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ABSTRACT 

This research Paper explores the application of the Lindhard theory of screening to study effective electron-

electron interactions in various systems. The Lindhard theory, developed by Danish physicist Jens Lindhard 

, describes the screening of a test charge by a surrounding electron gas. By applying this theory, we can gain 

insights into the behavior of electrons in different environments and understand how they interact with each 

other. The Lindhard theory of screening provides a fundamental understanding of electron-electron 

interactions within a many body electron gas. 

This paper explores the theoretical underpinnings of the Lindhard theory, its mathematical formulation, and 

its implications for effective electron electron interactions in metals. By examining the response of an electron 

gas to perturbations, the lindhard function is derived, and its impact on screening the coulomb interaction is 

analyzed. Applications in understanding the electrical and thermal properties of metals, as well as complex 

phenomena like superconductivity and plasmon excitations, are discussed. 
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1.  INTRODUCTION 

In condensed matter physics, understanding the interaction among electrons in a metal is crucial for explaining 

various physical properties, and magnetic behavior. Electrons in a metal interact via coulomb forces, but these 

interactions are modified by the presence of other electrons. The Lindhard theory, formulated by J.Lindhard 

in 1954. Let's explore the theoretical foundations of the Lindhard theory of screening to study effective 

electron electron interactions. 

Electron-electron interactions play a crucial role in determining the properties of solids. The Lindhard theory 

of screening offers a powerful tool for understanding these interactions by describing how electrons screen 

each other charges. The electronic structure theory of metals, developed in the 1930’s by Bloch , Bethe, 

Wilson and others, assumes that electron-electron interactions can be neglected, and that solid-state physics 

consists of computing and filling the electronic bands based on knowledge of crystal symmetry and atomic 

valence. 

To a remarkably large extent , this works. In simple compounds, whether a system is an insulator or a metal 

can be determined reliably by determining the band filling in a noninteracting calculations .Bands gaps are 
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sometimes difficult to calculate quantitatively but inclusion of simple renormalizations to electron band 

structure known as Hartree-Fock corrections, equivalent to calculate the average energy shift of a single 

electron in the presence of an average density determined by all other electrons, almost suffices to fix this 

problem. 

There are two reasons why we now focus our attention on e--e- interactions, and why almost all problems of 

modern condensed matter physics as it relates to metallic system focus on this topic: 

1. Why does the theory work so well in a simple system? This is far from clear. In a good metal the average 

interelectron distance is of the order of or smaller than the range of the interaction, e.g. the screening 

length Lscr ~ (c/e2m)1/2⍴-1/6, where ⍴ is the density, of order 1 nm for typical parameters. One might 

therefore expect that interactions should strongly modify the picture of free electrons commonly used to 

describe metals. 

2. More complicated systems exhibit dramatic deviations from the predictions of band theory. I refer now 

not simply to large quantitative errors in the position of 1-electron bonds, but to qualitative discrepancies 

in the behavior of the materials. The most interesting modern example is the class of compounds known 

as the transition metal oxides, including the cuprate materials which give rise to high-temperature 

superconductivity. 

 

2. Methodology 

Let’s begin with the second-quantized form of the electronic Hamiltonian with 2-body interactions. I will 

focus on a translationally invariant system and do the calculation in momentum space. In this case as we have 

shown the Hamiltonian is 

 
The 2-body interaction V̂ contains 4 Fermi operators c and is therefore not exactly soluble. The goal is to 

write down an effective 2-body Hamiltonian which takes into account the average effects of the interactions. 

We therefore replace the 4-Fermi interaction with a sum of all possible 2-body terms, 

 

 
 

where the + and − signs are dictated by insisting that one factor of -1 occur for each commutation of two 

fermion operators required to achieve the given ordering. This can be thought of as “mean field terms”, in the 

spirit of Pierre Weiss, who replaced the magnetic interaction term Si ·Sj in a ferromagnet by〈Si〉Sj =〈S〉

Sj≡ −HeffSj, i.e. he replaced the field Si by its homogeneous mean value S, and was left with a term equivalent 

to a 1-body term corresponding to a spin in an external field which was soluble. The mean field〈S〉in the 

Weiss theory is the instantaneous average magnetization of all the other spins except the spin Sj, and here we 
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attempt the same thing, albeit somewhat more formally. 

 
The “mean field” is the average number of particles nk𝛔 in the state kσ, which will be weighted with the 2-

body interaction V(q) to give the average interaction due to all other particle. With these arguments in mind, 

we use the approximate form (4) and replace the interaction V̂ in (3) by 

 
where the total density n is defined to be n = Σk𝛔 nk𝛔. Since this is now a 1-body term of the form 

Σk𝛔ΣHF(k)a✝k𝛔ak𝛔 , it is clear the full Hartree-Fock Hamiltonian may be written in terms of a k-dependent 

energy shift: 

 
Note the Hartree or direct Coulomb term, which represents the average interaction energy of the electron kσ 

with all the other electrons in the system, is merely a constant, and as such it can be absorbed into a chemical 

potential. In fact it is seen to be divergent if V (q) represents the Coulomb interaction 4πe2 /q2, but this 

divergence must cancel exactly with the constant arising from the sum of the self-energy of the positive 

background and the interaction energy of the electron gas with that background. The Fock, or exchange term 

is a momentum-dependent shift. 

