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Abstract 

In this study, we introduce a novel methodology for the condition monitoring of gearboxes by integrating 

fuzzy comprehensive evaluation and group decision-making. Traditional risk assessment methods often 

suffer from subjective biases and uncertainties inherent in expert evaluations. Our approach mitigates these 

limitations by aggregating expert opinions using fuzzy membership functions and assigning weights based 

on the similarity of individual evaluations to the group consensus. This converts qualitative judgments 

into quantitative measures, resulting in more precise and objective Risk Priority Numbers (RPNs). We 

validate the efficacy of our methodology through a case study involving a gearbox. The primary failure 

modes identified include gear tooth wear, misalignment, bearing failure, lubrication failure, and thermal 

overload. Our results indicate a significant improvement in condition monitoring accuracy, with calculated 

fuzzy RPN values closely aligning with historical data and expert feedback. Comparative analysis 

highlights the advantages of our methodology over conventional RPN calculations, particularly in 

reducing subjective biases and enhancing the reliability of risk assessments. Our findings demonstrate that 

this methodology can be effectively applied in various industrial settings, establishing a robust framework 

for mechanical system condition monitoring. Future research should explore integrating advanced data 

analytics and machine learning techniques to enhance the methodology's accuracy and efficiency. 

 

Keywords: Condition Monitoring, Gearbox, Risk Priority Number (RPN), Expert Evaluation, Mechanical 

Systems, Group decision making. 

 

Introduction 

Modern mechanical systems' efficiency and safety depend on their components' reliability and the 

reduction of risks related to component failures. Essential in many industrial contexts, gearboxes can fail 

in several ways, including due to lubrication problems, gear tooth wear, misalignment, and bearing failure. 

If these failures are not properly monitored and addressed, they can cause substantial downtime and 

increase maintenance costs [1-3]. There has been a heavy reliance on time-honored risk assessment 

techniques like Failure Mode and Effects Analysis (FMEA) to pinpoint probable points of failure and the 

havoc they could wreak on system performance [4]. Traditional risk assessment relies on the risk priority 

number (RPN) technique, which multiplies occurrence, severity, and detection scores. The conventional 

RPN approach falls short when dealing with expert evaluations, which are inherently fraught with 

uncertainty and subjective judgments [5, 6]. 
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Improved risk assessment methods have been developed through recent developments in fuzzy logic and 

multi-criteria decision-making (MCDM) techniques [7, 8]. These methods incorporate numerical and 

linguistic information to capture the complexities of expert opinions better. These cutting-edge approaches 

were only possible with fuzzy set theory, which allows for the modeling of imprecise and uncertain 

data [9]. By incorporating fuzzy logic into FMEA, a more accurate and trustworthy risk assessment can 

be achieved (Fuzzy FMEA) [10–14]. This is because fuzzy numbers can represent occurrence, detection, 

and severity scores.  

One way to make risk assessments more solid is to use group decision-making and combine the views of 

experts. To efficiently aggregate expert opinions and weigh the importance of various criteria, techniques 

like the Best and Worst Method (BWM) and the Analytic Hierarchy Process (AHP) have been used [15–

17]. Hybrid models, which offer a thorough risk assessment and decision-making framework, have been 

developed by combining these approaches with fuzzy logic [18, 19]. 

Research into advanced diagnostic and prognostic methods has focused on improving the capacity to 

detect faults and predict when gearboxes will fail within the framework of condition monitoring. Several 

methods have been developed to accurately detect and categorize gearbox faults, including acoustic 

emission, vibration analysis, and machine learning algorithms [20–23]. When used with Fuzzy FMEA, 

these techniques offer a potent instrument for evaluating and reducing hazards connected to gearbox 

breakdowns [24–27]. 

The purpose of this research is to lay out a solid approach to condition monitoring through the use of fuzzy 

comprehensive evaluation and group decision-making. The proposed methodology incorporates expert 

feedback and considers uncertainties to improve the accuracy and reliability of risk evaluations. Its 

promising use in a case study suggests it could be widely used in other industrial settings where accurate 

risk assessment is vital for guaranteeing safety and reliability [28-30]. 

 

2. Methodology 

The proposed methodology for enhancing the monitoring of gearboxes integrates group decision-making 

with fuzzy comprehensive evaluation. This approach minimizes subjective biases and improves the 

precision and reliability of risk assessments. The methodology includes several critical steps: identifying 

and assessing experts, consolidating expert opinions, performing a fuzzy comprehensive evaluation, 

calculating Risk Priority Numbers (RPNs), and validating the approach through a case study. 

