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Abstract: 

The purpose of this article  is to prove coupled fixed point theorem for non linear contractive mappings in 

partially ordered complete quasi - metric spaces using the concept of  monotone mapping with a Q − 

function q and (α −  Ψ) −  contractive condition. The presented theorems are generalization and 

extension of the recent coupled fixed point theorems due to Bhaskar and Lakshmikantham \cite(BL). We 

also give an example in support of our theorem. 
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Introduction and Preliminaries 

We start, if (X, ≤) is a partially ordered set and F ∶  X →  X  such that for each x, y ∈  X, x ≤  y implies 

F(x)  ≤  F(y), then a mapping F is said to be non decreasing. Similarly, a non increasing mapping is 

defined. Bhaskar and Lakshmikantham [9] introduced the following notions of a mixed monotone 

mapping and a coupled fixed point. 

Definition 1:  Let (X, ≤) is a partially ordered set and F ∶  X ×  X →  X. The mapping F is said to have the  

mixed monotone  property if F  is nondecreasing monotone in first argument and is a nonincreasing 

monotone in its second argument, that is, for any x, y ∈  X 

    x1, x2 ∈  X, x1 ≤  x2 →  F(x1, y)  ≤  F(x2, y)  

   y1, y2 ∈  X, y1 ≤  y2 →  F(x, y1) ≥  F(x, y2)  

Definition 2: An element (x, y) ∈  X ×  X is called a coupled fixed point of a mapping F: X ×  X →  X if  

    F(x, y)  =  x, F(y, x)  =  y.  

Definition 3: Let X be a nonempty set. A real valued function d: X × X  →  R+ is said to be quasi metric 

space on X if 

 [(M1)] d(x, y) ≥  0 for all x, y ∈  X, 

 [(M2)]d(x, y)  =  0 if and only if x =  y, 

 [(M3)]d(x, y) ≤  d(x, z) +  d(z, y)for all x, y, z ∈  X. 

The pair (X,d) is called a quasi- metric space. 

Definition 4: Let (X,d) be a quasi metric space. A mapping q ∶  X ×  X →  R+ is called a Q- function on 

X if the following conditions are satisfied: 

  [(𝐐𝟏)] for all x, y, z ∈ X,  
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 [(𝐐𝟐)]𝐢f x ∈  X and (yn)n ≥ 1 is a sequence in X such that it converges to point y (with respect 

to quasi metric) and q(x, yn)  ≤  M for some M =  M(x), then q(x, y)  ≤  M; 

   [(𝐐𝟑)]for any  ϵ >  0 there exists δ >  0 such that q(z, x)  ≤ δ  and q(z, y)  ≤ δ implies that  

 d(x, y)  ≤  ϵ . 

Remark 5: If (X, d) is a metric space, and in addition to (Q1) − (Q3), the following condition are also 

satisfied: 

 [(𝐐𝟒)]  for any sequence (xn)n ≥ 1 in X with limn →∞sup { q(xn, xm): m >  n }   =  0 and if 

there exist a  sequence  (yn)n ≥ 1 in X such that limn →∞ q(xn, yn) = 0, then limn →∞ d(xn, yn)  =

 0. 

Then a Q- function is called τ − function, introduced by Lin and Du [16]also in the same paper [16] they 

show that every ω − function, introduced and studied by Kada et al. [15], is  a τ − function. In fact, if we 

consider (X, d) as a metric space and replace (Q2) by the following condition: 

 [(𝐐𝟓)] for any x ∈  X, the function p(x, . )  →  R+  is lower semi continuous, 

 then  a Q- function is called a ω − function on X. Several examples of ω − functions are given in [15]. It 

is easy to see that if (q(x, . ))   is lower semi continuous, then (Q2) holds. Hence, it is obvious that every 

ω − function is τ − function and every τ − function is Q- function, but the converse assertions do not 

hold. 

Example 6: Let X = R. Define d: X ×  X →  R+ by 

 

    d(x, y)  = {
0  if  x = y

|y|  otherwise
  

and q ∶  X ×  X →  R+ by 

    q(x, y) = ∣  y ∣ ,   ∀ x, y ∈  X.  

Then one can easily see that d is  a quasi- metric space and q is a Q- function on X, but q is neither a τ − 

function nor a ω − function. 

Example 7: Define d: X ×  X →  R+ by 

    d(x, y)  = {
y − x  if  x = y

2(x − y)  otherwise
 

and q ∶  X ×  X →  R+ by 

    q(x, y) = ∣  x −  y ∣, ∀ x, y ∈  X.  

 Then one can easily see that d is a quasi- metric space and q is a Q- function on X, but q is neither 

a τ − function nor a ω − function, because (X, d) is not a metric space. 

 The following lemma lists some properties of a Q- function on X which are similar to that of a 

ω − function (see [15]). 

Lemma 8: Let q ∶  X ×   X →  R+ be a Q - function on X. Let { xn}n∈ N and { yn}n∈ N be sequences in X, 

and let { αn}n∈ N and { βn}n∈ N be such that they converges to 0 and x, y, z ∈  X. Then, the following hold: 

i.  if q(xn, y)  ≤ αn  and q(xn, z)  ≤ βn  for all n ∈  N, then y =  z. In particular, if q(x, y)  =  0 

and q(x, z)  =  0 then  y =  z; 

ii.  if q(xn, yn)  ≤ αn and q(xn, z)  ≤ βn  for all x ∈  N, then { yn}n∈ N  converges to z; 

iii. if q(xn, xm)  ≤ αn for all n, m ∈  N with m > n, then { xn}n∈ N  is a Cauchy sequence ; 

iv. if q(y, xn)  ≤ αn for all n ∈  N, then { xn}n∈ N  is a Cauchy sequence ; 

v.  if 𝑞1, 𝑞2, 𝑞3 . . . . 𝑞𝑛   are Q- functions on X, then 𝑞(𝑥, 𝑦)  =

 𝑚𝑎𝑥 { 𝑞1(𝑥, 𝑦), 𝑞2(𝑥, 𝑦), . . . . . , 𝑞𝑛(𝑥, 𝑦) }   is also a Q- function on X. 
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Main Result 

