𝔷)) + 𝐼𝜁ℎ(𝔷) = 0. 

By using Lemma 1, we obtain 

𝜒(𝔷) = 𝑐1(𝔷 − 𝔭)
𝛾−1 + 𝑐2(𝔷 − 𝔭)

𝛾−2 + 𝑐3(𝔷 − 𝔭)
𝛾−3 − 𝐼𝜁ℎ(𝔷). 

The condition 𝜒(𝔭) = 0 implies 𝑐3 = 0, thus 

𝜒(𝔷) = 𝑐1(𝔷 − 𝔭)
𝛾−1 + 𝑐2(𝔷 − 𝔭)

𝛾−2 − 𝐼𝜁ℎ(𝔷). (13) 

Now differentiating the equation (13) in order to obtain 

𝜒′(𝔷) = (𝛾 − 1)𝑐1(𝔷 − 𝔭)
𝛾−2 + (𝛾 − 2)𝑐2(𝔷 − 𝔭)

𝛾−3 − 𝐼𝜁−1ℎ(𝔷). 

Again following the same procedure as above the boundary condition 𝜒′(𝔭) = 0 gives the value of 𝑐2 =

0. Now using the values of constants the solution 𝜒(𝔷) becomes 

𝜒(𝔷) = 𝑐1(𝔷 − 𝔭)
𝛾−1 − 𝐼𝜁ℎ(𝔷).                                                                                           (14) 

Now the last boundary condition 𝜒(𝔮) = 𝑘𝜒(𝜏) presents the value of the remaining constant, 

𝑐1(𝔮 − 𝔭)
𝛾−1 − 𝐼𝜁ℎ(𝔮) = 𝑘𝑐1(𝜏 − 𝔭)

𝛾−1 − 𝑘𝐼𝜁ℎ(𝜏), 

from which we get 

𝑐1 =
1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠). 

Substituting the value of 𝑐1 in (14), the required result is obtained. 

In order to do the necessary analysis of the nonlocal Hilfer BVP (1) using the fixed point theory, 

construct an operator 𝐴:𝒞 → 𝒞 with aiding the help of Lemma 2 as follows 

(𝐴𝜒)(𝔷) =
(𝔷 − 𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1

∧ (𝑠, 𝜒(𝑠))𝑑𝑠)    −
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠. 

         

(15) 

Note. As we can see that the fixed points of the operator 𝐴 are nothing but the solutions of the nonlocal 

Hilfer BVP (1). Thus it is sufficient to analyze the operator 𝐴 in order to obtain required results. In 

contemplation of further analysis we assume the following assumptions: 

(H1) Assume that there is positive number 𝐿 which follows 
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| ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤ 𝐿|𝜒1 − 𝜒2|, 

for every 𝔷 ∈ [𝔭, 𝔮], 𝜒1, 𝜒2 ∈ ℝ. 

(H2) ∧: [𝔭, 𝔮] × ℝ → ℝ is continuous. 

(H3) There is positive number 𝑀 which follows | ∧ (𝔷, 𝜒)| ≤ 𝑀 for each 𝔷 ∈ [𝔭, 𝔮] and 𝜒 ∈ ℝ. 

 

 

Theorem 1. Let 𝛥 ≠ 0 and assume that (H1) holds. If 𝐿𝛺 < 1 where 𝛺 is defined as 

Ω =
1

Γ(𝜁+1)
(
(𝔮−𝔭)𝜁+𝛾−1

|Δ|
+

|𝑘|(𝜏−𝔭)𝜁(𝔮−𝔭)𝛾−1

|Δ|
+ (𝔮 − 𝔭)𝜁). (16) 

Then the nonlocal Hilfer BVP (1) possesses unique solution on [𝔭, 𝔮]. 

