

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240425009 Volume 6, Issue 4, July-August 2024 1

Automatic Component Prediction for Issue

Reports

DR. Bhargavi Peddi Reddy1, P. Bindu Sriya2, Hrishitha Rayapati3

1,2,3Department of Computer Science, Vasavi College of Engineering, Hyderabad, India

Abstract.

Every day, there's a constant influx of software problems emerging during the testing and maintenance

phases. With software becoming larger and more intricate, this issue count is on the rise, necessitating

swift management. However, handling these issues manually proves challenging due to their complexity

and sheer volume, often leading to inefficient and costly outcomes.

Previous research endeavors have explored automating this triage process through machine learning and

word-based language models, aiming to predict the component related to an issue. This component in-

formation is crucial for software engineers to pinpoint the problem's location. Yet, existing methods

have fallen short of expectations due to their structural limitations and failure to grasp the context of

words. To address this, we propose a novel approach leveraging pretrained language models, particularly

fine-tuning BERT on a diverse dataset of issue reports. By doing so, we surpass the limitations of

LSTM-based methods and enhance performance in predicting issue components.

Keywords: Component recommendation, machine learning, natural language processing, pretrained

language model, software engineering.

1 Introduction

The increasing complexity and scale of modern software development have led to a surge in reported

issues during testing and maintenance phases. Issue tracking systems like Jira and Bugzilla play a crucial

role in managing these issues systematically. However, the manual triage of these issues by human ex-

perts has become increasingly challenging due to their volume and complexity.

A problem report usually includes various details like title, description, reporter information, product,

component, priority, severity, and additional data. Identifying the appropriate component in a problem

report is crucial for software engineers to precisely locate the reported issue or bug. In projects with

changing scopes, the number of components may significantly increase over time, complicating manual

triage further.

The manual triage process involves assigning issue reports to appropriate components based on expert

knowledge of project modules and codebases. However, this process is labor-intensive and prone to er-

rors, resulting in significant time and cost expenditures. For instance, in real-world industrial settings

like the Eclipse project, a quarter of issue reports were reassigned due to triage errors, costing substantial

person-hours daily.

To address these challenges, there is a compelling need to automate and optimize the issue triage process

using advanced tool support. This paper introduces an innovative method utilizing fine-tuned pretrained

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240425009 Volume 6, Issue 4, July-August 2024 2

models to forecast components from issue report data. Through the utilization of pretrained language

models, we seek to address the structural constraints identified in LSTM-based approaches.

In this study, we evaluate the effectiveness of fine-tuned pretrained language models by comparing their

performance against a baseline method. Our goal is to demonstrate the superiority of pretrained language

models in accurately predicting issue components, thereby paving the way for efficient automation of

the issue triage process and improving overall software quality.

2 Literature Survey

Sureka et al. endeavored to forecast components utilizing a machine learning approach comprising term

frequency-inverse document frequency along with a component reassignment graph. The TF-IDF tech-

nique facilitates the extraction of content-oriented textual features. During experimentation, they ob-

served that component reassignment led to a decline in accuracy. Consequently, they integrated a com-

ponent reassignment graph that accounts for alterations in the issue report. Thus, they devised a predic-

tive model that merges TF-IDF with a component reassignment graph to generate the top-k outcomes for

components.

Yan et al. introduced a discriminative probability latent semantic analysis model aimed at predicting

components based on the issue report's topic. They concentrated on identifying which component close-

ly aligns with the terms describing its function within the bug report. To achieve this, they developed a

semantic analysis model where issue reports served as documents and components as categories, follow-

ing the approach suggested by Lu et al. Their experiment involved extracting the top-k results from a

dataset comprising 6,000 issue reports' titles and descriptions, covering ten components. They attained

enhanced recall outcomes at k, signifying the top-k component predictions. However, their dataset com-

prised only ten components, fewer than the one we utilized. Thus, Yan et al.'s model showcases the po-

tential of component prediction through semantic analysis, even with a smaller component set compared

to other datasets.

