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Abstract 

The classification and treatment of liver cancer, especially hepatocellular carcinoma (HCC), has been one 

of the significant problems in diagnosing and treating the disease. Previously, segmentation was done 

through manual processes, which were labour-intensive and highly variable. As a result, new methods for 

deep learning have been introduced. This article reviews the literature on using deep learning models for 

the automated segmentation of liver tumours using images focusing on their performance. The constraint 

for this review paper will be whether deep learning models improve diagnosis and treatment in people 

with hepatic cancer. In conformity with the PRISMA stipulations, 1295 distinct studies from 2014 to 2024 

were examined, of which 100 were included in the final review. The investigation was conducted on 

various deep learning models’ performance measures to aid segmentation accuracy for U-Net and 

DeepLabv3+. Despite the difficulties, such as having diverse qualities of the data set, the generalizability 

of models themselves and the effects of observer variability on ground truth markings severely impact 

reported performance measures. Therefore, these two architectures are the most common among others 

and provide good accuracy, with the mean Dices index being 0.87 and 0.89, respectively. When it comes 

to the automatic segmentation of liver tumours, deep learning models, especially U-Net and DeepLabv3+, 

seem very promising due to their high precision in identifying target organs or structures within an image. 

Yet researchers still need to focus more on issues related to dataset variation, standardisation of evaluation 

metrics and their adoption in clinical settings. For instance, comprehensive validation should be conducted 

across different patient populations and imaging modalities to guarantee that it can be used in practice; 

otherwise, one may only have theory without application. 
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Convolutional Neural Networks (CNNs), U-Net, DeepLabv3+. 

 

Introduction  

The tumours of the liver, mainly hepatocellular carcinoma (HCC), are a significant public health issue for 

the globe as it ranks among the sixth most widespread type of cancer while being the third leading cause 

of all cancer deaths around the world. According to the Global Cancer Observatory, 2020 saw around 

906000 new cases of liver cancer, which made up about 4.7% of all new cancers, and that led to about 

830000 deaths or 8.3 % of worldwide cancer mortalities. [1],[2] This unfortunate statistic can be mainly 

attributed to its aggressive nature, difficulties in early detection, and precise determination of tumour 

burden. [3]  

Tumor burden is a crucial parameter that influences the prognosis and treatment decisions for liver cancer. 

This is defined as the total of all the cancerous tissues present in the liver. For disease staging, treatment 

response monitoring, and prediction of patients’ outcomes, it is essential to accurately and effectively 

quantify tumour burden. Traditionally, this is done by manual segmentation of imaging data done by 

radiologists who specify tumour borders from MRI or CT scans, among others. On the other hand, manual 

segmentation takes too long; hence, studies have demonstrated that each patient scan can take between 30 

and 60 minutes. In addition, it has inter-observer variability as different radiologists report discrepancies 

of about 20-30% in tumour volume estimates. [4] 

Radiomics is an advanced technique that enhances manual segmentation by extracting high-dimensional 

quantitative features from medical images. However, some challenges are associated with it, such as the 

risk of overfitting due to the high dimensionality of data and the need for considerable manual intervention 

during feature extraction, which is based on substantial principles in this regard. Moreover, studies indicate 

that a performance drop of up to 15% can occur when radiomic models are applied separately to differing 

patient cohorts or imaging protocols. This emphasises the importance of developing more reliable, precise 

and scalable means of measuring tumour burden in liver cancer, as these limitations highlight. [5],[6] 

In recent years, deep learning (DL) has proved to be a promising way of automating the segmentation and 

quantification of tumour burden in hepatic cancer imaging. This technique uses deep learning, especially 

convolutional neural networks (CNNs), that have demonstrated remarkable performance in medical image 

analysis tasks. For example, several studies have shown that CNN-based models achieve over 90% 

segmentation accuracy, making them far better than traditional methods. [7] It is a data-driven method 

which can automatically learn and extract pertinent features from imaging data, thereby minimising 

dependence on human involvement and improving uniformity among different datasets. [8] 

However, several difficulties are still faced in employing deep learning for clinical practice, even with 

some encouraging outcomes. Deep learning models still face challenges with generalising across various 

patient populations and imaging modalities, and current research findings have established this. When 

applying deep learning models to new datasets, their performances can differ by as much as 10-15%. [9] 

The absence of standardised evaluation metrics and large annotated datasets also hampers the 

incorporation of such models into routine clinical workflows. This literature review aims to critically 

assess the advancements made in applying deep learning methods for automating tumour burden 

segmentation and quantification in hepatic cancer imaging. The review aims to understand the present 

scenario regarding automated tumour detection systems based on images from different types of cancers 

by studying existing literature gaps and methodological choices. 
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Research questions 

1. What are the latest deep learning models that are being employed for automated segmentation as well 

as measurement of masses in hepatic malignancies? 

2. What are the leading performance indicators for these models, including but not limited to the dice 

coefficient and Jaccard index; how do they compare across different studies? 

3. What is the potential for developing predictive models incorporating deep learning features, such as 

radiomic, genomic, and clinical data, to predict patient survival and treatment outcomes in hepatic 

cancer? 

4. What are the obstacles and constraints of incorporating deep learning algorithms for quantifying 

tumour burden into medical practice? 

5. What improvements need to be made in deep learning methods to improve segmentation precision and 

the clinical usefulness of measuring tumour burden in liver cancer? 

 

Methodology 

Study Design and Framework 

This systematic review adhered to the PRISMA guidelines, focusing on using deep learning architectures 

for the automated segmentation and quantifying tumour burden in hepatic cancer imaging. The review 

included studies published until June 2024 in peer-reviewed journals and conference proceedings to 

comprehensively analyse the current research landscape. 

 

Eligibility Criteria 

The review applied specific inclusion and exclusion criteria to ensure the selection of relevant and high-

quality studies.  

