

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Prevalence of Work-Related Musculoskeletal Disorders for Teaching & Non-Teaching Personnel of Doña Remedios Trinidad Romualdez Educational Foundation Inc: A Correlation Study

Mary Quisquisan¹, Ralph Jay Boyo², Eugene Jr. Jaingue³ Mariah Francesca Elizabeth Managbanag⁴, Earl John Vergara⁵, Alona Jane Anquillano⁶, Lesvie Joy Gabrillo⁷, Megan Vinculado⁸, Aubrey Silvina Casilan⁹, Gwynth Kaye Sudario¹⁰, Faivy Kristine Alcalde¹¹, Julienne Daffon¹²

^{1,2,3,4,5,6,7,8,9,10,11,12}Department of Physical Therapy College of Biomedical Sciences, Doña Remedios Trinidad Romualdez Educational Foundation, Tacloban City, Philippines

Abstract:

The study aimed to answer the questions: (1) Is there prevalence of work-related musculoskeletal disorders in Doña Remedios Trinidad Romualdez Educational Foundation Inc. (DRTREFI) teaching and nonteaching personnel; (2) Is there a significant relationship between WMSDs and (a) demographics, (b) environmental factors, & (c) ergonomic factors. A descriptive observational study with a correlational design was utilized. There were 126 respondents in total, consisting of 52 teaching personnel and 74 nonteaching personnel from DRTREFI. Respondents met the inclusion criteria of having worked at the institution for at least one year and experienced pain or discomfort in any body region in the past two months. The study mainly utilized two questionnaires namely the Prevalence of work-related musculoskeletal disorders for teaching & non-teaching personnel of Dona Remedios Trinidad Romualdez Educational Foundation Inc. Questionnaire (PWMSDTNTP), a researcher-made questionnaire, and the Work-related Musculoskeletal Disorder Form which was based on the Nordic Questionnaire. The lower back has the highest reported incidence of discomfort for the past 12 months (53.96%) and past seven days (24.60%), with the neck, shoulder, elbow, wrist/hand, upper back, thighs/hips, knees, and ankles, also having reports of pain and discomfort. There was a relevant correlation between discomfort experienced by the respondents and the demographic, environmental, & ergonomic factors with p values less than 0.05. The study concluded that WMSDs were prevalent in DRTREFI teaching and non-teaching personnel. Additionally, there was a significant relationship between demographic profiles, environmental factors, and ergonomic factors with WMSDs among the respondents.

Keywords: Work-related musculoskeletal disorders, teaching & non-teaching personnel, pain patterns.

1. INTRODUCTION

Musculoskeletal disorders (MSD) are a group of painful disorders of muscles, tendons, and nerves. Injuries can result from overuse and develop over time [1]. Work-related musculoskeletal disorders (WMSDs) are conditions in which the work environment and performance of work contribute significantly to the condition and/or the condition is made worse or persists longer due to work conditions [2]. Previous studies revealed a high prevalence of MSD among school teachers with the highest number in the lower back (56%) [3]. School canteen workers' most affected body parts in terms of discomfort and MSD were the neck (80%) & upper back (70%) [4].

2. NEED OF THE STUDY

With the high prevalence of MSDs in both teaching and non-teaching personnel, in relation to Article 4 Section 7.6 of the Commission on Higher Education Memorandum order No. 55 series of 2017 a need to conduct this study is useful to be able to devise a health and wellness program for the teaching and non-teaching personnel of DRTREFI aiming to reduce the prevalence of WMSDs and managing the pain and discomfort, promoting health and improved quality of life through the practice of the profession.

The objectives of the study includes answering the following questions: (1) Is there a prevalence of WMSDs in DRTREFI teaching and non-teaching personnel; (2) Is there a significant relationship between musculoskeletal disorders and (a) demographics, (b) environmental factors, & (c) ergonomic factors.

2.1 Population and Sample

The researchers utilized simple random sampling in choosing the respondent for the study. The respondents were the teaching and non-teaching personnel of DRTREFI with the following inclusion criteria: have worked for at least one year in the institution and has experienced pain and discomfort in any region of the body in the past two months, and exclusion criteria: trauma/injury in the past 6 months of the study, diagnosed neurological condition, pregnant, six months post-operation. There was a total of 126 respondents, with 52 coming from the teaching population and 74 from the non-teaching population, obtained using a simple random sampling method.

2.2 Data and Sources of Data

For this study, secondary data has been collected from the website Google Scholar that allow the researchers to access articles from Jan 2007 to Feb 2024 from various journals that provided necessary information for the formulation of the study.

2.3 Theoretical Framework

Sauter and Swanson's theory [5] guides the study, emphasizing the interplay between work organization and physical demands in affecting musculoskeletal strain. Upon understanding these factors, targeted interventions to mitigate WMSDs, improve health, and enhance quality of life can be developed.

3. RESEARCH METHODOLOGY

3.1 Population and Sample

The researchers utilized simple random sampling in choosing the respondent for the study. The respondents were the teaching and non-teaching personnel of DRTREFI with the following inclusion criteria: have worked for at least one year in the institution and has experienced pain and discomfort in any region of the body in the past two months, and exclusion criteria: trauma/injury in the past 6 months of the study, diagnosed neurological condition, pregnant, six months post-operation. There was a total of

126 respondents, with 52 coming from the teaching population and 74 from the non-teaching population, obtained using a simple random sampling method.