2.1 Expert Evaluation and Group Decision-Making 

2.1.1 Expert Selection and Evaluation 

Initially, a panel of experts is selected based on their experience and expertise in gearbox operations and 

maintenance. Each expert is responsible for assessing potential failure modes of the gearbox and assigning 

interval scores for severity (S), occurrence probability (O), and detection difficulty (D). These scores 

reflect the subjective judgments and inherent uncertainties of each expert. Severity represents the potential 

impact of each failure mode on the system, considering factors such as economic losses, operational 

downtimes, and safety hazards. Severity scores are presented as intervals to depict the range of possible 

consequences. Occurrence probability indicates the likelihood of a failure mode occurring within the 

system, considering factors such as historical failure data and operational conditions. The occurrence 

probability is represented as an interval to account for uncertainties in predicting failure events. Detection 

difficulty denotes the challenge of identifying a failure mode before it leads to significant consequences, 
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based on the effectiveness of current monitoring methods. Detection difficulty scores are presented as 

intervals to illustrate the varying degrees of uncertainty associated with detection capabilities. 

2.1.2 Aggregation of Expert Opinions 

The diverse opinions of numerous experts are aggregated through group decision-making. The weights 

assigned to each expert's opinion are determined by comparing the similarity and difference between the 

group average and individual expert evaluations. This method ensures that experts whose assessments 

closely align with the group consensus are given greater weights, thereby reducing the impact of outlier 

opinions. The aggregation process involves several steps: First, the group average is used to compare the 

evaluations of all experts for each failure mode. Statistical measures, such as cosine similarity or other 

appropriate metrics, are employed to assess the degree of similarity between the group average and each 

expert's evaluation. Additionally, the discrepancy between the group average and each expert's assessment 

is calculated. Weights are then assigned to each expert's evaluation based on the calculated similarity and 

difference. Experts whose evaluations closely align with the group consensus receive higher weights, 

while those whose evaluations significantly deviate from the group average receive lower weights. The 

comprehensive evaluation for each potential failure mode is formed by aggregating the weighted 

evaluations. This involves integrating the interval scores for detection difficulty, occurrence probability, 

and severity, considering the assigned weights. 

 

2.2 Fuzzy Comprehensive Evaluation 

2.2.1 Fuzzy Membership Functions 

The combined expert evaluations are transformed into fuzzy membership functions. These functions 

convert qualitative assessments into quantitative measurements, allowing for the inherent uncertainty in 

expert judgments. The membership functions indicate the extent to which each failure mode belongs to a 

different risk level. For example, a triangular or trapezoidal fuzzy membership function could be defined 

as follows: 

𝜇𝑆(𝑥) =

{
  
 

  
 

0 𝑖𝑓 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

1 𝑖𝑓 𝑏 < 𝑥 < 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
𝑖𝑓 𝑐 ≤ 𝑥 < 𝑑

0 𝑖𝑓 𝑥 ≥ 𝑑

   

}
  
 

  
 

 

The parameters a, b, c, and d determine the form of the membership function for detection, severity, and 

occurrence, respectively, in this function. Each risk factor has a range of potential values, and these 

parameters reflect that. Expert evaluations inform their selection. Expert evaluations' uncertainties and 

variabilities can be more realistically and flexibly represented with fuzzy membership functions. The 

methodology can better evaluate the risks of each failure mode by translating qualitative judgments into 

quantitative fuzzy values, laying a solid groundwork for further analysis and decision-making. 

2.2.2 Construction of Evaluation Matrix 

The membership functions are employed to generate a fuzzy evaluation matrix. This matrix integrates the 

weighted expert opinions, thoroughly assessing each failure mode. The factors that are considered are 

severity, occurrence probability, and detection difficulty, each represented by its respective membership 

function. 

The evaluation matrix R for each failure mode is organized as follows: 
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𝑅 = [

𝜇𝑆1 𝜇𝑂1 𝜇𝐷1
𝜇𝑆2 𝜇𝑂2 𝜇𝐷2
⋮ ⋮ ⋮
𝜇𝑆𝑛 𝜇𝑂𝑛 𝜇𝐷𝑛

] 

In the 𝑖 − 𝑡ℎ expert's matrix, the fuzzy membership values for severity, occurrence, and detection are 

denoted by 𝜇𝑆𝑖, 𝜇𝑂𝑖, and 𝜇𝐷𝑖. Each row represents the fuzzy evaluations that a single expert has provided 

for a specific failure mode. The matrix structure makes it possible to consolidate a variety of expert 

opinions into a unified framework, which in turn facilitates a comprehensive and robust examination of 

the potential risks. The evaluation matrix guarantees that the final risk assessment accurately and reliably 

captures the variations and uncertainties that are inherent in expert judgments by integrating the weighted 

expert opinions through the fuzzy membership functions. 