Throughout this article we denote 𝛹 the family of non decreasing functions 𝛹 ∶ [0, +∞)  →  [0, +∞) such 

that 𝛴𝑛=1
∞  𝛹𝑛(𝑡)  <  ∞ for all 𝑡 >  0, where 𝛹𝑛  is the 𝑛𝑡ℎ iterate of 𝛹 satisfying, 

i. 𝛹−1  ( { 0})  =  { 0 }, 

ii.  𝛹 (𝑡)  <  𝑡 for all 𝑡 >  0, 

iii.  𝑙𝑖𝑚𝑟 → 𝑡+  𝛹 (𝑡)  <  𝑡 for all 𝑡 >  0. 

Lemma 9:- If 𝛹 ∶  [0, ∞]  →  [0, ∞] is non decreasing and right continuous, the 𝛹𝑛(𝑡)  →  0 as 𝑛 →  ∞ 

for all 𝑡 ≥  0 if and only if 𝛹(𝑡)  <  𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 >  0. 

Definition 10:- Let 𝐹: 𝑋 ×   𝑋 →  𝑋  and 𝛼 ∶  𝑋2  ×   𝑋2  →  [0, +∞) be two mappings. Then 𝐹 is said to 

be (𝛼) − admissible if 

  𝛼((𝑥, 𝑦), (𝑢, 𝑣))   ≥  1 → 𝛼 (( 𝐹(𝑥, 𝑦), 𝐹(𝑦, 𝑥)), (𝐹(𝑢, 𝑣), 𝐹(𝑣, 𝑢)))  ≥  1,   

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋. 

Definition 11:- Let (𝑋, ≤, 𝑑) be a partially ordered complete quasi- metric space with a Q- function q on 

X and 𝐹: 𝑋 ×   𝑋 →  𝑋 be a mapping. Then a map F is said to be a (𝛼 −  𝛹) − contractive if there exists 

two functions  𝜓 ∈   𝛹 and 𝛼 ∶  𝑋2  ×   𝑋2  →  [0, +∞) such that  

  𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣))𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))  ≤ 𝜓 (
𝑞(𝑥,𝑢)+ 𝑞(𝑦,𝑣)

2
 )  

for all 𝑥 ≥  𝑢 𝑎𝑛𝑑 𝑦 ≤  𝑣.  

Now we give the main result of this paper, which is as follows. 

Theorem 12:- Let (𝑋, ≤, 𝑑) be a partially ordered complete 𝑞𝑢𝑎𝑠𝑖 − metric space with a 𝑄 − function q 

on X.  Suppose that 𝐹 ∶  𝑋 ×   𝑋 →  𝑋 such that F has the mixed monotone property. Assume that 𝜓 ∈

  𝛹 𝑎𝑛𝑑 𝛼 ∶ 𝑋2 ×  𝑋2  →  [0, +∞) such that for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 following holds, 

  𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣))𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤   𝛹 (
 𝑞(𝑥,𝑢)+  𝑞(𝑦,𝑣)

2
)     2.1 

for all 𝑥 ≤  𝑢 𝑎𝑛𝑑 𝑦 ≥  𝑣. Suppose also that  

 [(𝒂)]F is (𝛼) − admissible  

 [(𝒃)] there exist 𝑥0, 𝑦0  ∈  𝑋 such that  

   𝛼 ((𝑥0, 𝑦0), (𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)))  ≥

 1  𝑎𝑛𝑑  𝛼 ((𝑦0, 𝑥0), (𝐹(𝑦0, 𝑥0), 𝐹(𝑥0, 𝑦0)))  ≥  1  

 [(𝒄)] F is continuous. 

If there exists 𝑥0, 𝑦0  ∈  𝑋 such that  

   𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)  

then there exist 𝑥, 𝑦 ∈  𝑋 such that 

  𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)      2.2 

that is F has a coupled fixed point. 

Proof:- Let 𝑥0, 𝑦0  ∈  𝑋  be such that 𝛼 ((𝑥0, 𝑦0), (𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)))  ≥  1   and  

𝛼 ((𝑦0, 𝑥0), (𝐹(𝑦0, 𝑥0), 𝐹(𝑥0, 𝑦0)))  ≥  1 and 𝑥0  ≤  𝐹(𝑥0, 𝑦0)  =  𝑥_1 and  𝑦0  ≥  𝐹(𝑦0, 𝑥0)  =   𝑦1. Let  

𝑥2, 𝑦2  ∈  𝑋 such that 𝐹(𝑥1, 𝑦1)  =  𝑥2 and  𝐹(𝑦1, 𝑥1)  =   𝑦2. Continuing this process, we can construct 

two sequences { 𝑥𝑛} and { 𝑦𝑛}  in X as follows, 

    𝑥𝑛+1  =  𝐹(𝑥𝑛, 𝑦𝑛)  𝑎𝑛𝑑  𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛)  

for all n ≥ 0. We will show that 
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      𝑥𝑛  ≤  𝑥𝑛+1  𝑎𝑛𝑑  𝑦𝑛  ≥  𝑦𝑛+1    2.3 

for all 𝑛 ≥  0. We will use the mathematical induction. Let 𝑛 =  0. Since 𝑥0  ≤  𝐹(𝑥0, 𝑦0),  and  𝑦0  ≥