3.2 Data and Sources of Data

For this study, secondary data has been collected from the website Google Scholar that allow the researchers to access articles from Jan 2007 to Feb 2024 from various journals that provided necessary information for the formulation of the study.

3.3 Theoretical framework

This study was viewed to benefit from Sauter and Swanson's theory[5]. According to this hypothesis, both work organization factors and physical demands of the work were impacted by technologies and the nature of the labor. Workplace organizational characteristics had an impact on physical demands, psychological strain, and biomechanical strain in a direct and indirect manner, respectively. The way labor was organized might have an influence on biomechanical strain by altered posture (physical demands) or muscular tension. The association between biomechanical strain and WMSDs was also expected to be moderated by work organization and individual characteristics.

3.4 Instrumentation

Data were collected using two types of questionnaires. A researcher-made questionnaire "Prevalence of Work-related Musculoskeletal Disorder for Teaching and Non-Teaching Personnel of DRTREFI: Basis for Health & Wellness Program Questionnaire (PWMSDTNTP Questionnaire)" and the "Work-related Musculoskeletal Discomfort form" based on the Nordic Musculoskeletal Questionnaire. The researcher-made questionnaire gathered information on demographics that included age, sex, height, weight, BMI, history of MSD and other health conditions, sleeping routine, exercise habits, vices, and number of work hours per day and per week. The work environment, and ergonomics assessment were acquired from the Self-Assessment Checklist & Washington Industrial Safety and Health Act (WISHA) Caution Zone Checklist with a validity and reliability of 0.38-0.93 and greater specificity than sensitivity. The second questionnaire was the "Work-related Musculoskeletal Discomfort form" from the Nordic Musculoskeletal Questionnaire which can be used as an assessment instrument for screening MSDs in an ergonomic context and health care for workers. And is a valid questionnaire used to identify locations of discomfort over the past 12 months and the past seven days [6]. The NMQ has been applied to a wide range of occupational groups to evaluate musculoskeletal problems, including computer and call center workers, car drivers, coopers in the whisky industry, nursing and forestry workers [7]

3.5 Statistical tool and econometric models

Frequency count/analysis was used to determine the demographics, environmental factors, ergonomic factors, and musculoskeletal pain patterns. To determine the relationships between variables, the Chi-Square test and Pearson r correlation test were used, where a significant value was set below 0.05.

4. RESULTS AND DISCUSSION

4.1 Result of demographic profile and pain patterns

VARIABLE	FREQUENCY	PERCENTAGE
Age		TERCEIVIAGE
25-30	44	34.92
31-35	16	12.70
36-40	19	15.08

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

41-45	12	9.52
46-50	11	8.73
51-55	8	6.35
56-60	2	1.59
61-65	2	1.59
66-70	3	2.38
71-75	8	6.35
81-85	1	0.01

 Table 4.1.1 shows the frequency distribution of the age of the respondents

VARIABLE	FREQUENCY	PERCENTAGE
HEIGHT		
4ft 9in - 4ft 11in	9	7.14
5ft - 5ft 2in	57	45.24
5ft 3in - 5ft 5in	45	35.71
5ft 6in - 5ft 8in	12	9.52
5ft 9in - 5ft 11in	3	2.38

Table 4.1.2 shows the frequency distribution of height of the respondents

VARIABLE	FREQUENCY	PERCENTAGE
WEIGHT		
36-40 kg	1	0.79
41-45 kg	8	6.35
46-50 kg	14	11.11
51-55 kg	45	35.71
56-60 kg	18	14.29
61-65 kg	3	2.38
66-70 kg	23	18.25
71-75 kg	11	8.73
76-80 kg	1	0.79
81-85 kg	2	1.59

Table 4.1.3 shows the frequency distribution of the weight of the respondents

VARIABLES	FREQUENCY	DEDCENTAGE	
BMI	TREQUENCI	FERCENTAGE	
Underweight	3	2.38	
Normal	53	42.06	
Overweight	65	51.59	

Obese type 1	5	3.97

Table 4.1.4 shows the frequency distribution of body mass index (BMI) of the respondents

VARIABLE	FREQUENCY	PERCENTAGE
HISTORY OF MSD AND OTHER HEALTH CONDITION		
No	109	86.51
Yes	17	13.49

Table 4.1.5 shows the frequency distribution having history of musculoskeletal disorders (MSD)and other health conditions of the participants

VARIABLE	FREQUENCY	PERCENTAGE
SLEEPING ROUTINE		
4-6 hrs	66	52.38
7-10 hrs	60	47.62

 Table 4.1.6 shows the frequency distribution of the sleeping routine of the respondents

VARIABLE	FREQUENCY	PERCENTAGE
EXERCISE HABIT		
0 x /wk	1	0.79
1-2 x/wk	44	34.92
3-4 x/wk	70	55.56
5 or more x /wk	11	8.73

Table 4.1.7 shows the frequency distribution of the exercise habits of the respondents

VARIABLE	FREQUENCY	PERCENTAGE
VICES		
No	101	80.16
Yes	25	19.84

 Table 4.1.8 shows the frequency distribution of vices of the respondents as to drinking and /or alcoholic beverage drinking

VARIABLE	FREQUENCY	DEDCENITAGE
# OF WORK HRS. PER DAY	TREQUENCI	TERCENTAGE
<8hrs	44	34.92
8hrs	67	53.17
>8hrs	15	11.90

Table 4.1.9 shows the frequency distribution of work hours per day of the respondents