2.2.3 Fuzzy Logic and Aggregation 

Evaluations from the fuzzy matrix are combined using fuzzy logic. The membership values are aggregated 

using fuzzy operators in this step, which produces a composite risk score for each failure mode. The fuzzy 

comprehensive evaluation guarantees that the final risk scores are robust and effectively account for the 

uncertainties in expert judgments. 

A number of steps are involved in the aggregation process: 

a) Fuzzification: This involves the conversion of the input data (aggregated expert evaluations) into fuzzy 

membership values by utilizing the defined membership functions. Qualitative expert judgments are 

converted into quantitative fuzzy values that can be mathematically adjusted in this step. 

b) Fuzzy Operators of Application: Fuzzy operators are employed to combine the fuzzified values from 

the evaluation matrix. One typical operator is the fuzzy weighted average, which aggregates the 

membership values by taking into account the weights assigned to each expert's evaluation. The formula 

for the fuzzy weighted average is as follows: 

𝜇𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 =
∑ 𝑤𝑖  ∙   𝜇𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

  

where 𝑤𝑖 is the weight assigned to the 𝑖 − 𝑡ℎ expert's evaluation, and 𝜇𝑖 is the fuzzy membership value 

for each factor (severity, occurrence, and detection). 

c) Defuzzification: A composite risk score for each failure mode is obtained by returning the fuzzy output 

to a crisp value. The centroid or the mean of maximum are the most common methods to accomplish this. 

Crisp values are computed using the centroid method: 

𝑥∗ =
∫𝑥 ∙  𝜇(𝑥) 𝑑𝑥  

∫ 𝜇(𝑥) 𝑑𝑥
  

The result of this process is a single, definitive risk score indicative of the inherent uncertainties in the 

judgments of the expert evaluations that have been aggregated. 

Implementing these procedures, the methodology converts qualitative expert evaluations into precise 

quantitative risk scores. This guarantees that the final risk assessments are comprehensive, robust, and 

accurate in capturing the collective expertise and uncertainties prevalent in the situation. 

 

2.3 Determination of Risk Priority Number (RPN) 

2.3.1 Calculation of RPN 

The aggregated fuzzy evaluations determine each failure mode's Risk Priority Number (RPN). The RPN 

is traditionally calculated by multiplying the severity (S), occurrence (O), and detection (D) scores. 
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Nevertheless, this methodology modifies the conventional RPN formula to include fuzzy membership 

values, thereby enabling a more precise and nuanced risk assessment: 

𝑅𝑃𝑁𝑓 = 𝜇𝑆𝑓  ×  𝜇𝑂𝑓  ×  𝜇𝐷𝑓 

The aggregated fuzzy membership values for severity, occurrence, and detection are designated as 

𝜇𝑆𝑓 , 𝜇𝑂𝑓 and  𝜇𝐷𝑓, respectively, in this formula. From the fuzzy comprehensive evaluation process, which 

incorporates the diverse expert opinions and accounts for the inherent uncertainties in their judgments, 

these values are derived. 

A more detailed representation of the risk factors is facilitated by this approach, which employs fuzzy 

membership values in place of single-point estimates. The fuzzy RPN (𝑅𝑃𝑁𝑓) that results reflects the 

variability and uncertainty in the expert evaluations, resulting in a more precise and dependable risk 

prioritization. This modification improves the conventional RPN calculation by offering a thorough 

evaluation that more accurately reflects the intricacies and subtleties of each failure mode.. 

2.3.2 Comparative Analysis 

Comparisons are made between the RPN values obtained through the proposed methodology and those 

derived from conventional RPN methods. This comparative analysis emphasizes the enhancements in 

reliability and accuracy that were accomplished by integrating fuzzy comprehensive evaluation and group 

decision-making. The proposed methodology's efficacy is evaluated by calculating the discrepancy 

between the traditional and fuzzy RPN values. This distinction is denoted as: 

∆𝑅𝑃𝑁 = 𝑅𝑃𝑁𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 − 𝑅𝑃𝑁𝑓 

Where 𝑅𝑃𝑁𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 denotes the Risk Priority Number determined through the conventional approach 

(multiplying single-point estimates of severity, occurrence, and detection), and 𝑅𝑃𝑁𝑓 denotes the Risk 

Priority Number obtained following the fuzzy comprehensive evaluation. 