Proof. Let 𝜒1, 𝜒2 ∈ 𝒞, then for all 𝔷 ∈ [𝔭, 𝔮], we have 

|𝐴(𝜒1(𝔷)) − 𝐴(𝜒2(𝔷))| ≤
1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒1(𝑠)) −∧ (𝑠, 𝜒2(𝑠))|𝑑𝑠 

+|𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒1(𝑠)) −∧ (𝑠, 𝜒2(𝑠))|𝑑𝑠)(𝔷 − 𝔭)
𝛾−1 

+
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒1(𝑠)) −∧ (𝑠, 𝜒2(𝑠))|𝑑𝑠 

≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 +
𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝑑𝑠 

≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔷 − 𝔭)𝛾−1 +

𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(𝔷 − 𝔭)𝜁 

≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔮 − 𝔭)𝛾−1 +

𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁 

=
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) +

𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁 

=
𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(
(𝔮 − 𝔭)𝜁+𝛾−1

|Δ|
+ |𝑘|

(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1

|Δ|
+ (𝔮 − 𝔭)𝜁) 

= 𝐿Ω ∥ 𝜒1 − 𝜒2 ∥. 

Which implies that ||𝐴(𝜒1) − 𝐴(𝜒2)|| ≤ 𝐿Ω||𝜒1 − 𝜒2||. Since 𝐿Ω < 1 from which we can assert that 𝐴 

follows contraction. Thus, 𝐴 has an unique fixed point by Banach Contraction principle and from this we 

conclude that the nonlocal hilfer fractional BVP (1) possesses a unique solution on [𝔭, 𝔮]. 

Theorem 2. Let (H2), (H3) hold, then the nonlocal Hilfer BVP (1) has atleast one solution on [𝔭, 𝔮]. 

Proof. This result is derived as the direct consequence of Schaefer’s theorem in which we establish a set 

of sufficient conditions to prove that operator 𝐴 defined by (??) has a fixed point. This theorem’s proof 

has been split down into multiple steps. 

Step 1. 𝐴 is continuous: 

Consider a sequence 𝜒𝑛 → 𝜒 in 𝒞3([𝔭, 𝔮],ℝ), then for each 𝔷 ∈ [𝔭, 𝔮], 

|𝐴(𝜒𝑛(𝔷)) − 𝐴(𝜒(𝔷))| 

≤
1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒𝑛(𝑠)) −∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

+|𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒𝑛(𝑠)) −∧ (𝑠, 𝜒(𝑠))|𝑑𝑠)(𝔷 − 𝔭)
𝛾−1 
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+
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒𝑛(𝑠)) −∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

≤
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

+
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝑑𝑠 

≤
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔷 − 𝔭)𝛾−1 

+
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

Γ(𝜁 + 1)
(𝔷 − 𝔭)𝜁 

≤
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔮 − 𝔭)𝛾−1 

+
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁 

=
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) 

+
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁 

=
∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥

Γ(𝜁 + 1)
(
(𝔮 − 𝔭)𝜁+𝛾−1

|Δ|
+ |𝑘|

(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1

Δ
+ (𝔮 − 𝔭)𝜁) 

= Ω ∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥. 

Which implies that ∥ 𝐴(𝜒𝑛) − 𝐴(𝜒) ∥≤ Ω ∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥. Now the continuity of ∧ implies 

that ∥ 𝐴(𝜒𝑛) − 𝐴(𝜒) ∥→ 0 as 𝑛 → ∞. 

Step 2. 𝐴 maps bounded sets into bounded sets. 

For any arbitrary 𝑟 > 0, we define 𝐵𝑟 = {𝜒 ∈ 𝒞: ∥ 𝜒 ∥≤ 𝑟}, for each 𝜒 ∈ 𝐵𝑟, by (H3) we have for each 

𝔷 ∈ [𝔭, 𝔮] 

|(𝐴𝜒)(𝔷)| ≤
(𝔷 − 𝔭)𝛾−1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

+|𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠) +
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

≤
𝑀(𝔷 − 𝔭)𝛾−1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠) +
𝑀

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝑑𝑠 

≤
𝑀

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) +

𝑀

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁 

= 𝑀Ω 

= 𝑙. 

Therefore, 𝐴𝐵𝑟 ⊆ 𝐵𝑙 from which we can infer that bounded sets are mapped into bounded sets by 𝐴. 

Step 3. A maps bounded sets into equicontinuous sets of 𝒞. 