Inclusion Criteria Inclusion Criteria 

Studies employing deep learning algorithms 

specifically for hepatic tumour segmentation. 

Studies focusing on non-hepatic cancers or non-

cancerous liver conditions. 

Research reporting quantitative performance 

metrics (e.g., Dice coefficient, Jaccard index, 

sensitivity, specificity, Hausdorff distance). 

Research using traditional machine learning 

methods without deep learning techniques. 

Articles are published in English to maintain 

consistency and avoid translation biases. 

Non-peer-reviewed publications, including 

abstracts, editorials, commentaries, opinion 

pieces, and grey literature. 

Studies utilising widely accepted imaging 

modalities such as CT, MRI, or US for hepatic 

tumour detection. 

Studies without full-text availability or lacking 

sufficient methodological detail to assess the 

quality of findings. 

Peer-reviewed journal articles, conference papers, 

and full-length research articles published between 

January 2010 and June 2024. 

 

Table 1 Summary of the inclusion and exclusion criteria. 

 

Information Sources and Search Strategy 

A systematic search was conducted across PubMed, IEEE Xplore, and Scopus, covering publications up 

to June 2024. The search strategy employed combinations of keywords and controlled vocabulary related 
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to hepatic cancer, deep learning, and medical imaging. Boolean operators and Medical Subject Headings 

(MeSH) were used to refine the search. 

 

Study Selection 

The selection process involved two stages: screening and eligibility assessment. Initially, two independent 

reviewers screened the titles and abstracts of 1,295 unique articles, excluding 865 articles. The remaining 

430 full-text articles were then assessed for relevance and quality, resulting in 100 studies being included 

in the final review. 

 

Data Extraction 

Two independent reviewers carefully extracted data from the 140 selected studies using a standardised 

form. Key data points included study characteristics, population details, deep learning model specifics, 

evaluation metrics, and study conclusions. Any discrepancies in data extraction were resolved through 

discussion or consulting a third reviewer. 

 

Risk of Bias Assessment 

The risk of bias was evaluated using a modified QUADAS-2 tool, focusing on four domains: patient 

selection, index test, reference standard, and flow and timing. Overall, 45 studies were rated as low risk, 

20 as high risk, and 75 as having an unclear risk of bias. 

 

Data Synthesis 

Due to heterogeneity in study designs and metrics, a narrative synthesis was conducted to summarise the 

findings. A meta-analysis was performed where possible, revealing that U-Net-based architectures had a 

mean Dice coefficient of 0.87 and a Jaccard index of 0.79, while DeepLabv3+ achieved slightly higher 

mean values.  

 

 
Figure 1 visually depicts the study selection process in a PRISMA flow diagram, illustrating the 

identification, screening, and inclusion of studies in both qualitative and quantitative analyses. 
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Discussion 

1. Deep Learning Architectures for Segmentation 

Moreover, deep learning techniques have greatly improved the segmentation of medical images, especially 

those involved in liver cancer. These approaches have potent ways of indicating where tumours are, 

estimating the amount of tumour present, and assisting health professionals’ treatment decisions. Meta 

Information on various Deep Learning Architectures. In this subsection, we analyse different deep learning 

architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and 

other emerging models concerning their application strengths and limitations, specifically about hepatic 

cancer imaging. 

A. Convolutional Neural Networks (CNNs) 

Because of their capability to automatically learn hierarchical characteristics from raw data, Convolutional 

Neural Networks (CNNs) have turned into the foundation of image analysis. Essential parts of CNN 

include convolutional layers, pooling layers and activation functions. Convolutional layers apply filters to 

input images that help extract features, including edges, textures, and even more complex patterns. 

Meanwhile, pooling layers make these features smaller, thus increasing the speed at which this model runs 

while preventing it from over-fitting [9]. Furthermore, non-linearities are introduced in activation 

functions such as ReLU (Rectified Linear Unit), which makes it possible for the model to learn 

complicated patterns better [10]. 

Several professional CNN structures stand out as state-of-the-art at the forefront of medical image 

segmentation. One example of such a typical architecture is U-Net, which has a symmetric encoder-

decoder format and can capture local and global contexts [11]. The method has proved incredibly efficient 

in segmenting liver tumours, and many studies have shown that DSCs are more significant than 0.85.  

DeepLabv3+, on the other hand, is another advanced architecture that employs atrous convolution and 

spatial pyramid pooling methods to boost multi-scale feature extraction; this helps to capture complex 

shapes in medical images [12]. According to some studies, DeepLabv3+ performs better than U-Net, 

especially in areas with fewer distinct tumour boundaries, with an accuracy increment of 5% [13]. 

U-Net is still a strong benchmark in comparing different CNN architectures in hepatic cancer segmentation 

because of its straightforwardness and efficiency. Nevertheless, architectures such as DeepLabv3+ and 

Mask R-CNN can obtain higher accuracies even in more advanced situations, such as when the tumours 

are neither spherical nor localised.       For instance, a study carried out in 2021 reported that DeepLabv3+ 

attained a mean DSC of 0.88 against a challenging dataset containing liver tumour images with a 

corresponding figure of 0.84 for U-Net, respectively [13]. Besides having a slight disadvantage in 

segmentation tasks, Mask R-CNN seems to outperform other methods when both detection and 

segmentation are required, making it a flexible approach. 

To ingeniously increase the precision of segmentation, combined CNN designs are designed. Examples 

of these are attention mechanisms that help networks concentrate on the most critical areas of an image. 

Take the Attention U-Net model, for instance, which enhances segmentation capabilities by up to three 

per cent on DSC over its parent U-Net [14]. Also, CNNs have been paired with Generative Adversarial 

Networks (GANs) for better segmentation, especially when there is not much-labeled data available [15]. 

B. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

Recurrent Neural Networks (RNNs) and their more advanced variant, Long Short-Term Memory (LSTM) 

networks, have mainly been used to analyse sequential data; thus, they are not often found in static image 

segmentation tasks. Their capability of processing temporal information makes them indispensable in 
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medical image analysis where time-series data is involved, such as dynamic contrast-enhanced MRI 

(DCE-MRI). 

In the context of hepatic cancer, RNNs and LSTMs are particularly suited for analysing sequences of 

images over time, such as in assessing tumour growth or response to treatment. These networks can capture 

the temporal dynamics of hepatic lesions, providing insights into disease progression that static models 

may miss. For instance, LSTM networks have been applied to predict future tumour growth patterns, 

demonstrating the potential to assist in personalised treatment planning [16]. 

C. Transformer-Based Models 

Recent transformer-based models initially designed for natural language processing have been adapted for 

vision tasks. One model that has shown potential in image classification and segmentation is the Vision 

Transformer (ViT). Using self-attention mechanisms to model global relationships across the entire image 

distinguishes ViTs from CNNs, which may mainly assist in capturing long-range dependencies in medical 

images [17]. Unfortunately, their application in hepatic cancer segmentation is still in its infancy, as 

ongoing research aims to adapt these models to enable them to tackle the unique challenges posed by 

medical imaging. 

D. Graph Neural Networks (GNNs) for Capturing Spatial Relationships 

Graph Neural Networks (GNNs) are one of the new architectural evolutions that can represent spatial 

complexities among different parts of an image better. In liver cancer imaging, GNNs could help map the 

positioning of neoplasms against normal tissues and, thus, better characterise tumour morphology. GNNs 

have found successful applications in brain tumour segmentation, while parallel investigations are ongoing 

with respect to hepatic tumours [18]. 

E. Hybrid Approaches Combining Different Architectures 

The use of varying deep learning architectures in tandem has been attempted to exploit their respective 

advantages. For example, CNNs fused with Transformers or GNNs can make hybrid models that can 

enhance segmentation performance through combined extraction of local features and understanding of 

the global context. Such a combination is beneficial for intricate segmentation tasks such as those that 

involve heterogeneous or multifocal tumours associated with hepatic cancer [19]. 

2. Segmentation Evaluation Metrics 

It is crucial that their evaluation be considered for the accuracy, dependability, and clinical applicability 

of segmentation algorithms in the realm of hepatic cancer imaging. Several metrics exist for the 

quantitative assessment of algorithm performance, which provide different perspectives on the 

segmentation quality. Thus, this section will provide a comprehensive overview of the most frequently 

used metrics, their limitations, advanced ones, and how inter-observer variability affects evaluation. 

 

Comprehensive Overview of Commonly Used Metrics 

1. Dice Coefficient and Jaccard Index 

The Dice coefficient and the Jaccard index are among the most widely used metrics for evaluating 

segmentation performance in medical imaging. The Dice coefficient measures the similarity between the 

predicted segmentation and the ground truth, calculated as twice the overlap area divided by the total 

number of pixels in both the predicted and ground truth segmentations. Mathematically, it is expressed as: 
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A and B represent the sets of pixels in the predicted and ground truth segmentations, respectively [20], a 

Dice coefficient of 1 indicates perfect overlap. In contrast, a coefficient of 0 means no overlap. The Jaccard 

index, also known as the Intersection over Union (IoU), is closely related to the Dice coefficient and is 

calculated as the ratio of the intersection of the predicted and ground truth segmentations to their union: 

 

 

 

Both metrics are particularly effective in evaluating the overall similarity between segmentations, with the 

Jaccard index generally yielding slightly lower values compared to the Dice coefficient for the same 

segmentation due to its different formula [21] 

2. Sensitivity, Specificity, and Accuracy 

Sensitivity, specificity, and accuracy are metrics derived from the confusion matrix, which compares the 

predicted segmentation to the ground truth regarding true positives, false positives, true negatives, and 

false negatives. Sensitivity, also known as recall, measures the proportion of actual positives (e.g., tumour 

pixels) correctly identified by the segmentation algorithm. Specificity measures the proportion of actual 

negatives (e.g., non-tumor pixels) correctly identified. Accuracy represents the overall correctness of the 

segmentation, calculated as the ratio of correctly identified pixels to the total number of pixels. 

These metrics are beneficial for understanding the balance between detecting true positives and avoiding 

false positives, which is critical in medical imaging, where both under-segmentation and over-

segmentation can have significant clinical implications [22] 

 
3. Hausdorff Distance 

The Hausdorff distance is a geometric metric that measures the maximum distance between the boundaries 

of the predicted and ground-truth segmentations. It is particularly sensitive to outliers, making it useful 

for identifying large segmentation errors that might not significantly impact the Dice coefficient or Jaccard 

index. This metric is particularly useful in medical imaging for detecting significant misalignments or 

boundary errors in segmentation. 

4. Surface Distance Metrics 

Surface distance metrics offer a more detailed evaluation of segmentation accuracy by measuring the 

average distance between the surfaces (boundaries) of the predicted and ground truth segmentations. 

Metrics such as the mean surface distance (MSD) and the 95th percentile surface distance (SD95) provide 

insights into the typical and extreme boundary discrepancies, respectively. These metrics are beneficial in 

clinical applications where precise boundary delineation is critical, such as in planning surgical 

interventions or radiation [23] 

 

Limitations of Individual Metrics and the Need for Combined Evaluation 

In addition, it is not well known that segmentation performance can be evaluated, as mentioned in the 

previous metrics. However, they have their limitations. For instance, the Dice coefficient and Jaccard 

index are insensitive to minor boundary discrepancies. This indicates that these indices are not sensitive 

enough to tiny margin shifts. Such shifts may be of great importance in those cases where accurate 

delineation of tumour margins matters greatly. Therefore, one will be able to understand this better with 
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the help of sensitivity and specificity, which tell us about the balance between rightly and wrongly 

identified things but without considering their location, which is an integral part of any medical image. 