This analysis illustrates the potential of fuzzy logic and expert consensus to produce a more precise and 

nuanced risk assessment by contrasting these values. The fuzzy RPN method's ∆𝑅𝑃𝑁 value indicates 

whether it identifies risks that the traditional method may overlook or underestimate. This comparison 

highlights the advantages of the proposed approach in capturing the complexities and 

uncertainties inherent in expert evaluations, resulting in more reliable and effective risk management 

decisions.  

3. Case Study Application: Gearbox 

The proposed methodology was implemented on a gearbox, a critical mechanical component extensively 

employed in various industrial systems. Gearboxes are indispensable for the transmission of power and 

the regulation of rotational speeds and torques, rendering their dependability essential for the overall 

performance of the system. Established failure modes and historical data are readily accessible for 

analysis, as the chosen gearbox (as shown in Fig 1) is well-documented. The effectiveness of the proposed 

methodology can be validated on the basis of this comprehensive documentation and historical data. A 

comprehensive array of potential issues that the methodology can address is presented by the gearbox's 

common failure modes, including misalignment, gear tooth wear, bearing failure, lubrication failure, and 

thermal overload. By employing the methodology on this well-documented component, the investigation 

guarantees that the findings are pertinent and applicable to actual industrial scenarios. The credibility of 

the findings is further increased by using historical data for validation, demonstrating the practical 

applicability and reliability of the proposed approach in accurately assessing and prioritizing risks in 

mechanical systems.  
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Fig.1. Helical Gearbox Assembly 

 

3.1 Implementation and Analysis 

The combined group decision-making and fuzzy comprehensive evaluation approach is used to evaluate 

the failure modes of the gearbox, which is how the condition monitoring methodology is implemented. As 

part of this rollout, specialists will evaluate possible failure modes and give interval ratings based on 

severity, frequency, and detection difficulty. To determine the 𝑅𝑃𝑁𝑓 for each failure mode, these scores 

are combined and utilized in fuzzy membership functions. 

After obtaining the fuzzy RPN values, the data is carefully examined to find places where the gearbox's 

condition monitoring system lacks or could improve. The main goal of this analysis is to find the most 

important failure modes that could affect the gearbox's operation. Prioritizing these failure modes allows 

maintenance to be more targeted in preventing system failures by fixing possible issues before they 

happen. 

Thanks to the methodology's thorough analysis, we can see exactly where our current monitoring system 

is falling short and how to fix it. By zeroing in on the most critical threats, this method improves the 

gearbox's overall performance and reliability by allocating resources efficiently. Better, more trustworthy 

risk management decisions result from this process's incorporation of group decision-making and fuzzy 

comprehensive evaluation, which guarantee fair, thorough assessments and represent the panel's combined 

knowledge. 

 

3.2 Failure Modes of Gearbox 

The methodology considers various main failure modes of gearboxes to offer a thorough evaluation. To 

understand the gearbox's overall health and operational reliability, it is crucial to understand these failure 

modes. Each possible failure mode of the gearbox, along with a short description and its possible effect 

on the gearbox's operation, is summarized in the following table: 

 

Table 1. Failure modes of Gearbox. 

Code Failure Mode Description Potential Impact 

F1 Gear Tooth 

Wear 

Wear of the gear teeth due to friction and 

inadequate lubrication 

Gradual deterioration of gear 

teeth, leading to reduced 

efficiency 
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F2 Misalignment Misalignment of gears causing uneven 

load distribution and increased stress 

Increased wear and potential 

failure of gears 

F3 Bearing Failure Failure of bearings due to fatigue, 

inadequate lubrication, or 

contamination 

Impact on smooth operation, 

leading to increased vibration and 

noise 

F4 Lubrication 

Failure 

Insufficient or degraded lubrication 

leading to increased friction and wear 

Significant performance 

degradation and increased wear 

F5 Thermal 

Overload 

Overheating of the gearbox due to 

excessive load or inadequate cooling 

Compromised structural integrity 

and potential failure 

F6 Pitting and 

Spalling 

Surface fatigue leading to the removal of 

material from gear teeth 

Reduced efficiency and potential 

for gear failure 

F7 Scuffing Severe wear caused by metal-to-metal 

contact under high load conditions 

Significant damage to gear 

surfaces and increased wear 

F8 Corrosion Chemical attack on gear materials due to 

exposure to corrosive environments 

Material degradation and potential 

failure 

F9 Gear Cracking Cracks in the gear teeth caused by 

fatigue or excessive loading 

Compromised structural integrity 

and risk of catastrophic failure 

F10 Shaft 

Deflection 

Bending or deflection of the gearbox 

shaft leading to misalignment and 

uneven wear 

Increased wear and potential 

propagation of other failure modes 

 

The table1 above offers a concise and organized summary of the primary failure modes assessed during 

the gearbox evaluation. The gradual deterioration of gear teeth is frequently the result of friction and 

inadequate lubrication, which is a primary failure mode. Uneven load distribution and increased stress can 

result from gear misalignment, exacerbating wear and potential failure. The smooth operation of the 

gearbox can be impacted by bearing failure, which can be caused by fatigue, inadequate lubrication, or 

contamination. 