 𝐹(𝑦0, 𝑥0)  and as 𝑥1  =  𝐹(𝑥0, 𝑦0),  and  𝑦1   =  𝐹(𝑦0, 𝑥0). We have 𝑥0  ≤  𝑥1  𝑎𝑛𝑑 𝑦0  ≥  𝑦1. Thus (2.3) 

holds for 𝑛 =  0. Now suppose that (2.3) holds for some 𝑛 ≥  0. Then since 𝑥𝑛  ≤  𝑥𝑛+1 and 𝑦𝑛  ≥  𝑦𝑛+1  

and by the mixed monotone property of F, we have 

    𝑥𝑛+2  =  𝐹(𝑥𝑛+1, 𝑦𝑛+1)  ≥  𝐹(𝑥𝑛, 𝑦𝑛+1)  ≥  𝐹(𝑥𝑛, 𝑦𝑛)  =  𝑥𝑛+1   

and  

    𝑦𝑛+2  =  𝐹(𝑦𝑛+1, 𝑥𝑛+1)  ≤  𝐹(𝑦𝑛, 𝑥𝑛+1)  ≤  𝐹(𝑦𝑛, 𝑥𝑛)  =  𝑦𝑛+1   

From above we conclude that  

    𝑥𝑛+1  ≤  𝑥𝑛+2  𝑎𝑛𝑑  𝑦𝑛+1   ≥  𝑦𝑛+2  

Thus by the mathematical induction, we conclude that (2.3) holds for 𝑛 ≥  0. If for some 𝑛 we have 

(𝑥𝑛+1, 𝑦𝑛+1)   =   (𝑥𝑛, 𝑦𝑛), then 𝐹(𝑥𝑛, 𝑦𝑛)  =  𝑥𝑛 and 𝐹(𝑦𝑛, 𝑥𝑛)  =  𝑦𝑛 that is, F has a coupled fixed point. 

Now, we assumed 𝑡ℎ𝑎𝑡  (𝑥𝑛+1, 𝑦𝑛+1)  ≠    (𝑥𝑛, 𝑦𝑛) for all 𝑛 ≥  0. Since 𝐹 𝑖s (𝛼) − admissible, we have 

  𝛼((𝑥0, 𝑦0), (𝑥1, 𝑦1))  =  𝛼 ((𝑥0, 𝑦0), (𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)))  ≥  1     

𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠       𝛼 ((𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)), (𝐹(𝑥1, 𝑦1), 𝐹(𝑦1, 𝑥1)))  =  𝛼((𝑥1, 𝑦1), (𝑥2, 𝑦2))  ≥  1  

Thus, by the mathematical induction, we have 

   𝛼((𝑥𝑛, 𝑦𝑛), (𝑥𝑛+1, 𝑦𝑛+1))  ≥  1       2.4 

and similarly, 

  𝛼((𝑦𝑛, 𝑥𝑛), (𝑦𝑛+1, 𝑥𝑛+1)) ≥  1       2.5 

for all 𝑛 ∈  𝑁. Using (2.1) and (2.4) , we obtain 

  𝑞(𝑥𝑛, 𝑥𝑛+1)  =  𝑞(𝐹(𝑥𝑛−1, 𝑦𝑛−1), 𝐹(𝑥𝑛, 𝑦𝑛))  

          ≤  𝛼 ((𝑥𝑛−1, 𝑦𝑛−1), (𝑥𝑛, 𝑦𝑛))𝑞(𝐹(𝑥𝑛−1, 𝑦𝑛−1), 𝐹(𝑥𝑛, 𝑦𝑛))  

         ≤  𝛹 (
𝑞(𝑥𝑛−1,𝑥𝑛)+ 𝑞(𝑦𝑛−1,𝑦𝑛)

2
)     2.6 

Similarly we have 

  𝑞(𝑦𝑛, 𝑦𝑛+1)  =  𝑞(𝐹(𝑦𝑛−1, 𝑥𝑛−1), 𝐹(𝑦𝑛, 𝑥𝑛))  

 𝛼 ((𝑦𝑛−1, 𝑥𝑛−1), (𝑦𝑛, 𝑥𝑛))𝑞(𝐹(𝑦𝑛−1, 𝑥𝑛−1), 𝐹(𝑦𝑛, 𝑥𝑛))   ≤  𝛹 (
𝑞(𝑦𝑛−1,𝑥𝑛)+ 𝑞(𝑥𝑛−1,𝑥𝑛)

2
)  2.7 

Adding (2.6)and (2.7), we get 

    
𝑞(𝑥𝑛,𝑥𝑛+1)+ 𝑞(𝑦𝑛,𝑦𝑛+1)

2
 ≤  𝛹 (

𝑞(𝑥𝑛−1,𝑥𝑛)+ 𝑞(𝑦𝑛−1,𝑦𝑛)

2
)  

Repeating the above process, we get 

    
𝑞(𝑥𝑛,𝑥𝑛+1)+ 𝑞(𝑦𝑛,𝑦𝑛+1)

2
 ≤  𝛹𝑛 (

𝑞(𝑥0,𝑥1)+ 𝑞(𝑦0,𝑦1)

2
)  

for all 𝑛 ∈  𝑁. For 𝜖  >  0 𝑡ℎ𝑒𝑟𝑒 exists 𝑛(𝜖 )  ∈  𝑁 such that 

    𝛴𝑛 ≥ 𝑛(𝜖 )𝛹𝑛  (
𝑞(𝑥0,𝑥1)+ 𝑞(𝑦0,𝑦1)

2
)  <

𝜖 

2
  

Let 𝑚, 𝑛 ∈  𝑁 be such that 𝑚 >  𝑛 >  𝑛(𝜖 ). Then, by using the triangle inequality, we have 

     
𝑞(𝑥𝑛,𝑥𝑚)+ 𝑞(𝑦𝑛,𝑦𝑚)

2
 ≤ 𝛴𝑘 = 𝑛

𝑚−1  (
𝑞(𝑥𝑘,𝑥𝑘+1)+ 𝑞(𝑦𝑘,𝑦𝑘+1)

2
)  

     ≤ 𝛴𝑘 = 𝑛
𝑚−1  𝛹𝑘 (

𝑞(𝑥0,𝑥1)+ 𝑞(𝑦0,𝑦1)

2
)  