Let t1, t2 ∈ [𝔭, 𝔮], t1 < t2 and 𝐵𝑟 be a bounded set of 𝒞 as assumed in Step 2, and consider 𝜒 ∈ 𝐵𝑟, then 

|(𝐴𝜒)(t2) − (𝐴𝜒)(t1)| 
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≤
((t2 − 𝔭)

𝛾−1 − (t1 − 𝔭)
𝛾−1)

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

+|𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠) 

+
1

Γ(𝜁)
(∫

t2

𝔭

(t2 − 𝑠)
𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 − ∫

t1

𝔭

(t1 − 𝑠)
𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠) 

≤
𝑀((t2 − 𝔭)

𝛾−1 − (t1 − 𝔭)
𝛾−1)

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘| ∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠) 

+
𝑀

Γ(𝜁)
(∫

t2

𝔭

(t2 − 𝑠)
𝜁−1𝑑𝑠 − ∫

t1

𝑐

(t1 − 𝑠)
𝜁−1𝑑𝑠) 

=
𝑀

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)((t2 − 𝔭)

𝛾−1 − (t1 − 𝔭)
𝛾−1) 

+
𝑀

Γ(𝜁)
(∫

t1

𝔭

(𝑡2 − 𝑠)
𝜁−1𝑑𝑠 +∫

t2

t1

(t2 − 𝑠)
𝜁−1𝑑𝑠 − ∫

t1

𝔭

(t2 − 𝑠)
𝜁−1𝑑𝑠) 

=
𝑀

Γ(𝜁 + 1)
([
(𝔮 − 𝔭)𝜁

|Δ|
+ |𝑘|

(𝜏 − 𝔭)𝜁

|Δ|
] ((t2 − 𝔭)

𝛾−1 − (t1 − 𝔭)
𝛾−1) 

−(t2 − t1)
𝜁 + (t2 − 𝔭)

𝜁 − (t1 − 𝔭)
𝜁 + (t2 − t1)

𝜁). 

Now, as t1 → t2, then |(𝐴𝜒)(t2) − (𝐴𝜒)(t1)| → 0. Therefore combining the steps 1,2 and 3 with the aid 

of Arzela-Ascoli theorem, 𝐴 is compact operator. 

Step 4. A priori  bounds: 

Let 𝜖 = {𝜒 ∈ 𝒞3([𝔭, 𝔮],ℝ): 𝜒 = 𝜆𝐴(𝜒) for some 0 < 𝜆 < 1} and we show that 𝜖 is bounded. To prove 

our claim let us consider 𝜒 ∈ 𝜖, then 𝜒 = 𝜆𝐴(𝜒) for some 0 < 𝜆 < 1. Therefore for each 𝔷 ∈ [𝔭, 𝔮], we 

have 

𝜒(𝔷) =
𝜆

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

−
𝜆

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠. 

Now using step 2,we have |𝐴𝜒(𝔷)| ≤ 𝑙 which implies |𝜒(𝔷)| = |𝐴𝜒(𝔷)| ≤ 𝜆𝑙 and so 𝜖 is bounded. Thus, 

according to Schaefer’s Fixed Point Theorem 𝐴 has a fixed point which provides the solution to the 

nonlocal Hilfer BVP equation(1). 

 

 

Theorem 3. (Krasnoselskii’s fixed point theorem [11]) “Let 𝑀 be a closed,convex and non 

empty subset of a Banach space 𝑋 and let 𝐴, 𝐵 be the operators such that 

1. 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀 whenever 𝑥, 𝑦 ∈ 𝑀. 

2. 𝐴 is compact and continuous. 

3. 𝐵 is contraction. 

Then there exists 𝑧 ∈ 𝑀 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧." 

Theorem 4. Consider ∧: [𝔭, 𝔮] × ℝ → ℝ satisfies (H1) and (H2) along with 

| ∧ (𝔷, 𝜒)| ≤ 𝜙(𝔷)   𝑓𝑜𝑟  𝑎𝑙𝑙   (𝔷, 𝜒) ∈ [𝔭, 𝔮] × ℝ   𝑎𝑛𝑑   𝜙 ∈ 𝒞([𝔭, 𝔮],ℝ+). 