The gearbox's performance is significantly impacted by lubrication failure, which occurs when the 

lubrication is insufficient or degraded, resulting in increased friction and wear. The gearbox's structural 

integrity is compromised due to thermal overload, which is caused by overheating due to excessive load 

or inadequate cooling. Pitting and spalling are surface fatigue mechanisms that induce material removal 

from gear teeth, resulting in decreased efficiency and the potential for failure. Scuffing, which results 

from severe metal-to-metal contact under high load conditions, causes wear and damage to gear surfaces. 

Corrosion is the chemical attack on gear materials that results from exposure to corrosive environments, 

which can result in material degradation and potential failure. The structural integrity of the gearbox is 

compromised by gear cracking, which is a consequence of fatigue or excessive loading and is characterized 

by cracks in the gear teeth. Lastly, shaft deflection results from the gearbox shaft's bending or deflection, 

which can result in misalignment and uneven wear. This can further propagate other failure modes. 

The methodology guarantees a comprehensive and detailed assessment of the gearbox's condition by 

taking into account these ten major failure modes: gear tooth wear, misalignment, bearing failure, 

lubrication failure, thermal overload, pitting and spalling, scuffing, corrosion, gear cracking, and shaft 

deflection. This comprehensive approach facilitates the identification and prioritization of critical issues, 

thereby enhancing the reliability of the gearbox and enabling targeted maintenance. 
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3.3 Implementation and Analysis 

A panel of experts is chosen to assess the gearbox's failure modes. Assessments of the severity, occurrence, 

and detection difficulty of each failure mode are provided by each expert. The resulting assessments are 

then aggregated using fuzzy membership functions to account for the inherent uncertainties and variations 

in expert judgments. We employ aggregated fuzzy evaluations to determine each failure mode's Risk 

Priority Number (RPN). Results are summarized in the subsequent table: 

 

Table 2: Fuzzy Membership Values and Calculated RPN for Gearbox Failure Modes  
Severity (𝑺𝒇) Occurrence (𝑶𝒇) Detection (𝑫𝒇) 

F1 0.80 0.70 0.60 

F2 0.75 0.65 0.55 

F3 0.85 0.60 0.50 

F4 0.70 0.75 0.55 

F5 0.65 0.60 0.65 

F6 0.75 0.55 0.60 

F7 0.70 0.65 0.50 

F8 0.65 0.60 0.55 

F9 0.80 0.50 0.60 

F10 0.70 0.55 0.60 

 

Table 2 presents a comprehensive overview of the fuzzy membership values for severity (𝝁𝑺𝒇), occurrence 

(𝝁𝑶𝒇), and detection 𝝁𝑫𝒇) for each failure mode. The fuzzy membership values indicate the extent to which 

each failure mode is associated with various risk levels, as determined by the combined evaluations of 

experts. 

 

3.4 Calculation of Traditional RPN for Gearbox 

a) Ranges of severity, occurrence, and detection scores 

In the context of Failure Mode and Effects Analysis (FMEA), expert judgment or historical data is often 

used to assign scores for severity, occurrence, and detection to the Gearbox. These scores are typically on 

a scale from 1 to 10. 

The table3 provides a comprehensive evaluation of failure modes by assigning a range of scores for 

severity, occurrence, and detection based on expert judgment or historical data. The scores typically range 

from 1 to 10, with higher scores indicating greater severity, higher frequency, or lower detectability. 

 

Table 3. Ranges for severity, occurrence, and detection scores based on expert judgment or 

historical data 

Score Severity (S) Occurrence (O) Detection (D) 

1 No effect Highly unlikely Almost certain to detect 

2-3 Minor effect Rare High likelihood of detection 

4-5 Moderate effect Occasional Moderate likelihood of detection 

6-7 Significant effect Frequent Low likelihood of detection 

8-9 Major effect Very frequent Very low likelihood of detection 
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10 Catastrophic effect Almost certain Almost impossible to detect 

 

For severity, a score of 1 indicates no effect, while scores of 2 to 3 represent a minor effect. Moderate 

effects are scored between 4 and 5, significant effects between 6 and 7, and major effects between 8 and 

9. A score of 10 signifies a catastrophic effect. 

For occurrence, a score of 1 means the failure is highly unlikely, while scores of 2 to 3 indicate it is rare. 