The Hausdorff distance can identify some types of boundary errors; however, it might be too much 

affected by outliers, thus producing tremendous values if there is just 1 point that is even slightly misplaced 

from others’. Consequently, using only one measure for segmentation performance evaluation may result 

in an incomplete or distorted perception of this algorithm’s power [24] One of the ways to overcome these 

shortcomings is to evaluate segments using more than one metric together with several others. Therefore, 

a combined evaluation approach incorporating multiple metrics is often recommended to overcome these 

limitations. For example, the Dice coefficient and Hausdorff distances can serve complementary roles and 

provide a comprehensive conclusion covering overall overlaps and boundary details. Additionally, 

sensitivity, specificity, and accuracy allow for a balanced evaluation of positive and negative predictive 

values. This combined approach ensures a more reliable and nuanced assessment of segmentation 

algorithms, particularly in complex medical imaging tasks like hepatic cancer segmentation. 

 

Inter-Observer Variability and Its Impact on Evaluation 

Inter-observer variability can be defined as diverse segmentation results obtained by different radiologists 

or clinicians when analysing the same medical images. Such variances can significantly affect these 

algorithm evaluations, given that ground truth for comparison is often based on manual segmentations 

from expert humans. Studies have found that this inter-observer variability can lead to variations of about 

20-30% for tumour volume estimates, which would cause the perceived accuracy of automated 

segmentation algorithms [25]. To reduce the effects of inter-observer variability, one way is to have 

several expert annotations used to create a ground truth consensus. Alternatively, statistical approaches 

could be utilised to model and integrate it in the evaluation phase. This method ensures that the 

performance metrics of the segmentation algorithm truly reflect its actual abilities rather than human 

annotators’ inconsistencies [26] 

 

3. Quantification of Tumor Burden in Hepatic Cancer Imaging 

Accurately measuring tumour load is very important in evaluating the progression of the disease, response 

to treatment, and prognostication in liver cancer. New advances made possible by deep learning have 

substantially improved automated segmentation and quantification. In this review, we would like to 

highlight methods used in volume measurements, texture analysis, and indices of tumour load to give a 

detailed account of modern techniques. 

Methods for Accurate Volume Estimation from Segmented Masks 

Practical volume estimation of tumours from segmented masks is indispensable for disease burden 

evaluation. Deep learning models have shown promise in improving segmentation accuracy, notably 

convolutional neural networks (CNNs). For instance, U-Net, a widely used CNN architecture, has been 

adapted for hepatic tumour segmentation, providing robust performance across various datasets [27]  

Several studies have demonstrated that U-Net can accommodate diverse hepatic tumour morphologies and 

anatomical variants, such as those conducted in 2018 and 2020. The model achieved dice similarity 

coefficients of 0.85 and 0.87, respectively. [28], [29]. Segmentation accuracy plays a crucial role in tumour 

volume quantification precision. Errors made during the segmentation process may cause significant 

inaccuracies regarding volumetric measures that will ultimately affect decisions made regarding 

treatments used during the recovery period. For example, research has noted that if there are mistakes in 
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segmentation of about five per cent, there will be variations in estimations of tumour volumes, which may 

affect planning and predicting outcomes, especially on treatment plans being considered.[30] In addition, 

the researcher showed that using attention mechanisms in CNNs increased segmentation accuracy by 

seven per cent, thereby making it more reliable for volumetric quantification.[31] 

Texture Analysis 

Textural analysis refers to obtaining quantitative characteristics from tumour sub-regions segmented, thus 

shedding light on tumour heterogeneity and microenvironment. Radiomic features such as entropy, 

contrast and homogeneity are derived from grayscale images; hence, they reflect the underlying tumour 

traits. Furthermore, deep learning approaches like employing pre-trained convolutional neural networks 

(CNNs) for feature extraction make it easier to capture intricate texture patterns. As shown in studies, 

radiomic indicators could effectively forecast the aggressiveness of tumours together with patient results, 

where entropy and energy served as critical survival predictors among patients with hepatic cancer [32], 

[33]. 

The aggressiveness of tumour rash is related to certain texture features and specific outcomes in routine 

practice. For instance, according to a study done in 2020, high entropy levels coupled together with low 

contrast values signify a terrible prognosis for individuals diagnosed with liver carcinomas. [34] 

Additionally, a detailed review pointed out that radiometric elements can foretell treatment effectiveness 

or longevity since there were significant relationships between various parameters related to texture and 

several clinical endpoints. This underlines the importance of including textural analysis in clinical work 

processes, leading to better-personalised medication policies and prognosis attainment. [35] 

Tumor Burden Indices 

In quantitative indices of tumour burden, volume and texture data have been merged to understand tumour 

burden better. Recently, there has been an effort to create a composite index of volumetric and texture 

data indicative of tumour characteristics. For instance, a researcher in 2022 proposed a hybrid index that 

combines volumetric measures with texture features, achieving superior performance in predicting clinical 

outcomes compared to traditional methods. Such a hybrid approach would increase the predictive power 

of the tumour/blob size assessment, thus allowing more precise clinical evaluation. [36] 

The relationship between tumour burden index and clinical endpoints is critical to confirm its clinical 

usefulness. A study reported that the composite index, which integrates volume and texture features, 

significantly correlates with survival rates and treatment response in liver cancer patients. [37] The current 

research reveals that a higher composite index score resulted in poorer survival outcomes, confirming their 

prognostic significance. More so, a study showed how volume and texture data combined can make more 

accurate predictions for forecasting treatment results, thus indicating their role as a base for targeted 

therapies. [38] 

 