     ≤ 𝛴𝑛 ≥ 𝑛(𝜖 ) 𝛹𝑛 (
𝑞(𝑥0,𝑥1)+ 𝑞(𝑦0,𝑦1)

2
)  <

𝜖 

2
  

This implies that 𝑞(𝑥𝑛, 𝑥𝑚) +  𝑞(𝑦𝑛, 𝑦𝑚)  <  𝜖 . Since  
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   𝑑(𝑥𝑛, 𝑥𝑚)  ≤  𝑞(𝑥𝑛, 𝑥𝑚) +  𝑞(𝑦𝑛, 𝑦𝑚))  <  𝜖   

and  

   𝑑(𝑦𝑛, 𝑦𝑚)  ≤  𝑞(𝑥𝑛, 𝑥𝑚) +  𝑞(𝑦𝑛, 𝑦𝑚)  <  𝜖   

and hence { 𝑥𝑛 } 𝑎𝑛𝑑 { 𝑦𝑛 } are Cauchy sequences in X. Since (𝑋, 𝑑) is complete quasi metric spaces and 

hence { 𝑥𝑛} 𝑎𝑛𝑑 { 𝑦𝑛 } are convergent in X. Then there exists 𝑥, 𝑦 ∈  𝑋 such that  

   𝑙𝑖𝑚𝑛 → ∞𝑥𝑛  =  𝑥   𝑙𝑖𝑚𝑛 → ∞𝑦𝑛  =  𝑦.  

Since F is continuous and 𝑥𝑛+1  =  𝐹(𝑥𝑛, 𝑦𝑛)  𝑎𝑛𝑑 𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛), taking limit 𝑛 →  ∞ we get 

   𝑥 =  𝑙𝑖𝑚𝑛 → ∞𝑥𝑛  =  𝑙𝑖𝑚𝑛 → ∞𝐹(𝑥𝑛, 𝑦𝑛)   =  𝐹(𝑥, 𝑦)  

and  

   𝑦 =  𝑙𝑖𝑚𝑛 → ∞𝑦𝑛  =  𝑙𝑖𝑚𝑛 → ∞ 𝐹(𝑦𝑛, 𝑥𝑛)   =  𝐹(𝑦, 𝑥)  

that is, 𝐹(𝑥, 𝑦)  =  𝑥 and 𝐹(𝑦, 𝑥)  =  𝑦 and hence 𝐹 has a coupled fixed point. 

In the next theorem, we omit the continuity hypothesis of F. 

Theorem 13:- Let (𝑋, ≤, 𝑑) be a partially ordered complete quasi- metric space with a 𝑄 − function q on 

X.  Suppose that 𝐹 ∶  𝑋 ×   𝑋 →  𝑋 such that F has the mixed monotone property. Assume that 𝛹 ∈   𝛹 

and 𝛼 ∶  𝑋2  ×   𝑋2 →  [0, +∞) such that for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 following holds, 

  𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣) )𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤   𝛹 (
 𝑞(𝑥,𝑢)+  𝑞(𝑦,𝑣)

2
)   2.8 

for all x ≤ u and y ≥ v. Suppose also that  

 [(𝒂)]F is (𝛼) − admissible  

 [(𝒃)] there exist 𝑥0, 𝑦0  ∈  𝑋 such that  

  𝛼 ((𝑥0, 𝑦0), (𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)))  ≥

 1  𝑎𝑛𝑑  𝛼 ((𝑦0, 𝑥0), (𝐹(𝑦0, 𝑥0), 𝐹(𝑥0, 𝑦0)))  ≥  1  

 [(𝒄)] if { 𝑥𝑛 } 𝑎𝑛𝑑 { 𝑦𝑛 } are sequences in X such that 

  𝛼((𝑥𝑛, 𝑦𝑛), (𝑥𝑛+1, 𝑦𝑛+1))  ≥  1  𝑎𝑛𝑑   𝛼((𝑦𝑛, 𝑥𝑛), (𝑦𝑛+1, 𝑥𝑛+1)) ≥  1  

for all 𝑛 and 𝑙𝑖𝑚𝑛 → ∞𝑥𝑛  =  𝑥 ∈  𝑋 and 𝑙𝑖𝑚𝑛 → ∞𝑦𝑛  =  𝑦 ∈  𝑋, then 

   𝛼((𝑥𝑛, 𝑦𝑛), (𝑥, 𝑦))  ≥  1  𝑎𝑛𝑑   𝛼((𝑦𝑛, 𝑥𝑛), (𝑦, 𝑥))  ≥  1.  

If there exists 𝑥0, 𝑦0  ∈  𝑋 such that  

     𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)  

then there exist x,y ∈ X such that 

    𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)    2.9 

that is F has a coupled fixed point. 

Proof:- Proceeding along the same line as the above Theorem12, we know 𝑡ℎ𝑎𝑡  { 𝑥𝑛} 𝑎𝑛𝑑 { 𝑦𝑛 }  are 

Cauchy sequences in complete quasi metric space 𝑋. Then there exists 𝑥, 𝑦 ∈  𝑋 such that  

   𝑙𝑖𝑚𝑛 → ∞𝑥𝑛  =  𝑥  𝑎𝑛𝑑  𝑙𝑖𝑚𝑛 → ∞𝑦𝑛  =  𝑦.     2.10 

On the other hand, from (2.4) and hypothesis (c) we obtain 

    𝛼((𝑥𝑛, 𝑦𝑛), (𝑥, 𝑦))  ≥  1      2.11 

and similarly  

    𝛼((𝑦𝑛, 𝑥𝑛), (𝑦, 𝑥))  ≥  1     2.12 

for all 𝑛 ∈  𝑁. Using the triangle inequality, \ref(eq7) and the property of 𝛹(𝑡)  <  𝑡 𝑓𝑜𝑟 all 𝑡 >  0, we 

get 

  𝑞(𝐹(𝑥, 𝑦), 𝑥)  ≤  𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑥𝑛, 𝑦𝑛))  +  𝑞(𝑥𝑛+1, 𝑥)  
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           ≤  𝛼((𝑥𝑛, 𝑦𝑛), (𝑥, 𝑦))𝑞(𝐹(𝑥𝑛, 𝑦𝑛), 𝐹(𝑥, 𝑦))  +  𝑞(𝑥𝑛+1, 𝑥)  

           ≤  𝛹 (
𝑞(𝑥𝑛,𝑥)+ 𝑞(𝑦𝑛,𝑦)

2
)  +  𝑞(𝑥𝑛+1, 𝑥)  

           <
𝑞(𝑥𝑛,𝑥) + 𝑞(𝑦𝑛,𝑦)

2
  +  𝑞(𝑥𝑛+1, 𝑥).  