3 Design

A. Dataset

The dataset was collected from the Eclipse platform and Bugzilla Firefox, each comprising approximate-

ly 10,000 records with an average of 18 components. The dataset is structured into three classes: title,

description, and component. We allocated 80% of the dataset for training purposes and the remaining

20% for testing.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240425009 Volume 6, Issue 4, July-August 2024 3

B. Algorithms used

1. RoBERTa (Transformer-Based Language Model):

RoBERTa is a transformer-based language model that utilizes bidirectional self-attention mechanisms

to understand the context of words and their relationships within sentences. It employs a masked lan-

guage modeling objective and pre-training on large text corpora to capture complex linguistic patterns.

• The text data is tokenized using the RoBERTa tokenizer, segmenting input sequences into sub word

tokens.

• The pre-trained RoBERTa model is fine-tuned on the issue report data to perform multilabel classifi-

cation for component prediction.

• Adam optimizer with a learning rate of 5e-6 is used for training. The model is trained for a specified

number of epochs to optimize component prediction accuracy.

2. LSTM (Word-Based Recurrent Neural Network):

Long Short-Term Memory is a recurrent neural network (RNN) capable of learning long-range depend-

encies in sequential data. It processes input data word by word and maintains memory across time steps.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240425009 Volume 6, Issue 4, July-August 2024 4

• Text data is tokenized into sequences of words and padded to ensure uniform length for batch pro-

cessing.

• Embedding layers map words into dense vector representations to capture semantic meaning.

• LSTM layers process sequential input data and learn to extract relevant features for component pre-

diction.

• The LSTM model is trained using Adam optimizer with a specified learning rate and optimized over

multiple epochs to maximize prediction accuracy.

4 Implementation

1. RoBERTa (Bidirectional Encoder Representations from Transformers)

1. Dataset Loading and Preprocessing

Load the issue report dataset containing titles, descriptions, and corresponding component labels. Pre-

process the text data by cleaning, tokenizing, and preparing it for input into RoBERTa.

2. Tokenization

Utilize the RoBERTa tokenizer to tokenize the text sequences. Encode the tokenized sequences and ap-

ply necessary padding for uniform length.

3. Model Architecture

Initialize the RoBERTa model for sequence classification.

Add additional layers for multilabel classification on top of the RoBERTa base.

Classification Layers: Implement layers for multilabel classification, such as dense layers with appropri-

ate activation functions.

Output Layer: Use a sigmoid activation function for multilabel classification to predict multiple compo-

nent labels simultaneously.

4. Training Configuration

Used the Adam optimizer with a specified learning rate.

Set the loss function to binary cross-entropy for multilabel classification.

Defined the number of epochs =15 and batch size =128 for training.

5. Training and Fine-Tuning

Fine-tuned the RoBERTa model on the preprocessed dataset. Trained the model by fitting it to the train-

ing data with specified parameters. Monitored training progress, evaluating loss and performance met-

rics during training.

6. Evaluation

Evaluated the fine-tuned RoBERTa model on the test dataset. We calculated evaluation metrics such as

accuracy, precision, recall, and F1-score for multilabel classification.

7. Prediction

We used the trained RoBERTa model to predict component labels for new issue reports.

We implemented a user interface (UI) for inputting new issue reports and displaying predicted compo-

nent labels.

2. LSTM (Long Short-Term Memory) Model Implementation

1. Data Preparation

We loaded and preprocessed the issue report dataset, which included titles, descriptions, and associated

component labels. Text data was preprocessed by cleaning and tokenizing it into sequences suitable for

LSTM input.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240425009 Volume 6, Issue 4, July-August 2024 5

2. Embedding Layer

We initialized the LSTM model, incorporating an embedding layer to convert text data into numerical

representations. The embedding layer mapped each word to a dense vector space, capturing semantic

relationships between words.

3. LSTM Layers

We configured the LSTM model with multiple LSTM layers to capture sequential dependencies in the

text data. Each LSTM layer processed input sequences, retaining memory over long sequences of words.