VARIABLE	FREQUENCY	PERCENTAGE
# OF WORKDAYS PER WEEK		
<5days	36	28.57

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

5 days	37	29.37
>5 days	53	42.06

Table 4.1.10 shows the frequency distribution of the work hours per week of the respondents

	Last 12 m	nonths		Last 12 mor	nths (pre	vented)	During the	last 7 day	ys
	Not	No	yes	Not	No	yes	Not	No	yes
	answere			answered			answered		
	d								
Neck	3	63	60	25	90	11	25	83	18
Shoulder	5	74	47	36	88	2	25	82	20
Elbow	3	108	15	78	45	3	33	89	4
Wrist/Hand	3	86	37	42	75	9	29	92	5
Upper Back	3	58	65	39	78	9	30	83	13
Lower Back	3	55	68	43	71	12	39	56	31
One or both	3	85	38	46	75	5	35	80	11
hips/thighs									
One or both	1	95	30	44	80	2	31	84	11
knees									
One or both	3	90	33	40	81	5	35	86	5
ankles/foot									

Table 4.1.11 shows the frequency distribution pain patterns reported by the respondents duringthe last 7 days to the last 12 months

A total number 126 teaching and non-teaching personnel within the age group of 25-85 years old, with 75 (59.52%) females participated in this study. Fifty-seven (45.24%) were 5ft-5ft 2 in, 45 (35.71%) weighed 51-55 kg, 65 (51.59%) were overweight, and 109 (86.51%) did not have a history of MSD. For the last 12 months, 68 (53.96%) respondents reported having experienced pain and discomfort in the lower back area, 65 (51.58%) on the upper back, 60 (47.61%) on the neck, 47 (37.30%) on the shoulder, 38 (30.15%) on the hips/thighs, 37 (29.36%) on the wrist/hand, 33 (26.19%) on ankle/foot, 30 (23.80%) on knees, and 15 (11.90%) on elbow. On the other hand, for the past seven days, the lower back (24.60%), shoulder (15.87%), and neck (14.28%) have the highest percentage of reported pain and discomfort.

4.2 Result of correlation between demographics profile and musculoskeletal discomfort

	N	eck	Sho	ulder	Elt	woo	Wrist	t/Hand	Uppe	r Back	Lowe	r Back	Hips/	Thighs	Kn	ees	Ankle	e/Foot
	CS- value	p-value	CS- value	p- value	CS- value	p- value	CS- value	p- value										
Age	27.62	0.59	77.49	0.008	48.89	0.158	57.36	0.221	29.55	0.489	30.42	0.063	18.46	0.557	18.79	0.535	24.68	0.214
Sex	9.87	0.02	8.56	0.128	10.61	0.031	9.21	0.101	2.18	0.536	1.88	0.391	1.94	0.378	3.12	0.21	0.409	0.815
Height	13.04	0.366	47.17	0.001	36.11	0.003	14.43	0.808	8.87	0.714	13.31	0.102	11.93	0.155	7.31	0.504	12.86	0.117
Weight	49.19	0.006	74.26	0.004	53.53	0.03	96.04	0.000	45.42	0.015	30.68	0.031	53.42	0.000	30.94	0.029	43.32	0.001
BMI	9.36	0.404	8.79	0.888	11.37	0.498	11.37	0.498	3.07	0.961	1.86	0.932	3.55	0.737	6.83	0.337	4.75	0.576
History of MSD	2.82	0.421	4.07	0.54	2.37	0.668	7.51	0.185	0.88	0.832	6.45	0.040	0.66	0.718	0.48	0.788	0.28	0.246
Sleeping Routine	2.44	0.486	6.17	0.29	6.12	0.19	5.32	0.378	3.93	0.269	5.3	0.071	1.75	0.417	1.93	0.381	2.41	0.300
Exercise Habit	5.23	0.95	26.68	0.145	13.76	0.617	26.79	0.141	19.26	0.082	13.87	0.085	3.73	0.881	3.73	0.881	13.76	0.617
Vices	1.92	0.588	40.48	0.000	18.3	0.001	27.6	0.000	2.74	0.433	6.31	0.043	2.00	0.368	1.35	0.509	0.78	0.676
# of Work hrs. per day	7.66	0.264	11.81	0.298	8.65	0.373	8.47	0.583	19.75	0.003	3.31	0.507	3.14	0.534	13.6	0.009	4.03	0.403
# of Workdays	22.51	0.001	12.43	0.257	10.97	0.204	25.74	0.004	11.16	0.084	8.39	0.078	5.45	0.244	9.09	0.059	6.99	0.136

Table 4.2.1 shows the correlation between demographic profile and musculoskeletal pain patternsfor the last 12 months