4. Deep Learning for Tumor Burden Prediction 

With the incorporation of clinical and radiological data, deep learning has reformed cancer imaging and 

prognostication by increasing tumour mass evaluation, predicting response to therapy, and estimating how 

long one may live after diagnosis. Here, we look at how deep learning algorithms improve prediction 

performance in these fields by looking into areas such as merging clinical with imaging data, predicting 

therapeutic response, using tumour load changes for forecasting survival rates, and making predictive 

models. 
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Integration of Clinical and Radiological Data with Deep Learning Models 

Significant improvements in the accuracy of predictions have been attributed to incorporating clinical and 

radiological data using deep learning models. The integrated multi-modal models combine image data and 

not only tumour stage but also patient demographics and genetic information to offer a comprehensive 

picture of the tumour burden. For instance, A scientist developed a deep learning system that fused MRI-

derived radiomic features with clinical data for predicting hepatic cancer outcomes. Their model achieved 

an area under the receiver operating characteristic curve (AUC) of 0.87, which shows the significance of 

integrating different sources of information. [39] Multi-input networks, deep learning architectures 

designed for handling diverse data types simultaneously, can serve like this. A study carried out in 2022 

utilised a multi-input CNN that used CT images and clinical parameters to predict tumour progression. As 

a result, this approach improved the prediction performance significantly; hence, its C-index was 0.78, 

while those who relied only on images had 0.65. [40] These findings highlight how clinical and 

radiological datasets can be merged to improve predictive modelling. 

Prediction of Tumor Response to Treatment 

Applying solutions from deep learning to foresee tumour reactions to therapy is done by analysing pre- 

and post-treatment images. The 3D CNN is a suitable model for this. In hepatic cancer patients, a study 

showed that utilising variation in texture and volume of the tumour to analyse the 3D CNN could 

accurately predict response to treatment. This method achieved an AUC of 0.83 in predicting treatment 

response; this highlights the potential of deep learning in guiding therapeutic decisions. [41] 

Deep learning models have temporal information added to enhance predictions of therapeutic replies. For 

example, in 2023, a scientist built an RNN model which used temporal changes in imaging data as an 

input for forecasting the efficacy of treatments. Prediction accuracy rose while prediction error was 

reduced by 15% compared with static models. This led to increased prediction precision for sequential 

imaging data analysis, better-assessing treatment effects over time, and more information about tumour 

dynamics. [42] 

Survival Prediction Based on Tumor Burden Dynamics 

The success of personalised treatment planning hinges upon predicting patient survival based on tumour 

burden dynamics. Deep learning models can track tumor growth patterns and their associated survival 

outcomes. The study conducted in 2024 implemented a deep-learning framework that was used to analyse 

tumour growth trajectories to predict survival outcomes in patients diagnosed with hepatic cancer. With a 

combination of volumetric and textural features incorporated into the model, it achieved a C-index of 0.80, 

indicating its strength in prediction accuracy. [43] Integrating deep learning techniques with longitudinal 

imaging data improves the accuracy of survival predictions. The research applied time-series analysis 

employing deep learning to assess the relationship between changes in tumour burden over periods and 

patient survival rates. Their longitudinal model exhibited increased accuracy in surviving predictions with 

a C-index increase of 0.10 compared to static data models. Furthermore, this advancement stresses the 

necessity for dynamic assessment of tumours for precise forecasting of patient life expectancy.[44] 

Prognostic Models Incorporating Deep Learning Features 

Prognostic models that utilise deep learning features have advanced abilities in forecasting patient results. 

These models build comprehensive prognostic tools by applying features extracted from imaging data, 

clinical variables, and genetic information. For instance, A researcher developed a predictive model that 

used deep learning components and clinical data to predict the overall lifespan of hepatic cancer patients. 

The model’s effectiveness was shown through its achievement of an AUC of 0.82 in predicting patient 
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outcomes. [45] 

Combining different features, such as radiomic, genomic, and clinical data, enhances prognostic accuracy. 

In a study, a multi-feature deep learning model that integrated radiomic features with genetic and clinical 

data significantly outperformed traditional predictive models. The C-index obtained from this integrated 

approach was 0.85, which indicates high accuracy for survival prediction and therapeutic implications. 

[46] 

 

5. Challenges and Limitations in Deep Learning for Tumor Burden Prediction 

Deep learning brings significant advancements in predicting tumour burden; however, several challenges 

and limitations need to be addressed to fully realise its potential. This section focuses on data scarcity and 

quality issues, model generalizability, model interpretability, clinical validation, and implementation. 

Data Scarcity and Quality Issues 

One major thing hampering deep learning for tumour burden prediction is the lack of high-quality 

annotated medical imaging datasets. Deep learning models require large, labelled datasets to be trained 

effectively, but getting such data can be problematic because of privacy reasons, high costs, and logistical 

hurdles involved. For instance, a study conducted in 2018 revealed that deep learning models were 

significantly impacted by limited access to annotated lung cancer CT scans. [47]  

This problem is especially urgent in subspecialties such as liver cancer, where there is an extreme shortage 

of high-quality data characterised by precise annotations. Even though data is present, its quality and 

consistency can still be a concern. Factors such as variations in imaging protocols and equipment used, 

along with patient-dependent factors, introduce noise to the data, affecting its reliability. For instance, 

variations in CT scanner models or settings may cause differences in image characteristics, making it 

difficult for deep-learning models trained on data from different sources [48]. Furthermore, divergent 

annotation practices across several medical centres hinder the training & evaluation of the models. 

To solve these problems, techniques such as data augmentation, synthetic data generation and transfer 

learning are applied. Data augmentation means increasing the size of training datasets artificially by 

applying transformations like rotation and scaling to existing images. On the other hand, Synthetic images 

are generated through Generative Adversarial Networks (GANs). Transfer learning involves taking a 

model pretested on large datasets and then tuning it to fit small specific domains, which is called transfer 

learning [49]. These methods ensure better outcomes even if there is little available information. 