Similarly,  we obtain 

  𝑞(𝐹(𝑦, 𝑥), 𝑦)  ≤  𝑞(𝐹(𝑦, 𝑥), 𝐹(𝑦𝑛, 𝑥𝑛))  +  𝑞(𝑦𝑛+1, 𝑦)  

            ≤  𝛼((𝑦𝑛, 𝑥𝑛), (𝑦, 𝑥))𝑞(𝐹(𝑦𝑛, 𝑥𝑛), 𝐹(𝑦, 𝑥))  +  𝑞(𝑦𝑛+1, 𝑥)  

            ≤  𝛹 (
𝑞(𝑥𝑛,𝑥)+ 𝑞(𝑦𝑛,𝑦)

2
)  +  𝑞(𝑥𝑛+1, 𝑥)  

            <
𝑞(𝑦𝑛,𝑦)+ 𝑞(𝑥𝑛,𝑥)

2
  +  𝑞(𝑦𝑛+1, 𝑦).  

Taking the limit 𝑛 →  ∞ in the above two inequalities, we get 

   𝑞(𝐹(𝑥, 𝑦), 𝑥)  =  0  𝑎𝑛𝑑  𝑞(𝐹(𝑦, 𝑥), 𝑦)  =  0.  

Hence, 𝐹(𝑥, 𝑦)  =  𝑥 and 𝐹(𝑦, 𝑥)  =  𝑦. Thus, F has a coupled fixed point. 

In the following theorem, we will prove the uniqueness of the coupled fixed point. If (𝑋, ≤) is a partially 

ordered set, then the product 𝑋 ×   𝑋 with the following partial order relation: 

     (𝑥, 𝑦) ≤  (𝑢, 𝑣) ↔  𝑥 ≤  𝑢, 𝑦 ≥  𝑣, 

𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥, 𝑦), (𝑢, 𝑣)  ∈  𝑋 ×   𝑋.  

Theorem 14:- In addition to the hypothesis of Theorem 12 suppose that for every (𝑥, 𝑦), (𝑠, 𝑡)  ∈

 𝑋 ×   𝑋, there exists (𝑢, 𝑣)  ∈  𝑋 ×   𝑋 such that 

    𝛼((𝑥, 𝑦), 𝑢, 𝑣))  ≥  1  and  𝛼((𝑠, 𝑡), 𝑢, 𝑣))  ≥  1   

and also assume that (𝑢, 𝑣) is comparable 𝑡𝑜 (𝑥, 𝑦)  and (𝑠, 𝑡). Then 𝐹 has a unique coupled fixed point. 

Proof:- From Theorem 12, the set of coupled fixed point is non empty. Suppose (𝑥, 𝑦) and (𝑠, 𝑡) are 

coupled fixed point of the mappings 𝐹: 𝑋 ×   𝑋 →  𝑋, that is 𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥), 𝑠 =  𝐹(𝑠, 𝑡) 

and 𝑡 =  𝐹(𝑡, 𝑠).  By assumption, there exists (𝑢, 𝑣)  ∈  𝑋 ×   𝑋  such that (𝑢, 𝑣)  is comparable to 

(𝑥, 𝑦) 𝑎𝑛𝑑 (𝑠, 𝑡).  𝑝𝑢𝑡 𝑢 =  𝑢0 𝑎𝑛𝑑 𝑣 =  𝑣0  and choose 𝑢1, 𝑣1  ∈  𝑋  such that 𝑢1  =

 𝐹(𝑢0, 𝑣0) 𝑎𝑛𝑑 𝑣1  =  𝐹(𝑣0, 𝑢0). Thus, we can define two sequences { 𝑢𝑛 } and { 𝑣𝑛 } as  

    𝑢𝑛+1  =  𝐹(𝑢𝑛, 𝑣𝑛)  𝑎𝑛𝑑  𝑣𝑛+1  =  𝐹(𝑣𝑛, 𝑢𝑛).  

Since (𝑢, 𝑣) is comparable to (𝑥, 𝑦), it is easy to show that 𝑥 ≤  𝑢1 and  ≥  𝑣1 . Thus, 𝑥 ≤  𝑢𝑛 and 𝑦 ≥

 𝑣𝑛 for all 𝑛 ≥  1. Since for every (𝑥, 𝑦), (𝑠, 𝑡)  ∈  𝑋 ×   𝑋, there exists (𝑢, 𝑣)  ∈  𝑋 ×   𝑋 such that  

   𝛼((𝑥, 𝑦), 𝑢, 𝑣))   ≥  1  𝑎𝑛𝑑  𝛼((𝑠, 𝑡), 𝑢, 𝑣))   ≥  1.   

 2.13  

Since 𝐹 𝑖s (𝛼) − admissible, so from (2.13),  we have 

   𝛼((𝑥, 𝑦), 𝑢, 𝑣))  ≥  1  →  𝛼((𝐹(𝑥, 𝑦), 𝐹(𝑦, 𝑥)), (𝐹(𝑢, 𝑣), 𝐹(𝑣, 𝑢)))  ≥  1.  