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Variable									Area	IS								
	N	eck	Sho	ulder	Elt	oow	Wrist	t/Hand	Uppe	r Back	Lowe	er Back	Hips/	Thighs	Kn	ees	Ankle	e/Foot
	CS-	p-value	CS-	p-	CS-	p-	CS-	p-										
	value		value		value		value		value		value		value	value	value	value	value	value
Age	53.52	0.000	28.08	0.107	56.66	0.000	30.3	0.065	34.13	0.025	29.74	0.074	41.7	0.003	27.73	0.002	39.27	0.006
Sex	5.32	0.07	2.09	0.353	1.00	0.607	8.92	0.012	0.844	0.656	0.74	0.689	3.82	0.148	0.005	0.545	2.84	0.242
Height	19.17	0.014	19.61	0.012	17.42	0.026	72.04	0.000	12.88	0.116	14.26	0.075	36.57	0.000	12.42	0.014	16.99	0.030
Weight	24.09	0.152	16.35	0.568	20.32	0.315	32.02	0.022	28.85	0.054	28.76	0.051	11.96	0.849	12.78	0.173	34.16	0.012
BMI	8.69	0.192	14.18	0.028	10.15	0.119	11.44	0.076	21.06	0.002	24.41	0.000	16.87	0.01	17.23	0.001	16.02	0.014
History of MSD	6.02	0.049	8.49	0.014	30.08	0.000	4.51	0.105	6.24	0.044	7.06	0.029	5.2	0.074	4.62	0.032	5.01	0.082
Sleeping Routine	7.46	0.024	1.9	0.387	3.86	0.145	3.53	0.171	1.14	0.567	1.32	0.518	6.24	0.044	2.19	0.19	6.44	0.040
Exercise Habit	7.34	0.501	10.22	0.25	18.81	0.016	52.08	0.000	13.34	0.101	15.99	0.042	13.53	0.095	3.61	0.461	7.57	0.476
Vices	9.3	0.01	1.76	0.415	4.68	0.096	2.39	0.301	0.71	0.702	0.49	0.780	3.98	0.136	4.00	0.061	0.001	0.999
# of Work hrs. per day	11.2	0.024	7.74	0.102	3.57	0.467	10.32	0.035	4.61	0.33	3.68	0.450	4.02	0.403	2.21	0.331	6.75	0.150
# of Workdays per week	8.02	0.091	15.46	0.004	4.64	0.327	8.68	0.07	12.74	0.013	12.47	0.014	6.34	0.175	3.87	0.145	8.88	0.064

Table 4.2.2 shows the correlation between demographic profile and musculoskeletal pain patternsfor the last 12 months (prevented)

Variable									Are	as								
	N	eck	Sho	ulder	Elt	ow	Wrist	/Hand	Uppe	er Back	Lowe	er Back	Hips/	Thighs	Kn	ees	Ankle	/Foot
	CS- value	p-value	CS- value	p- value	CS- value	p- value	CS- value	p- value										
Age	74.87	0.000	66.94	0.000	41.22	0.003	36.22	0.015	58.24	0.000	53.81	0.000			48.07	0.000	69.09	0.000
Sex	0.029	0.985	7.37	0.025	6.33	0.042	13.36	0.001	0.946	0.623	1.18	0.555			2.79	0.248	0.942	0.624
Height	17.38	0.026	16.82	0.032	7.15	0.52	31.37	0.000	9.28	0.319	11.98	0.152			13.95	0.083	48.72	0.000
Weight	34.09	0.012	27.69	0.067	20.16	0.324	25.87	0.103	26.51	0.089	13.66	0.751			18.77	0.406	49.14	0.000
BMI	17.83	0.007	33.73	0.000	21.48	0.002	19.74	0.003	31.72	0.000	28.71	0.000			28.99	0.000	23.9	0.001
History of MSD	8.15	0.017	4.06	0.131	4.41	0.066	1.49	0.473	9.6	0.008	6.41	0.041			6.74	0.034	4.72	0.094
Sleeping Routine	10.57	0.005	7.45	0.024	5.31	0.07	2.76	0.252	12.76	0.002	19.72	0.000	19.72	0.000	11.2	0.004	13.42	0.001
Exercise Habit	29.02	0.000	23.07	0.003	4.78	0.781	17.76	0.023	17.49	0.025	12.43	0.133	12.43	0.133	11.14	0.194	5.02	0.755
Vices	5.68	0.058	10.42	0.005	1.17	0.556	1.57	0.456	4.12	0.128	4.28	0.117	4.28	0.117	3.00	0.223	4.16	0.125
# of Work hrs. per day	4.2	0.38	19.44	0.001	13.55	0.009	16.29	0.003	2.77	0.597	11.06	0.026	11.06	0.026	12.92	0.012	4.79	0.309
# of Workdays	1.98	0.74	9.94	0.041	10.8	0.029	10.88	0.028	14.46	0.006	6.18	0.186	6.18	0.186	9.00	0.061	4.61	0.329

Table 4.2.3 shows the correlation between demographic profile and musculoskeletal pain patternsfor the last 7 days

Chi square test of demographic profile to musculoskeletal discomfort for the last 12 months presented results of the correlation between demographic profile and discomfort (table 5A). Neck discomfort is highly correlated to weight with a p value of 0.006. Shoulder pain and discomfort on the other hand has the highest correlation with height (0.001), weight (0.004), & age (0.008). Other areas of pain and discomfort such as the elbow were correlated with height (0.003). Weight is greatly associated with complaints of discomfort in the wrist/hand (0.000), upper back (0.015), lower back (0.031), knees (0.029), and ankle/foot (0.001). In addition, the respondents' correlation of demographic factors to discomfort experienced in the past 7 days was presented in table 5C. Reports of discomfort are highly correlated with

age (0.000), weight (0.012), height (0.026), BMI (0.007), & history of MSD (0.017). Age is highly correlated with discomfort in the shoulder (0.000), elbow (0.003), wrist/hand (0.015), upper back (0.000), lower back (0.000), knees (0.000), and ankle/foot (0.000). These findings are further supported with previous studies where BMI has a significant impact on musculoskeletal pain and women who are overweight are more likely to get MSK pain [8].