Generalizability of Models to Different Imaging Modalities and Patient Populations 

Training deep learning models on specific imaging modalities may not easily relate to other modalities. 

For instance, models trained using MRI data may have difficulty interpreting CT or PET images due to 

the dissimilarity of their image features and characteristics. An MRI-based model performed poorly when 

applied to CT images, highlighting the challenges of modality-specific generalisation. [50] 

Another issue facing the generalisation of models across diverse patients is the fact that there are variations 

in tumour characteristics and imaging features resulting from demographic factors like age, ethnicity, and 

co-existing conditions. According to the researcher, it was found that models derived from a particular 

population might be less accurate if applied to patients from different geographic regions or with different 

genetic backgrounds. Such variability results in reduced accuracy and reliability of predictions, mainly 

when applied to new populations that were never seen before by these models. [51] 

To resolve these problems, cross-modality and cross-population validation need to be carried out. For 

models to have robust performance, they must be validated on diverse patient cohorts as well as various 
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imaging modalities. Furthermore, domain adaptation techniques may help to narrow the divide between 

different data distributions by tuning a model trained within one domain so that it works well elsewhere. 

More broadly applicable models that are capable of processing diverged imaging data, and patient features 

continue to be a field of study that is still underway.[52] 

Interpretability of Deep Learning Models 

One major obstacle in deep learning models is “opacity” because they are hard. Most often, these models 

operate with a high difficulty level, making it impossible to comprehend how concrete assumptions were 

formed. The inability to understand can impede trustworthiness and acceptance in clinical environments. 

For instance, it could accurately predict high-danger cancer patients but without comprehending the 

primary decision-making process behind why certain assumptions were made [53] 

Several techniques have been suggested to enhance interpretation, including saliency maps and activation 

maximisation, which show which parts of an image matter most in the decision to create a model. For 

example, GradCAM provides images with colours that indicate the areas affecting the decision more 

significantly than others. [54] Moreover, some tools are not meant to be associated with any particular 

model but help understand how certain aspects lead to specific conclusions, like SHAP, which stands for 

Shapley Additive explanations, or local interpretable model-agnostic explanations code-named LIME. 

These methods improve transparency and facilitate clinical validation. [55] 

Clinical Validation and Implementation 

Validating deep learning models in clinical settings entails thorough testing to ensure that they give 

reliable and actionable insight. Large-scale trials and real-world evidence are required for clinical 

validation to confirm that models perform as expected across different patient populations and imaging 

conditions. For instance, the study found that deep learning models performed well in research settings. 

Still, their effectiveness decreased when applied to real-life clinical data due to variations in image quality 

and patient demographics. [56] 

Implementation of deep learning models into clinical practice faces several obstacles. These include 

integration with existing clinical workflows, regulatory approval, and the need for seamless 

interoperability with electronic health records (EHRs). Moreover, there are concerns about data privacy 

and security because patient data should be protected during model training and deployment [57]. 

Overcoming these obstacles requires collaboration among researchers, clinicians, and policymakers to 

create standards and guidelines for the safe and effective use of deep learning in health care. To bridge the 

gap between research and clinical practice, efforts have been made to develop user-friendly interfaces for 

clinicians, manage conformity with the standard regulations and perform thorough validation studies. 

Collaborative initiatives aim at standardising practices and advancing the use of AI tools in radiology [58]. 

Therefore, these initiatives are essential in transforming profound learning advancements into actionable 

solutions to improve patient care. 

 

6. Comparison between literature reviews about different models for Automated Segmentation 

and Quantification of Tumor Burden in Hepatic Cancer Imaging. 

Paper 
Abstract 

summary 
Main findings Algorithms 

Outcome measured  

[64] Deep learning 

models can 

accurately 

- The proposed deep 

learning approach can 

provide automated 

1) Residual-attention 

U-Net (RA-Unet) for 

liver segmentation 2) 

1) Segmentation of the 

liver, liver tumours, 

and ablation zones in 
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segment liver 

tumours and 

ablation zones in 

multi-phase CT 

images, enabling 

quantitative 

evaluation of 

treatment success. 

segmentation of liver 

tumours and ablation 

zones on multi-phase 

(arterial and portal 

venous) and multi-

time-point (before and 

after RFA/MWA 

ablation) routine 

clinical CT images, 

enabling quantitative 

evaluation of treatment 

success. - Using 

transfer learning, an 

initial model can be 

generalised to another 

imaging phase and 

another type of lesion 

with a relatively small 

amount of additional 

training data. - The 

model demonstrated 

higher detection and 

segmentation 

performance for 

tumours with a volume 

≥ 0.5 cm3, which 

corresponds to 

spherical tumours with 

a diameter > 1cm. 

Multi-scale patch-

based 3D RA-Unet 

for tumour and 

ablation zone 

segmentation 3) 

Transfer learning to 

adapt the base 

models to the clinical 

dataset 

both arterial and portal 

venous phase CT 

images 2) Quantitative 

evaluation of the 

segmentation 

performance using 

metrics like Dice 

Similarity Coefficient 

(DSC), sensitivity, 

precision, and F1 

score 

[65] The paper 

presents a deep 

learning-based 

method for the 

automatic 

segmentation and 

classification of 

liver tumours in 

CT scans. 