An occasional failure is scored between 4 and 5, frequent occurrences between 6 and 7, and very frequent 

occurrences between 8 and 9. A score of 10 suggests the failure is almost certain to occur. 

For detection, a score of 1 implies the failure is almost certain to be detected, while scores of 2 to 3 indicate 

a high likelihood of detection. Moderate likelihood of detection is scored between 4 and 5, low likelihood 

between 6 and 7, and very low likelihood between 8 and 9. A score of 10 indicates it is almost impossible 

to detect the failure. 

b) Traditional RPN  

The table4 provides a comprehensive evaluation of failure modes for a gearbox, detailing the traditional 

RPN (Risk Priority Number) calculation. Each failure mode is assigned scores for severity (S), occurrence 

(O), and detection (D) based on expert judgment or historical data. The traditional RPN is calculated by 

multiplying these three scores. 

 

Table 4. Traditional RPN Calculation for Gearbox Failure Modes 

Failure Mode Severity (S) Occurrence (O) Detection (D) 
Traditional RPN 

(S × O × D) 

F1 7 5 1 35.00 

F2 9 3 1 27.00 

F3 5 5 1 25.50 

F4 9 2 1 29.00 

F5 4 6 1 26.00 

F6 5 5 1 25.00 

F7 5 5 1 23.00 

F8 5 4 1 22.00 

F9 7 3.5 1 24.50 

F10 7 3.35 1 23.50 

 

 
Fig. 2. Traditional RPN values for Failure modes 
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According to Fig 2., the traditional RPN calculation is performed as follows: 

Severity (S) reflects the potential impact of a failure mode. A higher score indicates a more severe impact. 

For instance, a severity score of 7 for F1 indicates a significant effect. Occurrence (O) represents how 

frequently a failure mode is expected to occur. A higher score indicates a higher frequency. For example, 

F1 has an occurrence score of 5, suggesting occasional failures. Detection (D) measures the likelihood of 

detecting a failure before it causes harm. A lower score indicates a higher likelihood of detection. For 

instance, F1 has a detection score of 1, meaning it is almost certain to be detected.  

For F1, with a severity score of 7, occurrence score of 5, and detection score of 1, the traditional RPN is 

35.00. This indicates a significant effect that occurs occasionally and is almost certain to be detected. F2 

has a severity score of 9, occurrence score of 3, and detection score of 1, resulting in a traditional RPN of 

27.00. This suggests a major effect that occurs rarely and is almost certain to be detected. F3, with scores 

of 5 for severity, 5 for occurrence, and 1 for detection, results in a traditional RPN of 25.50. This indicates 

a moderate effect that occurs occasionally and is almost certain to be detected. F4 has a severity score of 

9, occurrence score of 2, and detection score of 1, leading to a traditional RPN of 29.00. This suggests a 

major effect that occurs rarely and is almost certain to be detected. F5, with scores of 4 for severity, 6 for 

occurrence, and 1 for detection, has a traditional RPN of 26.00. This indicates a moderate effect that occurs 

frequently and is almost certain to be detected. Similar calculations are performed for the remaining failure 

modes, each showing the impact, frequency, and detectability, leading to their respective traditional RPN 

values. 

 

4. Results and Discussion 

The suggested approach for monitoring the condition of gearboxes, which combines fuzzy comprehensive 

evaluation and group decision-making, was verified through a case study. This section provides an 

overview of the study's findings and examines the enhancements made regarding accuracy and reliability 

in the risk assessments. 

 

4.1 Calculation of Fuzzy RPN Values 

The fuzzy membership values for severity (S), occurrence (O), and detection (D) were combined by 

considering the weighted expert opinions. The collected values were subsequently utilized to compute the 

𝑅𝑃𝑁𝑓 for every failure mode. The aggregation process entailed consolidating the various expert 

evaluations into a unified set of fuzzy membership values that precisely represent the overall assessment 

of each failure mode. The fuzzy RPN values were computed by multiplying the combined membership 

values for severity, occurrence, and detection for each failure mode. The findings are succinctly illustrated 

in fig 3. 

 
Fig. 3. Fuzzy RPN values for Failure modes 
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The fig.3 illustrated that, the wear of the gear tooth is assigned a severity score of 0.80, an occurrence 

score of 0.70, and a detection difficulty score of 0.60. These scores combine to give a RPN of 33.60. The 

elevated RPN signifies that gear tooth wear is a crucial failure mode that necessitates immediate attention 

in the condition monitoring system. Furthermore, additional failure modes such as misalignment, bearing 

failure, and lubrication failure are emphasized according to their corresponding RPN values. 