Since 𝑢 =  𝑢0 and 𝑣 =  𝑣0, we get 

   𝛼((𝑥, 𝑦), 𝑢0, 𝑣0)   ≥  1  →  𝛼((𝐹(𝑥, 𝑦), 𝐹(𝑦, 𝑥)), (𝐹(𝑢0, 𝑣0), 𝐹(𝑣0, 𝑢0))  ≥

 1.  

Thus  

   𝛼((𝑥, 𝑦), (𝑢, 𝑣))  ≥  1 →  𝛼((𝑥, 𝑦), (𝑢1, 𝑣1))  ≥  1.  

Therefore by mathematical induction, we obtain 

   𝛼((𝑥, 𝑦), (𝑢𝑛, 𝑣𝑛))  ≥  1      

 2.14 

for all 𝑛 ∈  𝑁 and similarly 𝛼((𝑦, 𝑥), (𝑣𝑛, 𝑢𝑛))  ≥  1. From (2.13) and (2.14), we get 
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   𝑞(𝑥, 𝑢_(𝑛 + 1))  =  𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢𝑛, 𝑣𝑛))  

                  ≤  𝛼((𝑥, 𝑦), (𝑢𝑛, 𝑣𝑛))𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢𝑛, 𝑣𝑛))  

                  ≤  𝛹 (
𝑞(𝑥,𝑢𝑛)+ 𝑞(𝑦,𝑣𝑛)

2
).    

 2.15 

Similarly, we get 

   𝑞(𝑦, 𝑣_(𝑛 + 1))  =  𝑞(𝐹(𝑦, 𝑣), 𝐹(𝑣𝑛, 𝑢𝑛))  

                  ≤  𝛼((𝑦, 𝑥), (𝑣𝑛, 𝑢𝑛))𝑞(𝐹(𝑦, 𝑥), 𝐹(𝑣𝑛, 𝑥𝑛))  

                 ≤  𝛹 (
𝑞(𝑦,𝑣𝑛)+ 𝑞(𝑥,𝑢𝑛)

2
).    

 2.16 

Adding (2.15) and (2.16), we get 

    
𝑞(𝑥,𝑢𝑛+1)+ 𝑞(𝑦,𝑣𝑛+1)

2
 ≤  𝛹 (

𝑞(𝑥,𝑢𝑛)+ 𝑞(𝑦,𝑣𝑛)

2
) 

Thus  

    
𝑞(𝑥,𝑢𝑛+1)+ 𝑞(𝑦,𝑣𝑛+1)

2
 ≤  𝛹𝑛 (

𝑞(𝑥,𝑢1)+ 𝑞(𝑦,𝑣1)

2
)   

 2.17 

for each 𝑛 ≥  1. Letting 𝑛 →  ∞ in 2.17 and using Lemma 8, we get 

   𝑙𝑖𝑚𝑛 → ∞[𝑞(𝑥, 𝑢𝑛+1)  +  𝑞(𝑦, 𝑣𝑛+1)]  =  0      

This implies  

    𝑙𝑖𝑚𝑛 → ∞𝑞(𝑥, 𝑢𝑛+1) =  0  𝑙𝑖𝑚𝑛 → ∞𝑞(𝑦, 𝑣𝑛+1)  =  0.    

 2.18 

Similarly we can show that  

   𝑙𝑖𝑚𝑛 → ∞𝑞(𝑠, 𝑢𝑛+1)  =  0  𝑙𝑖𝑚𝑛 → ∞ 𝑞(𝑡, 𝑣𝑛+1)  =  0.   

 2.19 

From 2.18  and  2.19,  we conclude that  𝑥 =  𝑠 and 𝑦 =  𝑡. Hence, 𝐹 has a unique coupled fixed point. 

Example 15:- Let 𝑋 =  [0,1], with the usual partial ordered ≤. Defined 𝑑: 𝑋 ×   𝑋 →  𝑅+ by 

   𝑑(𝑥, 𝑦)  = {
𝑦 − 𝑥  𝑖𝑓  𝑥 = 𝑦

2(𝑥 − 𝑦)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 𝑞: 𝑋 ×   𝑋 →  𝑅^ + by  

   𝑞(𝑥, 𝑦) = ∣  𝑥 −  𝑦 ∣, ∀ 𝑥, 𝑦 ∈  𝑋.      

 2.20  

Then d is a quasi metric and q is a 𝑄 − function on X. Thus, (𝑋, 𝑑, ≤) is a partially ordered complete quasi 

metric space with Q- function q on X. 

Consider a mapping  𝛼 ∶  𝑋2  ×   𝑋2  →  [0, +∞) be such that 

     𝛼((𝑥, 𝑦), (𝑢, 𝑣)) = {
1   𝑖𝑓 𝑥 ≥  𝑦, 𝑢 ≥  𝑣 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

 Let 𝛹 (𝑡) =
𝑡

2
, for 𝑡 >  0. Defined 𝐹: 𝑋 ×   𝑋 →  𝑋 by 𝐹(𝑥, 𝑦) =

1

4
𝑥𝑦 for all 𝑥, 𝑦 ∈  𝑋. 

Since ∣  𝑥𝑦 −  𝑢𝑣 ∣ ≤ ∣  𝑥 −  𝑢 ∣  + ∣  𝑦 −  𝑣 ∣  ℎ𝑜𝑙𝑑𝑠 for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋. Therefore, we have 

   𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) = ∣
𝑥𝑦

4
 –

𝑢𝑣

4
∣  

       ≤
1

4
( ∣  𝑥 –  𝑢 ∣  + ∣  𝑦 –  𝑣 ∣)     

       =
1

4
 (𝑞(𝑥, 𝑢) +  𝑞(𝑦, 𝑣))  
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It follows that,  𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣) )𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤   
1

4
 (𝑞(𝑥, 𝑢)  +   𝑞(𝑦, 𝑣)) 

Thus \ref(eq1) holds for  𝛹(𝑡) =
𝑡

2
 for all 𝑡 >  0 and we also see that all the hypothesis of Theorem 12are 

fulfilled. Then there exists a coupled fixed point of F. In this case (0,0) is coupled fixed point of F. 