Then, the nonlocal Hilfer BVP (1) has at least one solution on [𝔭, 𝔮], provided 
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𝐿𝜇 < 1,                                                                                                                              (17) 

where 𝜇 =
(𝔮−𝔭)𝜁+𝛾−1+|𝑘|(𝜏−𝔭)𝜁(𝔮−𝔭)𝛾−1

|Δ|Γ(𝜁+1)
. 

 

Proof. The proof of this theorem includes the application of both compact and contraction operators on 

separating the operator 𝐴 into two parts say 𝐴1  and 𝐴2. Setting sup𝔷∈[𝔭,𝔮]𝜙(𝔷) =∥ 𝜙 ∥ and choosing 𝜌 

such that 𝜌 ≥∥ 𝜙 ∥ Ω and consider 𝐵𝜌 = {𝜒 ∈ 𝒞: ∥ 𝜒 ∥≤ 𝜌}. Now, we define two operators 𝐴1 and 𝐴2 on 

𝐵𝜌 as follows 

(𝐴1𝜒)(𝔷) =   −
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠, 

(𝐴2𝜒)(𝔷) =   
(𝔷 − 𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠). 

Now for any 𝜒1, 𝜒2 ∈ 𝐵𝜌 and for all 𝔷 ∈ [𝔭, 𝔮], we have 

|(𝐴1𝜒1)(𝔷) + (𝐴2𝜒2)(𝔷)| ≤
∥ 𝜙 ∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

+
∥ 𝜙 ∥

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝑑𝑠 

≤
∥ 𝜙 ∥ ((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1)

|Δ|Γ(𝜁 + 1)
+
∥ 𝜙 ∥ (𝔮 − 𝔭)𝜁

Γ(𝜁 + 1)
 

=∥ 𝜙 ∥ Ω 

≤ 𝜌. 

This shows that 𝐴1𝜒1 + 𝐴2𝜒2 ∈ 𝐵𝜌. Also, the continuity of the nonlinear function ∧ can be followed 

from (H2) and from this we can ascertain that that 𝐴1 is continuous. Now we claim that 𝐴1 is uniformly 

bounded. For this purpose, consider 𝑚 =
∥𝜙∥(𝔮−𝔭)𝜁

Γ(𝜁+1)
 and let 𝜒1 ∈ 𝐵𝜌, then 

|(𝐴1𝜒1)(𝔷)| ≤   
∥ 𝜙 ∥

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝑑𝑠 

=   
∥ 𝜙 ∥ (𝔷 − 𝔭)𝜁 ∥

Γ(𝜁 + 1)
 

≤  
∥ 𝜙 ∥ (𝔮 − 𝔭)𝜁

Γ(𝜁 + 1)
  =   𝑚. 

Therefore 𝐴1 is uniformly bonded on 𝐵𝜌. For compactness of 𝐴1, let t1, t2 ∈ [𝔭, 𝔮], t1 < t2 

|(𝐴1𝜒)(t2) − (𝐴1𝜒)(t1)| 

= |
1

Γ(𝜁)
(−∫

t2

𝔭

(t2 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 + ∫

t1

𝔭

(t1 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)| 

= |
1

Γ(𝜁)
(∫

t2

𝔭

(t2 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 −∫

t1

𝔭

(t1 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)| 

= |
1

Γ(𝜁)
(∫

t2

𝔭

((t2 − 𝑠)
𝜁−1 − (t1 − 𝑠)

𝜁−1) ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 +∫
t2

t1

(t2 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)| 
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≤
∥ 𝜙 ∥

Γ(𝜁 + 1)
(−(t2 − t1)

𝜁 + (t2 − 𝔭)
𝜁 − (t1 − 𝔭)

𝜁 +∫
t2

t1

(t2 − 𝑠)
𝜁−1𝑑𝑠), 

as if t2 → t1 , then |(𝐴1𝜒)(t2) − (𝐴1𝜒)(t1)| → 0. Thus 𝐴1is equicontinuous. So 𝐴1 is relatively compact 

on 𝐵𝜌. Hence by Arzela-Ascoli theorem, 𝐴1 is compact on 𝐵𝜌. 