VARIABLE Number of Floors	FREQUENCY	PERCENTAGE
1 storey	10	794
2 storey	21	16.67
3 storey	34	26.98
4 storey	37	29.37
5 storey	9	7.14
6 storey	12	9.52
7 storey	3	2.38

4.3 Result of environmental factors and their correlation to musculoskeletal discomfort

 Table 4.3.1 shows the frequency distribution of number of floors the building the respondents are working on

VARIABLE FLOOR USUALLY WORKING ON	FREQUENCY	PERCENTAGE
1st floor	59	46.83
2nd floor	45	35.71
3rd floor	5	3.97
4th floor	11	8.73
5th floor	6	4.76

Table 4.3.2 shows the frequency distribution of the floor the respondents are usually working on

	Table 2C. M	edium of Transport	
BLE		EDEOUENCE	

VARIABLE	FREQUENCY	PERCENTAGE		
MEDIUM OF TRANSPORT	TREQUEIVET	TERCEIVINGE		
Stairs	89	70.63		
Elevator	33	26.19		
Walk	1	0.79		
Not Applicable	3	2.38		

 Table 4.3.3 shows the frequency distribution of the medium of transport the respondents utilize

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

VARIABLE	FDEOLIENCV	DEDCENTACE		
# of Co-Workers	TREQUENCI	FERCENTAGE		
1-5	67	53.17		
6-10	36	28.57		
11-15	12	9.52		

Table 4.3.4 shows the frequency distribution of the number of co-workers respondents have

VARIABLE	EDEOLIENCV	DEDCENITACE		
WORKPLACE SHARING	TREQUENCI	FERCENTAGE		
No	36	28.57		
Yes	90	71.43		

Table 4.3.5 shows the frequency distribution of workplace sharing the respondents have

VARIABLE	FREQUENCY	PERCENTAGE
AVAILABILITY OF INSTRUMENTS		
No	123	97.62
Yes	3	2.38

Table 4.3.6 shows the frequency distribution of availability of instruments respondents have thataids in their daily tasks at work

Variable	Areas																	
	N	eck	Sho	ulder	Elbow		Wrist	/Hand	Uppe	r Back	Lower Back		Hips/Thighs		Knees		Ankle/Foot	
	CS- value	p- value																
Number of floors of the work building	27.77	0.066	77.35	0.000	32.47	0.116	72.26	0.000	28.29	0.058	14.51	0.270	16.29	0.178	14.36	0.278	9.23	0.683
Floor usually working on	18.74	0.095	20.08	0.163	27.46	0.037	34.18	0.025	18.09	0.113	17.41	0.026	19.96	0.01	6.06	0.641	18.38	0.019
Medium of transport from one floor to another	6.3	0.709	11.78	0.696	5.02	0.957	22.63	0.092	7.09	0.627	15.45	0.017	9.43	0.151	4.57	0.6	5.2	0.518
Number of co- workers in a shared environment (office)	21.89	0.237	31.58	0.387	26.69	0.319	25.48	0.701	29.99	0.038	21.49	0.044	20.08	0.066	28.8	0.004	32.12	0.001
Workspace Sharing	3.88	0.274	4.18	0.524	27.46	0.037	7.5	0.186	4.08	0.253	1.36	0.506	1.37	0.503	9.09	0.011	7.02	0.030
Availability of instruments to decrease load and	0.39	0.943	2.16	0.827	0.51	0.972	1.43	0.921	0.57	0.904	0.69	0.709	1.48	0.477	0.17	0.917	0.14	0.931

stress

Table 4.3.7 shows the correlation between environmental factors and musculoskeletal painpatterns for the last 12 months

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Variable		Areas																
	N	eck	Sho	ulder	Elb	ow	Wrist	/Hand	Uppe	r Back	Lower Back		Hips/Thighs		Kn	ees	Ankle/Foot	
	CS- value	p- value																
Number of floors of the work building	29.18	0.004	23.83	0.021	26.5	0.009	32.24	0.001	39.41	0.000	31.54	0.002	39.51	0.000	24.96	0.000	34.53	0.001
Floor usually working on	14.83	0.062	20.98	0.007	27.92	0.000	20.78	0.008	23.88	0.002	23.72	0.003	22.42	0.004	22.84	0.000	33.93	0.000
Medium of transport from one floor to another	25.71	0.000	12.73	0.048	4.89	0.557	14.58	0.024	11.58	0.072	11.8	0.067	18.31	0.006	11.95	0.008	10.58	0.102
Number of co- workers in a shared environment (office)	12.89	0.377	19.13	0.085	21.19	0.048	37.63	0.000	17.49	0.132	21.75	0.040	17.85	0.12	15.69	0.016	17.63	0.127
Workspace Sharing	6.004	0.05	6.72	0.035	1.39	0.5	17.67	0.000	2.73	0.256	4.11	0.128	5.76	0.056	3.36	0.097	1.27	0.531
Availability of instruments to decrease load and stress	1.23	0.541	1.33	0.515	0.09	0.956	2.09	0.352	1.89	0.388	2.94	0.230	2.09	0.352	1.65	0.551	1.71	0.426

Table 4.3.8 shows the correlation between environmental factors and musculoskeletal painpatterns for the last 12 months (prevented)