Example 16:- Let 𝑋 =  [0,1], with the usual partial ordered ≤. Defined 𝑑: 𝑋 ×   𝑋 →  𝑅+ by 

    𝑑(𝑥, 𝑦)  = {
𝑦 − 𝑥  𝑖𝑓  𝑥 = 𝑦

2(𝑥 − 𝑦)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 𝑞: 𝑋 ×   𝑋 →  𝑅+ by  

   𝑞(𝑥, 𝑦) = ∣ 𝑥 −  𝑦 ∣, ∀ 𝑥, 𝑦 ∈  𝑋     

 2.21  

Then d is a quasi metric and q is a 𝑄 − function on X. Thus, (𝑋, 𝑞, ≤) is a partially ordered complete quasi 

metric space with Q- function q on X. 

Consider a mapping  𝛼 ∶  𝑋2  ×   𝑋2  →  [0, +∞) be such that 

    𝛼((𝑥, 𝑦), (𝑢, 𝑣)) = {
1   𝑖𝑓 𝑥 ≥  𝑦, 𝑢 ≥  𝑣 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 Let  (𝑡)  =  2 𝑡, 𝑓𝑜𝑟 𝑡 >  0. Defined 𝐹: 𝑋 ×   𝑋 →  𝑋 by 𝐹(𝑥, 𝑦)  =  𝑠𝑖𝑛 𝑥  +  𝑠𝑖𝑛 𝑦 for 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋. 

Since ∣  𝑠𝑖𝑛 𝑥 −  𝑠𝑖𝑛 𝑦 ∣  ≤ ∣  𝑥 −  𝑦 ∣  holds for all 𝑥, 𝑦 ∈  𝑋. Therefore, we have 

   𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣)) = ∣  𝑠𝑖𝑛 𝑥 + 𝑠𝑖𝑛 𝑦 −  𝑠𝑖𝑛 𝑢 −  𝑠𝑖𝑛 𝑣 ∣  

       ≤ ∣ 𝑠𝑖𝑛 𝑥 −  𝑠𝑖𝑛 𝑢 ∣  + ∣  𝑠𝑖𝑛 𝑦 −  𝑠𝑖𝑛 𝑣 ∣   

      ≤ ∣  𝑥 −  𝑢 ∣  + ∣   𝑦 −  𝑣 ∣   

      ≤  𝛹 (
(𝑞(𝑥,𝑢)+  𝑞(𝑦,𝑣))

2
).  

Then there exists a coupled fixed point of F. In this case (0,0) is coupled fixed point of F. 

Corollary 17:- Let (𝑋, ≤, 𝑑) be a partially ordered complete quasi- metric space with a 𝑄 − function q on 

X.  Suppose that 𝐹 ∶  𝑋 ×   𝑋 →  𝑋 such that F is continuous and has the mixed monotone property. 

Assume that 𝛹 ∈   𝛹 and such that for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 following holds, 

    𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤   𝛹 (
 𝑞(𝑥,𝑢)+  𝑞(𝑦,𝑣)

2
)    

 2.22 

for all 𝑥 ≤  𝑢 and 𝑦 ≥  𝑣.  

If there exists 𝑥_0, 𝑦_0 ∈  𝑋 such that  

     𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)  

then there exist 𝑥, 𝑦 ∈  𝑋 such that  

     𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)    

 2.23 

that is F has a coupled fixed point. 

Proof:- It is easily to see that if we take  𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣) )  =  1  in Theorem 12 then we get Corollary 

17. 

Corollary 18:- Let (𝑋, ≤, 𝑑) be a partially ordered complete quasi- metric space with a Q- function q on 

X.  Suppose that 𝐹 ∶  𝑋 ×   𝑋 →  𝑋 such that F is continuous and  has the mixed monotone property. 

Assume that 𝛹 ∈   𝛹 and such that for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 following holds, 

    𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤   
𝑘

2
[𝑞(𝑥, 𝑢)  +   𝑞(𝑦, 𝑣)]  

 2.24 

for  𝑘 ∈  [0,1) and for  all  𝑥 ≤  𝑢 and 𝑦 ≥  𝑣.  
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If there exists 𝑥_0, 𝑦_0 ∈  𝑋 such that  

     𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)  

then there exist 𝑥, 𝑦 ∈  𝑋 such that 

    𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)    

 2.25 

that is F has a coupled fixed point. 

Proof:- It is easily to see that if we take 𝛹(𝑡)  =  𝑘𝑡  in Corollary 17 then we get Corollary 18. 

Corollary 19:- 𝐿𝑒𝑡 (𝑋, ≤, 𝑑) be a partially ordered complete quasi metric space with a Q-function q on 

X. Assume that the function 𝛹 ∶  [0, +∞)  →  [0, +∞) is such 𝑡ℎ𝑎𝑡 𝛹 (𝑡)  <  𝑡  for each 𝑡 >  0. Further 

suppose that 𝐹: 𝑋 ×   𝑋 →  𝑋 is such that F has the mixed monotone property and  

   𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))    ≤    𝛹 (
𝑞(𝑥,𝑢)+ 𝑞(𝑦,𝑣)

2
)    

 2.29 

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 for which 𝑥 ≤  𝑢 and  𝑦 ≤  𝑣. Suppose that F satisfies following, 

 [(a)]F is continuous or 

 [(b)] X has the following property: 

  [(i)] if a non decreasing sequence { 𝑥_𝑛 }  →  𝑥 then 𝑥_𝑛 ≤  𝑥 for all n,  

  [(ii)] if a non increasing sequence { 𝑦_𝑛 }  →  𝑦 then 𝑦_𝑛 ≥  𝑦 for all n. 

If there exists 𝑥0, 𝑦0  ∈  𝑋 such that  

     𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)    

 2.30 

then there exist 𝑥, 𝑦 ∈  𝑋 such that 

    𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)    

 2.31 

that is F has a coupled fixed point.   