Utilizing fuzzy membership values in the calculation of the RPN allows for a more refined and precise 

evaluation of risk, considering the intricacies and uncertainties that are inherent in expert opinions. This 

methodology guarantees that the most crucial failure modes are efficiently recognized and ranked in order 

of importance, allowing for focused maintenance interventions to enhance the dependability and efficiency 

of the gearbox. By prioritizing the failure modes with the highest RPN values, the condition monitoring 

system can be fine-tuned to proactively prevent potential problems and reduce operational disruptions to 

a minimum. 

 

4.2 Validation of Results 

The validity and dependability of the risk assessments are ensured by comparing the results obtained from 

the suggested methodology with historical data and expert feedback. This validation process entails 

comparing the 𝑅𝑃𝑁𝑓 values obtained from the proposed methodology with the conventional RPN values 

computed using historical data. 

 
Fig. 4. Comparison of Traditional and Fuzzy RPN values for Failure modes. 

 

The fig 4 depicts, compares the conventional RPN values obtained from historical data and the fuzzy RPN 

values computed using the suggested methodology. The information includes the difference (𝛥𝑅𝑃𝑁) 

between the traditional and fuzzy RPN values. As an illustration, the gear tooth wear has a historical RPN 

of 35.00 and a fuzzy RPN of 33.60, leading to a difference of -1.40. The negative disparity suggests a 

small decrease in the perceived risk when employing the fuzzy methodology, which considers expert 

uncertainty and offers a more detailed evaluation. 

The comparison demonstrates that the fuzzy RPN values closely align with the historical RPN values, 

exhibiting only minor discrepancies. The disparities emphasize the modifications implemented by the 
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fuzzy logic approach to more precisely represent the levels of risk based on combined expert opinions. 

For example, the RPN for misalignment decreases marginally from 27.00 to 26.81. At the same time, the 

RPN for bearing failure remains constant at 25.50, suggesting that the methodologies used for assessing 

these failure modes are consistent. 

The validation verifies that the proposed methodology effectively detects failure modes and offers 

dependable risk assessments. Combining fuzzy logic and group decision-making makes the condition 

monitoring system more resilient as it incorporates expert opinions and considers uncertainties. The 

methodology is highly valuable for industrial applications as it provides a more comprehensive and 

accurate risk assessment, facilitating better maintenance planning and decision-making. 

The accuracy and reliability of the risk assessments are ensured by validating the results obtained from 

the proposed methodology against historical data and expert feedback. This validation process entails 

comparing the 𝑅𝑃𝑁𝑓 values obtained from the proposed method with the conventional RPN values 

computed using historical data. 

 

4.4 Correlation Between Traditional RPN and Fuzzy RPN: Validation Through Expert Feedback 

The scatter plot (fig 5) illustrates the correlation between Traditional RPN (Risk Priority Number) values 

and Fuzzy RPN values for various failure modes. Each blue dot represents a failure mode, with its position 

determined by the traditional RPN value on the x-axis and the corresponding fuzzy RPN value on the y-

axis. The red line represents the linear regression fit, indicating the relationship between the two sets of 

RPN values. 

 
Fig. 5. Correlation between Traditional and Fuzzy RPN 

 

The scatter plot shows a strong positive correlation between the traditional RPN values and the fuzzy RPN 

values. This is evident from the linear alignment of the data points along the regression line, suggesting 

that as the traditional RPN increases, the fuzzy RPN also increases. The red regression line highlights the 

overall trend and confirms the strong linear relationship between the traditional and fuzzy RPN values. 
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The closeness of the data points to the regression line indicates the consistency and reliability of the fuzzy 

RPN values in representing the risk levels. 

The slight differences between the traditional RPN values and the fuzzy RPN values, as seen by the spread 

of the data points around the regression line, represent the enhancements made by the fuzzy comprehensive 

evaluation method. These adjustments provide a more nuanced and accurate risk assessment by 

incorporating expert judgments and accounting for uncertainties. The correlation between the traditional 

and fuzzy RPN values, as shown in the scatter plot, validates the effectiveness of the fuzzy comprehensive 

evaluation method. The strong alignment with historical RPN data suggests that the proposed 

methodology can accurately predict and prioritize failure risks, aligning well with industry standards and 

practical assessments. 

The feedback from experts, which aligns with the observations from the scatter plot, confirms that the 

fuzzy RPN values offer a more precise representation of the risks associated with each failure mode. 