Variable									Are	as								
	N	eck	Sho	ulder	Elb	ow	Wrist	/Hand	Uppe	r Back	Lower Back		Hips/Thighs		Knees		Ankle/Foot	
	CS-	p-	CS-	p-	CS-	p-	CS-	p-	CS-	p-								
	value	value	value	value	value	value	value	value	value									
Number of floors of the work building	64.49	0.000	40.98	0.000	27.16	0.007	44.84	0.000	60.01	0.000	36.57	0.000	42.24	0.000	41.95	0.000	33.51	0.001
Floor usually working on	67.39	0.000	37.2	0.000	20.36	0.009	18.69	0.017	43.99	0.000	39.65	0.000	33.19	0.000	27.41	0.001	40.22	0.000
Medium of transport from one floor to another	20.31	0.002	24.48	0.000	21.41	0.002	24.64	0.000	18.96	0.004	16.58	0.011	14.53	0.024	14.16	0.028	14.47	0.025
Number of co- workers in a shared environment (office)	15.54	0.213	26.49	0.009	32.45	0.001	26.49	0.009	30.2	0.003	25.45	0.013	24.35	0.018	43.98	0.000	20.95	0.051
Workspace Sharing	6.31	0.043	1.006	0.605	20.36	0.009	4.91	0.086	1.45	0.485	5.59	0.058	10.92	0.004	4.77	0.092	16.22	0.000
Availability of instruments to decrease load and stress	1.59	0.451	1.65	0.438	1.28	0.528	1.14	0.567	1.59	0.451	1.59	0.510	1.77	0.413	1.54	0.464	1.43	0.489

Table 4.3.9 shows the correlation between environmental factors and musculoskeletal painpatterns for the last 7 days

The environmental factors that were gathered were the number of floors of buildings the respondents are working on, medium of transport from one floor to another, workplace sharing, & availability of instruments for lifting, reaching, or transporting objects. Results revealed that 37 (29.37%) of the respondents work on a four-storey building, 34 (26.98%) on a three-storey, 21 (16.67%) on a two-storey, 12 (9.52% on a six-storey, 10 (7.94%) on a one-storey, nine (7.14%) on a five-storey, and seven (2.38%) on a seven-storey building respectively. The data further revealed that the medium of transport from one floor to another had more than two-thirds (70.63%) of the respondents stated that they usually use stairs when they are going up or descending the building. In addition, more than four-fifths (91.26%) of the respondents answered that they have between 5 - 15 number of co-workers in their offices. Furthermore, at workplace sharing, it was disclosed that almost thirty 49 percent (28.57%) of the respondents res

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

that they have privacy, and they were not sharing things at all in their respective offices, & Availability of Instrument had a 97.62% was gathered from the respondents. A correlation study using the Chi squure test revealed that for the past 12 months, number of floors of the work building has the highest correlation to shoulder discomfort with a p-value of 0.000. Floor usually working on, on the other hand, is correlated with pain in the elbow (0.037), wrist/hand (0.025), lower back (0.026), hips/thighs (0.01), and ankle/foot (0.019). Lower back pain is also correlated to the medium of transport from one floor to another with a pvalue of 0.017 and number of co-workers in shared environment (0.044). For the past 7 days, a correlational study was also conducted, with shoulder pain being highly correlated to the number of floors of the work building (0.000), floor usually working on (0.000), medium of transport from one floor to another (0.000), and number of co-workers in a shared environment (0.009). Upper extremity, lower and upper back and hips/thigh pain is also similarly correlated to the factors contributing to shoulder pain with p values less than 0.05. Environmental factors, mainly the type of workstation, uncomfortable environment, working posture, and time spent at the workstation, had a huge impact on musculoskeletal pain [9].

VARIABLES	WEIGHTED MEAN	SD	QUALITATIVE DESCRIPTION
Awkward Posture	3.55	0.47	Agree
Stationary Position	3.48	0.43	Agree
Repetition and Duration of Work	3.27	0.38	Neutral
Forceful Motion	3.2	0.68	Neutral
Direct Pressure	3.2	0.43	Neutral
Vibration	3.33	0.75	Neutral
Workplace Set Up	3.96	0.32	Agree
Grand Mean	3.43	0.32	Agree

4.4 Result of ergonomic factors and their correlation to musculoskeletal discomfort Table 3. Mean Distribution of Ergonomic Factors

Table 4.4.1 shows the mean distribution of ergonomic factors

Variable									Area	s								
	Neck		Shoulder		Elbow		Wrist/Hand		Upper Back		Lower Back		Hips/Thighs		Knees		Ankle/Foot	
	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r- value	p- value	r- value	p- value	r- value	p- value
Awkward Posture	-0.13	0.136	-0.01	0.916	-0.05	0.548	-0.09	0.293	-0.05	0.555	0.01	0.932	-0.06	0.494	0.03	0.698	0.02	0.828
Stationary	-0.01	0.938	-0.02	0.802	-0.17	0.061	-0.14	0.129	-0.12	0.192	-0.05	0.089	-0.06	0.491	0.07	0.439	-0.02	0.833
Repetition	0.18	0.050	0.03	0.711	-0.04	0.642	-0.07	0.440	0.05	0.548	0.01	0.946	0.06	0.535	0.13	0.149	-0.03	0.750
Forceful Movement	0.14	0.109	0.00	0.996	-0.01	0.923	-0.03	0.735	0.03	0.698	0.07	0.436	0.08	0.358	0.05	0.542	-0.07	0.450
Direct pressure	-0.04	0.646	-0.17	0.052	-0.05	0.577	-0.04	0.655	-0.18	0.043	0.01	0.895	0.06	0.524	-0.14	0.129	-0.05	0.608
Vibration	0.13	0.142	-0.02	0.788	-0.06	0.526	0.03	0.777	0.02	0.792	-0.04	0.679	0.06	0.480	0.07	0.427	-0.09	0.337
Workplace	-0.211	0.017	0.118	0.189	-0.023	0.801	-0.312	0.142	-0.240	0.007	-0.088	0.328	-0.153	0.087	-0.050	0.578	-0.062	0.494