Now using (H1) and (17), we prove that 𝐴2 is a contraction. 

|(𝐴2𝜒1)(𝔷) − (𝐴2𝜒2)(𝔷)| ≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝑐)𝜁(𝔮 − 𝔭)𝛾−1) 

= 𝐿𝜇 ∥ 𝜒1 − 𝜒2 ∥. 

So 𝐴2 is a contraction, and hence concluding by Krasnoselskii’s fixed theorem, the nonlocal Hilfer BVP 

(1) has atleast one solution on [𝔭, 𝔮]. 

 

4  Stability results 

Theorem 5. If 𝑧 ∈ 𝒞3([𝔭, 𝔮],ℝ) satisfies the inequality (7), then for arbitrary 𝜖 ∈ (0,1], 𝑧 is a solution 

of the inequality 

|𝑧(𝔷) − 𝐴(𝑧(𝔷))| ≤ Ω𝜖. 

 

Proof. From Lemma 2 and Remark 2, we can write 

𝑧(𝔷) =
(𝔷 − 𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1(∧ (𝑠, 𝑧(𝑠)) + 𝜓(𝑠))𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1(∧ (𝑠, 𝑧(𝑠)) + 𝜓(𝑠))𝑑𝑠) 

−
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1(∧ (𝑠, 𝑧(𝑠)) + 𝜓(𝑠))𝑑𝑠, 

𝐴(𝑧(𝔷)) =
(𝔷 − 𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔭 − 𝑠)𝜁−1 ∧ (𝑠, 𝑧(𝑠))𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝑧(𝑠))𝑑𝑠) 

−
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝑧(𝑠))𝑑𝑠. 

Further 

|𝑧(𝔷) − 𝐴(𝑧(𝔷))| = |
1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝜓(𝑠)𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝜓(𝑠)𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

−
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝜓(𝑠)𝑑𝑠| 

≤
∥ 𝜓 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) +

∥ 𝜓 ∥ (𝔮 − 𝔭)𝜁

Γ(𝜁 + 1)
 

≤ 𝜖Ω. 

 

Theorem 6. If (H1) and (H2) are fulfilled and 1 − 𝐿𝛺 ≠ 0 holds, then the nonlocal fractional Hilfer 

problem (1) is UH stable. 

 

Proof. Suppose 𝑧 ∈ 𝒞3([𝔭, 𝔮],ℝ) is solution of inequality (7) and due to Therorem 3, let 𝑥 be the unique 

solution of nonlocal fractional Hilfer BVP (1). Let 𝔷 ∈ [𝔭, 𝔮], then 

https://www.ijfmr.com/
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|𝑧(𝔷) − 𝑥(𝔷)| = |𝑧(𝔷) − 𝐴(𝑧(𝔷)) + 𝐴(𝑧(𝔷)) − 𝑥(𝔷)| 

≤ |𝑧(𝔷) − 𝐴(𝑧(𝔷))| + |𝐴(𝑧(𝔷)) − 𝑥(𝔷)| 

≤ Ω𝜖 + Ω𝐿|𝑧(𝔷) − 𝑥(𝔷)| 

As (1 − 𝐿Ω)|𝑧(𝔷) − 𝑥(𝔷)| ≤ Ω𝜖, i.e., ∥ 𝑧 − 𝑥 ∥≤
Ω𝜖

1−𝐿Ω
. Now, by setting 𝐾 =

Ω

1−𝐿Ω
, we obtain ∥ 𝑧 − 𝑥 ∥≤

𝐾𝜖, 𝐾 > 0. Therefore, the nonlocal fractional Hilfer BVP (1) is UH stable. 

 

Remark 3. Further, if we take 𝜙∧(𝜖) = 𝐾𝜖 , 𝜙∧(0) = 0, which implies the nonlocal fractional Hilfer 

BVP (1) is generalized UH stable. 