- The proposed deep 

learning-based system 

achieved very high 

performance for 

automatic segmentation 

and classification of 

liver tumours in CT 

scans, with a Dice 

score of 95.40%, 

Jaccard index of 92%, 

and accuracy of 

92.60% for 

segmentation, as well 

as accuracy of 96%, 

1. A modified Dense 

U-Net model for 

liver tumour 

segmentation 2. A 

novel deep 

convolutional neural 

network (CNN) 

architecture based on 

the pre-trained VGG-

16 network for liver 

tumour classification 

The primary outcomes 

measured in this study 

are the performance of 

the deep learning 

models for liver 

tumour segmentation 

and classification, as 

measured by the Dice 

Score, Jaccard Index, 

accuracy, sensitivity, 

specificity, and 

precision. 
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sensitivity of 95.80%, 

specificity of 96.20%, 

and precision of 

95.80% for 

classification. - The 

classification model 

used a novel deep 

convolutional neural 

network architecture 

based on the pre-

trained VGG-16 

network to distinguish 

between normal and 

malignant liver 

tumours. - The 

segmentation model 

used a modified 

version of the Dense 

U-Net architecture. 

[66] This paper 

reviews deep 

learning 

techniques for 

automated liver 

and liver tumour 

segmentation 

from 3D medical 

images. 

- The main findings of 

the review are a 

summary of the deep 

learning techniques and 

their evaluation metrics 

used for liver and liver 

tumour segmentation. - 

The review provides an 

overview of the 3D 

volumetric imaging 

architectures used for 

semantic segmentation 

of liver and liver 

tumours. - The review 

compares the 

performance of 

different deep learning 

approaches for liver 

and tumour 

segmentation, as 

measured by the dice 

score. 

1. Automatic and 

semi-automatic 

techniques for liver 

and liver tumor 

segmentation 2. 

Deep learning 

techniques for 

medical image 

segmentation in 3D 

volumetric images 3. 

Various 3D 

volumetric imaging 

architectures 

designed for 

semantic 

segmentation 

Not mentioned 

[67] Deep learning 

approaches like 

- A deep learning-

based approach using 

The specific 

algorithms 

The primary outcomes 

measured in this study 
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ResUNet and 2D-

UNet can 

accurately 

segment liver 

tumors in CT 

scans. 

the ResUNet and 2D-

UNet architectures was 

proposed for liver CT 

segmentation and 

classification. - The 

ResUNet architecture 

achieved a tumor True 

Value Accuracy of up 

to 99% in the training 

phase. - The 2D-UNet 

architecture achieved a 

tumor True Value 

Accuracy of up to 92% 

in the training phase. 

introduced and used 

in this study are the 

ResUNet and 2D-

UNet deep learning 

architectures for liver 

tumor segmentation. 

were the tumour True 

Value Accuracy of the 

ResUNet and 2d-unit 

deep learning 

architectures for liver 

and liver tumour 

segmentation on a 

standard dataset of 

liver CT scans. 

[68] A deep learning-

based system 

using watershed 

transform and 

Gaussian mixture 

model techniques 

can accurately 

detect and classify 

different types of 

liver cancer in CT 

images. 

- The proposed WGDL 

technique achieved a 

classification accuracy 

of 99.38% and a 

Jaccard index of 

98.18% for detecting 

three types of liver 

cancer using a deep 

neural network 

classifier. - The 

developed WGDL 

system is ready to be 

tested on a more 

extensive database and 

can aid radiologists in 

detecting liver cancer 

from CT images. 

1) Marker controlled 

watershed 

segmentation 2) 

Gaussian mixture 

model (GMM) 3) 

Deep neural network 

(DNN) classifier 

The primary outcome 

measured in this study 

was the classification 

accuracy of the deep 

learning model in 

detecting three types 

of liver cancer: 

hemangioma (HEM), 

hepatocellular 

carcinoma (HCC), and 

metastatic carcinoma 

(MET). 

[69] A deep learning 

algorithm based 

on modified 

ResUNet 

architecture can 

automatically 

segment liver and 

tumors from CT 

scans with high 

accuracy. 

- The proposed deep 

learning algorithm 

based on a modified 

ResUNet architecture 

can automatically 

segment the liver and 

tumours from 

abdominal CT scan 

images with high 

accuracy (96.35% DSC 

for the liver, 89.28% 

DSC for tumours, and 

The primary 

algorithm used in 

this study was a 

modified ResUNet 

architecture, which is 

a type of 

convolutional neural 

network (CNN) for 

semantic 

segmentation. 

The primary outcomes 

measured in this study 

were the accuracy and 

Dice Similarity 

Coefficients (DSCs) 

for liver and tumor 

segmentation from CT 

scans using a deep 

learning algorithm. 
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over 99.7% accuracy). 

- The deep learning 

algorithm outperforms 

other linked methods 

for liver and tumor 

segmentation. - 

Automatic 

segmentation of the 

liver and tumors can 

help minimize the time 

and effort required for 

liver disease diagnosis. 

[70] The paper 

presents an 

automated liver 

tumor 

segmentation and 

classification 

model using deep 

learning 

approaches. 

- The proposed method 

achieves high 

performance in liver 

tumor segmentation 

and classification, with 

the highest precision 

for lesion identification 

while maintaining a 

high recall value. - The 

method can accurately 

classify liver tumors 

into three categories 

(HCC, malignant, and 

benign/cyst) with an 

average accuracy of 

87.8%. - The key 

novelty of the study is 

the use of a mask-

RCNN-based method 

for liver segmentation, 

MSER for tumor lesion 

segmentation, and a 

hybrid CNN-based 

approach for tumor 

classification. 

1. Mask-RCNN for 

liver segmentation 2. 

MSER for tumour 

identification 3. 

Hybrid CNN model 

for tumour 

classification 

1. Liver tumor 

segmentation, to 

distinguish between 

normal and malignant 

tissue in the liver. 2. 

Liver tumor 

classification, to 

categorize identified 

liver tumors into three 

classes: hepatocellular 

carcinomas (HCC), 

malignant (other than 

HCCs), and benign or 

cyst, with an average 

accuracy of 87.8%. 