Table 4.4.2 shows the correlation between ergonomic factors and musculoskeletal pain patterns forthe last 12 months

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Variable	e Areas																	
	Neck		Neck Shoulder		Elt	Elbow		/Hand	Upper Back		Lower Back		Hips/Thighs		Kn	ees	Ankle/Foot	
	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r- value	p- value	r- value	p- value	r- value	p- value
Awkward	_								_									_
Posture	0.01	0.907	0.08	0.373	-0.02	0.797	0.04	0.648	0.10	0.281	0.14	0.122	0.17	0.060	0.16	0.075	0.14	0.106
Stationary	0.26	0.004	0.21	0.019	0.16	0.069	0.15	0.090	0.20	0.026	0.26	0.004	0.24	0.006	0.33	0.000	0.24	0.007
Repetition	0.27	0.002	0.25	0.005	0.13	0.154	0.15	0.100	0.20	0.026	0.33	0.000	0.27	0.002	0.36	0.000	0.15	0.102
Forceful												_						
Movement	0.18	0.045	0.27	0.002	0.10	0.262	0.15	0.103	0.16	0.075	0.24	0.007	0.16	0.072	0.21	0.020	0.05	0.573
Direct																		
pressure	-0.07	0.441	-0.10	0.284	-0.02	0.814	-0.11	0.223	-0.20	0.023	-0.10	0.264	-0.10	0.244	-0.18	0.039	-0.20	0.024
Vibration	0.19	0.038	0.24	0.007	0.00	0.964	0.08	0.372	0.13	0.151	0.19	0.029	0.12	0.192	0.16	0.081	0.01	0.906
Workplace	-0.17	0.058	-0.09	0.333	0.02	0.852	0.10	0.253	0.03	0.726	0.02	0.861	0.14	0.120	0.15	0.097	0.16	0.076

Table 4.4.3 shows the correlation between ergonomic factors and musculoskeletal pain patterns for the last 12 months (prevented)

Table 6B. Pearson Moment Correlation Test of Ergonomic Factors to Musculoskeletal Pain Patterns for the Last 7 Days

variable									Area	IS								
	Ne	eck	Sho	Shoulder		Elbow		Wrist/Hand		Upper Back		Lower Back		Hips/Thighs		Knees		e/Foot
	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r-value	p-value	r- value	p- value	r- value	p- value	r- value	p- value
Awkward Posture	0.10	0.247	0.10	0.248	0.20	0.024	0.17	0.057	0.13	0.136	0.23	0.010	0.16	0.077	0.27	0.003	0.19	0.032
Stationary	0.30	0.001	0.30	0.001	0.18	0.050	0.09	0.296	0.19	0.034	0.26	0.003	0.20	0.027	0.12	0.179	0.22	0.015
Repetition	0.37	0.000	0.33	0.000	0.23	0.011	0.18	0.047	0.29	0.001	0.38	0.000	0.21	0.016	0.22	0.012	0.35	0.000
Forceful Movement	0.18	0.041	0.21	0.018	0.12	0.175	0.11	0.202	0.24	0.007	0.25	0.005	0.11	0.220	0.12	0.178	0.16	0.075
Direct pressure	-0.18	0.047	-0.09	0.306	-0.13	0.144	-0.17	0.056	-0.14	0.114	-0.07	0.464	-0.18	0.039	-0.21	0.020	-0.23	0.011
Vibration	0.17	0.057	0.20	0.022	0.09	0.328	0.05	0.556	0.15	0.090	0.21	0.018	0.06	0.482	0.05	0.581	0.06	0.504
Workplace	0.07	0.446	-0.30	0.711	-0.078	0.456	0.04	0.666	0.03	0.738	0.12	0.176	0.06	0.476	0.08	0.395	0.16	0.071

Table 4.4.4 shows the correlation between ergonomic factors and musculoskeletal pain patterns for
the last 7 days

The ergonomic factors consist of awkward posture, stationary position, repetition and duration of work, forceful motion, direct pressure, vibration, and workplace setup. The results showed that both the teaching and non-teaching staff executed poor body mechanics and ergonomics with a weighted mean of 3.55 (SD 0.47) and a weighted mean of 3.48 (SD 0.43) indicating that the staff work in a stationary position. The data revealed that some personnel are not comfortable working, indicating that even though their offices are set up for functionality, they lack comfort. Most on the other hand, respondents are reluctant to share their thoughts regarding other ergonomic aspects such as prolonged and repetitive work, forceful movements, direct pressure, and vibration. Correlation study using the pearson moment correlation test revealed that for the past 12 months, work place set up has the highest correlation to neck pain or discomfort with a p value of 0.017, followed by repetition with a p value of 0.050. Workplace set-up is also correlated to pain and discomfort in the upper back with p value of 0.007. Additional correlational study using the pearson moment correlation test was initiated for pain and discomfort in the neck area is correlated with repetition of movement with p value 0.000, stationary position (0.001), forceful movement (0.041) & direct pressure (0.047). Shoulder pain and discomfort is further correlated with