 

5  Illustrative example 

Example 5.1. Consider the nonlocal fractional Hilfer BVP 

{
 
 

 
 𝐻𝐷𝜁,𝛼𝜒(𝔷) =

1

2(3 + 2𝔷)2
(
𝜒2(𝔷) + 2|𝜒(𝔷)|

1 + |𝜒(𝔷)|
) +

3

2
, 𝔷 ∈ [0,1],

𝜒(0) = 𝜒′(0) = 0, 𝜒(1) =
3

4
𝜒 (
1

2
) ,

 (18) 

 

On comparing the Hilfer fractional BVP (18) with (1), we can obtain the values of various parameters 

gievn as, 𝜁 =
27

10
, 𝛼 =

1

3
, 𝛾 =

84

30
, 𝔭 = 0, 𝔮 = 1, 𝜏 =

1

2
, 𝑘 =

3

4
 and Ω = 1.8011007261 

The assumption (H1) is satisfied for 𝐿 =
1

9
, as 

| ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤
1

9
|𝜒1 − 𝜒2|, 

for all 𝔷 ∈ [0,1] and 𝜒1, 𝜒2 ∈ ℝ. Thus 𝐿Ω ≈ 0.2001223029 < 1. Here all the postulates of Therorem 1 

are satisfied, which gives us the conclusion that nonlocal Hilfer BVP (18) has unique solution on [0,1]. 

Moreover, all the conditions of Therorem 6 are satisfied, thus from Therorem 6 we can also 

conclude that the nonlocal Hilfer BVP (18) is also UH stable. 

Example 5.2. If the non linear function ∧ (𝔷, 𝜒) in (18) is considered as 

∧ (𝔷, 𝜒) =
21

2(3+2𝔷)2
sin (

|𝜒(𝔷)|

1+|𝜒(𝔷)|
) +

3

2
.                                                                                (19) 

For ∧ in (19) the assumption (H1) is satisfied with 𝐿 =
7

6
 as 

| ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤
7

6
|𝜒1 − 𝜒2|, 

for all 𝔷 ∈ [0,1]  and 𝜒1, 𝜒2 ∈ ℝ.  Since, 𝐿Ω ≈ 2.1012841805 > 1 , therefore Therorem 1 can is not 

applicable. On the other hand | ∧ (𝔷, 𝜒)| ≤
8

3
 where 𝑀 =

8

3
> 0, thus all the postulates for Therorem 2 

which asserts us that nonlocal Hilfer BVP (18) with ∧ given by (19) has atleast one solution on [0,1]. 

Example 5.3. If the non linear function ∧ (𝔷, 𝜒) in (18) is considered as 

∧ (𝔷, 𝜒) =
5

(3+2𝔷)2
(
|𝜒(𝔷)|

1+|𝜒(𝔷)|
) +

3

2
.                                                                                         (20) 

For ∧ in (20) the assumption (H1) is satisfied with 𝐿 =
5

9
 Since 

| ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤
5

9
|𝜒1 − 𝜒2|, 

for all 𝔷 ∈ [0,1] and 𝜒1, 𝜒2 ∈ ℝ. Since, 𝐿Ω ≈ 1.0006115145 > 1 which contradicts to the conditions of 
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Theorem 1 and hence Theorem 1 is not applicable. 

The non linear function ∧ is bounded by a function of 𝔷 as 

| ∧ (𝔷, 𝜒)| ≤
5

(3 + 2𝔷)2
+
3

2
= 𝜙(𝔷), 

and 𝜇 = 1.5613297687 and 𝐿𝜇 ≈ 0.867405427 < 1. Hence, by Therorem 4 nonlocal Hilfer BVP (18) 

with ∧ given by (20) has atleast one solution on [0,1]. 

 

6  Conclusion 

We have demonstrated existence and uniqueness results for the nonlocal fractional Hilfer BVP solution 

in the present investigation. Our findings were established using the fixed point theorems of Banach, 

Schafer, and Krasnoselskii. The stability of UH and Generalised UH has been established. We have also 

provided examples to support the validity of our findings. Keeping in the view of the present analysis, it 

can be said that fixed point theory have played a key instrument in this study for establishing a variety of 

fractional BVP conclusions. 
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