 

7. Future Directions in Deep Learning for Tumor Burden Prediction 

The rapidly evolving field of deep learning in tumor burden prediction has many promising future 

directions that will enhance these technologies' accuracy, reliability, and clinical applicability. This section 

elaborates on potential areas for further research and development, such as multimodal imaging, deep 

learning-based image registration, AI-assisted interactive segmentation, explainable AI, clinical trials, etc. 
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Multi-Modal Imaging for Improved Segmentation and Quantification 

Combining CT, MRI, and PET scans can provide a complete picture of the tumour’s physical and 

metabolic characteristics. As a result, it improves the segmentation and quantification of tumours. For 

instance, CT images provide anatomical detail, while MRI scans offer better contrast for soft tissues than 

CT images. On the other hand, PET reveals where metabolic activity is (which is essential in cancer). 

Thus, integrating these modalities leads to greater accuracy when delineating tumours, giving one an 

insightful perspective into their burden [59]. 

Using multi-modal data in deep learning models dramatically enhances performance compared to single-

modal ones. Recent studies have shown that fused imaging data improves tumor segmentation and 

characterisation. A group of researcher created a multi-modal deep learning model that fused MRI with 

PET information, enabling accurate tumour segmentation and determining if it was responding to 

treatment or not [60]. In doing so, this work improved the dice similarity coefficient from 0.82 for single-

modality models to 0.88, thereby demonstrating why there is a need for employing multi-modal strategies 

in medical imaging applications. 

Deep Learning-Based Image Registration for Longitudinal Studies 

Longitudinal studies follow tumour changes over time and necessitate accurate image registration for 

proper alignment of sequential scans. This alignment is essential in evaluating tumour growth, treatment 

efficacy and progression. Nevertheless, traditional image registration methods are often time-consuming 

to compute and may be unable to handle variations in imaging conditions. 

Image registration for longitudinal studies has been improved by deep learning. Image registration can 

benefit from convolutional neural networks (CNNs) and transformer-based architectures, which could 

enhance both accuracy and efficiency in administering the process. A study conducted in 2023 proposed 

a deep learning-based registration model that significantly lowered the number of registration errors while 

saving computational time, as opposed to conventional systems. This advancement makes it possible to 

track tumour dynamics more accurately and assess the effects of treatment over time in a better way. [61] 

Integration of AI-Assisted Interactive Segmentation 

The automated algorithms are integrated with user inputs to refine segmentation results. The purpose of 

this tool is to allow clinicians to adjust the outputs of segmentation and ensure that they align with their 

expertise and anatomical knowledge. Recently, AI-assisted interactive segmentation has utilised deep 

learning methods that provide real-time feedback and corrections. For instance, a study developed an 

interactive segmentation tool that combines deep learning and a user-friendly interface where clinicians 

can change the output dynamically. This resulted in improved accuracy and efficiency of tumour 

delineation since the feedback by users reduced segmentation errors by 20% compared to totally automatic 

techniques. [62] 

Explainable AI for Understanding Model Decisions 

Deep learning models must be adopted clinically to benefit from them, which requires understanding their 

decision-making capabilities as they become more complicated. XAI provides doctors with proof that can 

be trusted and verified through insights from the model's predictions. 

Most recent work on XAI has focused on soothing the complexities surrounding deep learning models. 

Some techniques such as saliency maps, Grad-CAM and SHAP (Shapley Additive explanations) can be 

used to show how a given model planned or arrived at a particular conclusion. An illustration is the case 

where SHAP was used to interpret the predictions made by one of the deep learning models meant for 

liver tumour classification, which enabled an understanding of how specific features contribute, thus 
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increasing the transparency level of the model. [63] These methods are essential for integrating deep 

learning in clinical workflows to ensure that the model’s decisions can be understood and acted upon. 

Clinical Trials to Evaluate the Impact of Deep Learning-Based Tumor Burden Assessment on 

Patient Outcomes 

Deep learning tools to assess tumour load must be translated into concrete gains in terms of actual clinic 

observations through rigorous clinical trials whose edge lies in their ability to appraise how these advanced 

tools work in real life and what outcomes they bring about on patients such as continued existence, life 

quality and treatment success what. Designing clinical trials for deep learning tools requires various 

considerations. These include choosing suitable endpoints, abiding by regulations, and harmonising with 

current clinical workflows. Recently aimed at incorporating AI instruments into clinical investigations 

that assess its influence on patient management and outcomes have been the efforts of organisations like 

the National Cancer Institute (NCI). Such trials will offer crucial evidence concerning the efficiency and 

safety of assessments based on deep learning that will guide their endorsement in everyday hospitals. 

 

Conclusion 

This literature review critically assessed the use of deep learning architectures for the segmentation and 

quantification of tumour burden in hepatic cancer imaging. The analysis exposed an excellent performance 

by the CNN-based models, especially U-Net and DeepLabv3+, which have significantly improved upon 

traditional manual methods in accuracy and efficiency. However, it also identified several challenges 

before these models fit into standard clinical practice. The difference in the quality and generalizability of 

datasets is one of the main problems of deep learning models. Many of these studies used single-centre 

datasets with limited diversity, leading to doubts about whether they would function well with different 

populations and imaging settings. It is also challenging because inter-observer variability on ground truth 

annotation creates a significant obstacle to model evaluation. To improve the field, future studies should 

concentrate on making standard datasets and evaluation criteria that can be widely used throughout 

research. This will allow for more dependable model performance comparisons and the incorporating of 

deep learning-based segmentation tools into everyday hospital practices. Moreover, conducting extensive 

multi-centre studies that verify these techniques in real life is necessary, hence providing strength and 

viability. In summary, despite potential improvements through deep learning in hepatic cancer burden 

segmentation/quantification, the clinical application may necessitate overcoming existing limitations 

through collaboration amongst research centres and medical facilities. 
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