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

environmental factors with p value below 0.050 such as repetition (0.000), stationary position (0.001), forceful movement (0.018), & direct pressure (0.022). Elbow pain and discomfort is correlated with repetition (0.011), awkward posture (0.024) & stationary position (0.050). In addition, wrist and/or hand pain and discomfort is correlated with repetition of movement with p value of 0.047. Pain and discomfort on other areas of the body and their correlation to environmental factors are presented in table 6A to 6C, with repetition of movement being highly correlated to pain and discomfort experienced in upper back (0.001), lower back (0.000), knees (0.012), and ankle and/or foot (0.000). Repetitive tasks is considered as one of the parameters to be evaluated in the development of Modified Rapid Entire Body Assessment thus, implicating the relationship of repetitive tasks to musculoskeletal disorders [10]. On the other hand, the relationship between stationary positions and work-related musculoskeletal disorder was also revealed as a risk factor[11]. several studies identified force, posture, compression, repetition, duration, vibration, and temperature as physical risk factors for the progress of WMSDs, if present in the long run, could result in decreased blood flow, elongation, compression, tears or strains to muscles, tendons, ligaments and nerves as well as disc or joint damage[12]

ACKNOWLEDGMENT

This study was made successful through the significant guidance of the people involved in the completion of this study. The researchers would like to express their deep and sincere gratitude to Mr. Jay Anthony O. Cañete, the dean of the Department of Physical Therapy of the institution, who gave trust to the researchers as well as giving instrumental supervision and encouragement of this study.

To Ms. Ana Jo E. Santos, a great thanks for providing the researchers with invaluable support and tutelage during the entire course of this study.

The researchers are especially indebted to Mr. Alwayne Mercado for sharing his proficiency in statistics, and who actively worked to interpret and analyze the results of the study.

Thanks and appreciation are also given to the respondents of the study who willingly participated in the study.

Most importantly, the researchers give their sincerest thanks to their parents and family, whose love and guidance are with the researchers in whatever they pursue. Lastly, the researchers would like to thank God Almighty.

REFERENCES

- 1. Musculoskeletal Disorders (MSDs). Canadian Centre for Occupational Health and Safety. February 10,2024. Accessed March 12 2023. https://www.ccohs.ca/topics/hazards/ ergonomic/wsmd
- Work-Related Musculoskeletal Disorders & Ergonomics. U.S. Centers for Disease Control and Prevention. February 12,2020. Accessed January 15, 2023. https://www.cdc.gov/workplacehealthpromotion/health-strategies/musculoskeletaldisorders/index.htm
- 3. Amit, L. M., & Malabaras, G. T. Prevalence and RiskFactors of Musculoskeletal Disorders Among Provincial High School Teachers in the Philippines. PubMed. October 2022
- 4. Gumansing, M. J., & Espejo, E. E. An ergonomic approach on facilities and workstation design of public-school canteen in the Philippines. Health Research and Development Information Network (HERDIN) October 2022

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

- 5. Stack T, Ostrom L, Wilhelmsen C. Occupational Ergonomics: A Practical Approach. John Wiley & Sons, Inc ;2016.
- 6. Chairani Aulia. Validity and Reliability Test of the Nordic Musculoskeletal Questionnaire with Formal and Informal Sector Workers. 2010;100:1-7. doi:10.26991
- 7. Crawford Joanne. The Nordic Musculoskeletal Questionnaire.2007;57(4):300-301. doi: 10.1093.
- Asif I, Afreen S, Robina M, Kiyani MF, Shahzana K, et al. Effects of Body Mass Index on Work Related Musculoskeletal Discomfort within University Teachers. Ann Neurol Neurosurg. 2023; 2(1): 1009. Accessed August 19,2023.http://meddocsonline.org/
- Haridasan, D.; Singh, D.K.A.; Abd Razak, N.A.B.; Baharom, N.B. Personal, Academic Stressors and Environmental Factors Contributing to Musculoskeletal Pain among Undergraduates Due to Online Learning: A Mixed Method Study with Data Integration. Int. J. Environ. Res. Public Health .2022; 19 : 1-21.doi:10.3390.
- Okezue, O. C., Anamezie, T., Nene, J., & Okwudili, J. (2020, September 30). Work-Related Musculoskeletal Disorders among Office Workers in Higher Education Institutions: A Cross Sectional Study. PubMed Central. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047279/
- 11. Yazdani Rad, S., Pourtaghi, G., Raei, M., & Ghasemi, M. (2022, January 24). Development of Modified Rapid Entire Body Assessment (MORENA) Method for Predicting The Risk of Musculoskeletal Disorders in the Workplace. Springer. https://link.springer.com/article/10.1186/s12891-022-05011-7
- 12. Afreen, S., Malik, R., Kiyani, M. F., Khalid, S., Shehzad, M., & Asif, I. (2023, April 26). Effects of Body Mass Index on Work Related Musculoskeletal Discomfort within University Teachers. MedDocs Open Access Publisher. https://meddocsonline.org/annals-of-neurology-and-neurosurgery/effects-ofbody-mass-index-on-work-related-musculoskeletal-discomfort-within-university-teachers.pdf