Proof:- It is easily to see that if we take  𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣))  =  1 and from the property in Theorem 12 

then we get Corollary 19.  

Corollary20 :- Let (𝑋, ≤, 𝑑) be a partially ordered complete quasi metric space with a Q-function q on X. 

Assume that the function 𝛹 ∶  [0, +∞)  →  [0, +∞)  is such that 𝛹 (𝑡)  <  𝑡   for each 𝑡 >  0.  Further 

suppose that 𝐹: 𝑋 ×   𝑋 →  𝑋 is such that F has the mixed monotone property and  

   𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤     
𝑘

2
[𝑞(𝑥, 𝑢)  +   𝑞(𝑦, 𝑣)]   

 2.32 

for all  𝑘 ∈  [0,1), 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 for which 𝑥 ≤  𝑢 and  𝑦 ≤  𝑣. Suppose that F satisfies following, 

 [(𝑎)]F is continuous or 

 [(𝑏)] X has the following property: 

  [(𝑖)] if a non decreasing sequence { 𝑥𝑛 }  →  𝑥 then 𝑥𝑛  ≤  𝑥 for all n,  

  [(𝑖𝑖)] if a non increasing sequence { 𝑦𝑛 }  →  𝑦 then 𝑦𝑛  ≥  𝑦 for all n. 

If there exists 𝑥0, 𝑦⬚0 ∈  𝑋 such that  

    𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)      

then there exist 𝑥, 𝑦 ∈  𝑋 such that 

    𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)    

 2.33 
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that is F has a coupled fixed point. 

Proof:- It is easily to see that if we take  𝛹 (𝑡)  =  𝑘𝑡  in Theorem 12  then we get Corollary 20.  

Now our next result show that (𝛼) − admissible function is work like as a control function, but converges 

may not be true in general. We also give an example in support of this fact. 

Theorem 21:- Let (𝑋, ≤, 𝑑) be a partially ordered complete quasi- metric space with a Q- function q on 

X.  Suppose that 𝐹 ∶  𝑋 ×   𝑋 →  𝑋  such that F has the mixed monotone property. Assume that 

𝛼: 𝑋2 × 𝑋2 →  [0, +∞) such that for all 𝑥, 𝑦, 𝑢, 𝑣 ∈  𝑋 following holds, 

   𝛼 ( (𝑥, 𝑦), (𝑢, 𝑣) )𝑞(𝐹(𝑥, 𝑦), 𝐹(𝑢, 𝑣))   ≤   
𝑘

2
 [ 𝑞(𝑥, 𝑢)  +   𝑞(𝑦, 𝑣)] 

 2.34 

for 𝑘 ∈  [0,1) and for all 𝑥 ≤  𝑢 and 𝑦 ≥  𝑣. Suppose also that  

 [(𝑎)]F is (𝛼) − admissible  

 [(𝑏)] there exist 𝑥0 , 𝑦0  ∈  𝑋 such that  

  𝛼 ((𝑥0, 𝑦0), (𝐹(𝑥0, 𝑦0), 𝐹(𝑦0, 𝑥0)))  ≥  1   

 𝑎𝑛𝑑    

  𝛼 ((𝑦0, 𝑥0), (𝐹(𝑦0, 𝑥0), 𝐹(𝑥0, 𝑦0)))  ≥  1  

 [(𝑐)] F is continuous. 

If there exists 𝑥0, 𝑦0  ∈  𝑋 such that  

   𝑥0  ≤  𝐹(𝑥0, 𝑦0), 𝑦0  ≥  𝐹(𝑦0, 𝑥0)  

then there exist 𝑥, 𝑦 ∈  𝑋 such that 

  𝑥 =  𝐹(𝑥, 𝑦), 𝑦 =  𝐹(𝑦, 𝑥)      

 2.35 

that is F has a coupled fixed point. 

Proof:- If we tak𝑒 𝛹 (𝑡)  =  𝑘𝑡 in Theorem 12 then the remaining  prove of the above Theorem 21 is 

similar to the  prove of Theorem 12.  

Example 22:- Let 𝑋 =  [0, ∞), with the usual partial ordered ≤. Defined 𝑑: 𝑋 × 𝑋 →  𝑅+ by 

   𝑑(𝑥, 𝑦)  = {
𝑦 − 𝑥  𝑖𝑓  𝑥 = 𝑦

2(𝑥 − 𝑦)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 𝑞: 𝑋 ×   𝑋 →  𝑅+ by  

   𝑞(𝑥, 𝑦) = ∣  𝑥 −  𝑦 ∣, ∀ 𝑥, 𝑦 ∈  𝑋.  

Then d is a quasi metric and q is a Q- function on X. Thus, (𝑋, 𝑑, ≤) is a partially ordered complete quasi 

metric space with Q- function q on X. 

Consider a mapping  𝛼 ∶  𝑋2  ×   𝑋2  →  [0, +∞) be such that 

    𝛼((𝑥, 𝑦), (𝑢, 𝑣)) = {
1   𝑖𝑓 𝑥 ≥  𝑦, 𝑢 ≥  𝑣 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Defined 𝐹: 𝑋 ×   𝑋 →  𝑋 by 

   𝐹(𝑥, 𝑦)  =  {
𝑥 − 𝑦

2
  𝑖𝑓  𝑥 ≤ 𝑦

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Then there is no any 𝑘 ∈  [0,1) for which satisfying all conditions of Theorem \ref(thm4). 

If we take  𝛼 ∶  𝑋2  ×   𝑋2  →  [0, +∞) as follows, 

    𝛼((𝑥, 𝑦), (𝑢, 𝑣)) = {
2   𝑖𝑓 𝑥 ≥  𝑦, 𝑢 ≥  𝑣 

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Then there is 𝑘 =
1

2
 ∈  [0,1) such that all conditions of Theorem 21 are satisfies and (0,0) is a coupled 

fixed point of F. 
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