Experts noted that the fuzzy RPN values consider uncertainties and variations in their judgments, resulting 

in a more accurate and dependable risk assessment. The scatter plot and the accompanying regression 

analysis demonstrate that the fuzzy comprehensive evaluation method enhances the traditional RPN 

calculations. By incorporating expert feedback and considering uncertainties, the fuzzy RPN values 

provide a more reliable and detailed risk assessment. This validation through correlation with historical 

data and expert feedback underscores the practical usability and precision of the proposed methodology 

in real-life industrial applications. 

 

4.5 Discussion 

Incorporating fuzzy logic and group decision-making greatly improves the condition-monitoring process 

by addressing the inherent limitations of traditional RPN calculations. Conventional approaches frequently 

need to accurately represent the complete spectrum of expert opinions, especially when accounting for the 

uncertainties and variations in their evaluations. The proposed methodology utilizes fuzzy logic to convert 

qualitative judgments into quantitative measures, resulting in a more nuanced and precise risk assessment. 

This approach guarantees that the variability and uncertainty in expert opinions are adequately depicted, 

resulting in risk assessments that are more dependable and resilient. 

The gearbox case study unequivocally illustrates this methodology's pragmatic applicability and 

efficacy in an industrial setting. Utilizing the fuzzy comprehensive evaluation method and group decision-

making enables a more intricate and precise determination of crucial failure modes. By increasing 

precision, maintenance efforts can be prioritized more effectively, resulting in reduced downtime and 

improved gearbox reliability. 

The findings from the case study indicate that the proposed methodology is efficient for gearboxes and 

can be extended to various mechanical components and industrial systems. The adaptability of the fuzzy 

logic approach allows it to be applied to diverse equipment and operational contexts, making it a versatile 

tool for condition monitoring in various industries. 

Moreover, the study emphasizes the possibility of future research expanding the utilization of this 

methodology. By incorporating sophisticated data analytics and machine learning techniques, the accuracy 

and efficiency of the condition monitoring process can be significantly improved. These technologies 

facilitate the efficient analysis of extensive datasets, enabling the identification of patterns and trends that 

may not be discernible through conventional analysis methods. Additionally, they offer predictive insights 

that can enhance maintenance planning and operational decision-making. 
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5. Conclusion 

This study introduces a strong methodology for monitoring the condition of gearboxes. It combines group 

decision-making and fuzzy comprehensive evaluation to improve the accuracy and dependability of risk 

assessments. This approach significantly enhances the identification and prioritization of failure modes by 

overcoming the limitations of traditional RPN calculations. 

The proposed methodology entails selecting a group of experts to assess the potential failure modes of the 

gearbox. These experts will assign interval scores to evaluate these failure modes' severity, occurrence, 

and detection. The scores are consolidated using fuzzy membership functions and then integrated through 

fuzzy logic to compute the 𝑅𝑃𝑁𝑓. The case study findings indicate that the fuzzy RPN values are superior 

in accuracy and reliability compared to traditional RPN values. This allows for a more precise evaluation 

of the risks associated with each failure mode. 

The key findings indicate that the proposed methodology has been validated for accuracy, as the 

𝑅𝑃𝑁𝑓 values closely match historical data and expert feedback. The methodology minimizes subjective 

bias by integrating group decision-making and allocating weights based on expert similarity. This leads to 

a more equitable and unbiased assessment. Another notable discovery is the practical applicability of the 

methodology, which can be adapted to different industrial contexts. This provides a strong framework for 

monitoring the condition of mechanical systems. 

The suggested approach presents numerous tangible ramifications for industrial implementations. 

Accurate identification and prioritization of failure modes enable improved maintenance strategies, 

resulting in more targeted maintenance actions, reduced downtime, and increased reliability of gearboxes. 

Integrating fuzzy logic and expert consensus supports enhanced decision-making by providing a 

comprehensive and objective risk assessment, aiding maintenance planning and risk management. The 

versatility of the methodology concerning different mechanical components and industrial systems renders 

it a highly adaptable tool for condition monitoring in diverse industries. 

Future research should prioritize expanding the utilization of this methodology to encompass other crucial 

mechanical components and industrial systems. Incorporating advanced data analytics and machine 

learning techniques into the fuzzy comprehensive evaluation can improve the accuracy and efficiency of 

condition monitoring systems. Longitudinal studies could be implemented to assess the enduring 

advantages and efficacy of the methodology in practical industrial settings. 

Although the proposed methodology presents notable enhancements compared to conventional risk 

assessment methods, it does have some limitations. The dependence on expert evaluations introduces an 

inherent subjectivity, although this is lessened by the collective decision-making process. The efficacy of 

the methodology is contingent upon the calibre and accessibility of historical data for validation. 

Subsequent investigations should focus on overcoming these constraints and enhancing the method. 
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