4. Dense Layers

Additional dense layers were added after the LSTM layers to perform classification tasks. These layers

enabled the model to learn higher-level features and make predictions based on sequential input.

5. Training Setup

We used the Adam optimizer with a specific learning rate to train the LSTM model.

The model was trained using a defined number of epochs and batch size, iterating over the training data.

6. Model Training

We trained the LSTM model on the preprocessed dataset, optimizing its parameters to minimize loss and

improve accuracy. During training, we monitored performance metrics such as loss and accuracy to as-

sess model convergence.

7. Evaluation

After training, we evaluated the LSTM model's performance on a held-out test dataset. Evaluation met-

rics such as accuracy, precision, recall, and F1-score were computed to assess the model's effectiveness.

8. Prediction

Using the trained LSTM model, we made predictions on new issue reports to assign component labels.

We developed a prediction pipeline that incorporated the LSTM model for real-time component predic-

tion based on issue report content.

5 Results

We have compared the performances of the models. The results are as follows:

LSTM ROBERT

58% 74%

Fig.1. Component Prediction

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240425009 Volume 6, Issue 4, July-August 2024 6

6 Conclusion & Future Work

In our study, we proposed a technique to enhance automatic component prediction by leveraging pre-

trained language models that work at the sentence level, with a specific focus on deep learning frame-

works. Earlier methods based on word-level deep learning models showed inadequate performance. To

tackle this issue, we fine-tuned RoBERTa to suit a dataset of issue reports covering multiple categories.

We assert that utilizing sentence-level pretrained models, which extract information from entire se-

quences, significantly improved the effectiveness of our approach, yielding superior experimental results

compared to the LSTM model.

Our experimental findings reveal the high efficacy of fine-tuned pretrained language models for auto-

matic component prediction. Remarkably, our approach maintained strong accuracy even with smaller

datasets, suggesting that performance could be further improved with larger and more detailed datasets

in the future. To enhance our method, we aim to incorporate data augmentation techniques into issue

reports in future research. Adapting a pretrained language model specifically for issue report datasets has

the potential to greatly enhance automatic component prediction. In industrial settings, manual issue tri-

age is often inefficient due to the frequent updates and expansions of software projects, highlighting the

importance of applying and evaluating our approach within industrial projects.

Acknowledgement

We thank Vasavi College of Engineering (Autonomous), Hyderabad for the support extended towards

this work.

References

1. M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, and A. Ghose, ‘‘Predicting components for issue

reports using deep learning with information retrieval,’’ in Proc. 40th Int. Conf. Softw. Eng., Com-

panion Proceeedings, May 2018, pp. 244–245.

2. K. W. Church, ‘‘Word2Vec,’’ Nat. Lang. Eng., vol. 23, no. 1, pp. 155–162, 2017.

3. J. Anvik and G. C. Murphy, ‘‘Reducing the effort of bug report triage: Recommenders for develop-

ment-oriented decisions,’’ ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 1–35, Aug. 2011.

4. S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, ‘‘Applying deep learning based automatic

bug triager to industrial projects,’’ in Proc. 11th Joint Meeting Found. Softw. Eng., Aug. 2017, pp.

926–931.

5. W. Zhang, ‘‘Efficient bug triage for industrial environments,’’ in Proc. IEEE Int. Conf. Softw.

Maintenance Evol. (ICSME), Sep. 2020, pp. 727–735.

6. M. Yan, X. Zhang, D. Yang, L. Xu, and J. D. Kymer, ‘‘A component recommender for bug reports

using discriminative probability latent semantic analysis,’’ Inf. Softw. Technol., vol. 73, pp. 37–51,

May 2016.

7. A. Sureka, ‘‘Learning to classify bug reports into components,’’ in Proc. Int. Conf. Model. Techn.

Tools Comput. Perform. Eval. Prague, Czech Republic: Springer, 2012, pp. 288–303.

https://www.ijfmr.com/