 

2.1 Validity of Hartree-Fock theory 

Crucial question: when is such an approximation a good one for an interacting system? 

The answer, curiously, turns out to be different for bosons and fermions. The HF approximation is a good one 

for interacting low density Bose systems or high density Fermi systems! Intuitively it seems obvious that if 

the particles are further apart on the average, they will interact less strongly and less often, so a mean field 

theory like Hartree-Fock theory should work well. This is true in the Bose case: the only characteristic 

energies are the temperature T and the zero-point energy. The latter is just the energy scale obtained by 

confining the particle to a cage of size the interparticle spacing rs, i.e. ħ2 /(2mrs
2 ). The interaction is typically 

characterized by a strength V and a range a, and if rs » a, the particles don’t feel the potential much and the 
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s 

ground state energy, for example, of such a gas can be expanded at T = 0 in powers of a/rs. The result is 

 
with E0

HF the ground state energy calculated in the independent particle approximation with the Hartree-Fock 

energy shifts, and Ecorr the correlation energy, which is found to vary as 

 
with α = xxx, and therefore → 0 in the low density limit. 

In the case of Fermions, a new energy scale arises due to the Pauli principle, namely εF . As the density 

increases, so does εF , which represents the average kinetic energy of electrons; this increase is faster than the 

increase of the correlation energy. For the electron gas with Coulomb interactions, for example, we have, in 

terms of the Bohr radius a0 we have (per particle) 

 
and the correlation energy is given by 

 
so it is clear the correlation term is less singular than the HF term in the limit rs → 0. At higher densities, 

particles are effectively independent. 

2.2 Problem with Hartree-Fock theory 

Although we argued that the Hartree-Fock approximation becomes a better approximation in the limit of low 

(high) density for bosons (fermions), it never becomes exact, as one can see by examining the Fourier 

transform of the Hartree-Fock energy shift in the presence of the bare Coulomb interaction V (q)=4πe2 /q2. 

The Hartree term itself (being k independent) is absorbed into a redefinition of the chemical potential, so the 

shift is (T=0): 

 
 

 

where F(x) is a function which has a log divergence in slope at x = 1, i.e. at the Fermi level. This means while 

the energy shift might be small compared to the Fermi energy vεF , the velocity of an electron is                   

, which contains a term which is infinite. 
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This problem can be traced back to the long-range nature of the Coulomb force. Two electrons at large 

distances r − r’ don’t really feel the full 1/|r − r’|2 but a “screened” version due to the presence of the 

intervening medium, i.e. The electron gas rearranges itself to cancel out the long-range part of V. 

2.3 RANDOM PHASE APPROXIMATION: 

Random Phase Approximation (RPA) is an approximation for microscopic quantum mechanical interactions 

between electrons in matter. 

Random phase approximation (RPA) is an important and widely used approximation in condensed matter 

physics, especially when calculating the linear response of electrons. It accounts for the microscopic quantum 

mechanical interactions between electrons using weak screened Coulomb interaction. It was first introduced 

by David Bohm and David Pines as an important result in a series of seminal papers of 1952 and 1953.  

In the RPA, electrons are assumed to respond only to the total electric potential V(r) which is the sum of the 

external perturbing potential Vext(r) and a screening potential Vsc(r). The external perturbing potential is 

assumed to oscillate at a single frequency ω, so a self-consistent field (SCF) approach is possible giving a 

dynamic dielectric function denoted by 𝜖RPA (k,ω). 

The assumption in RPA is that the contribution to the dielectric function from the total electric potential is 

assumed to average out so that only the potential at wave vector k contributes. This is what is meant by the 

random phase approximation. The resulting dielectric function correctly predicts a number of properties of 

the electron gas, including plasmons (see Mahan's Many-Particle Physics). 

 

2.4 RPA AS A DIAGRAMMATIC SUMMATION: 

 
(Figure Movie of second-order propagation process in many-body system) 

1.  At time f₁ extra particles enters system. 

2.  At time t1, extra particles interact (ways line) with a particle in the system, lifting it out of its place, thus 

creating a hole in the system. 

3.  The extra particles plus the hole and the lifted-out particle (particle-hole pair) travel through the system. 

4.  At time t the extra particle interacts with the lifted-out particle, knocking it back into the hole, thus 

destroying the particle-hole pair. 

5.  At time t₂, the extra particle moves out of the system. 

The single particle propagator for a system of many interacting particles can be dissected as a series of virtual 

events. (a) depicts a free propagation without interaction. The event in (b) depicts a 'second-order' propagation 
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process (a process with two interactions). 

A sequence of events means we need a time axis. Due to time reversal symmetry, electrons move forward, 

and holes move backward. By convention, "up" is the forward time. 

 
The probability amplitude attached for the above sequence of events can be represented by the diagram: 

 
This diagram is called the self-energy part because it shows the particle interacting with itself via the particle-

hole pair it created in the many-body medium. 

 

The process that involve only the one interaction is called the first order processes 

 
       (Movie of First-order process (Lower Drawing) and it's Analogy (Lipper Drawing) 

 

(a) Extra particles enter at time t1. 

(b) At time t, the particle is at point r. It interacts with a particle at r' and charges in place with it. 

(c) Extra particle leaves at time t2. 

 

2.5  FORMULA: 

The Lindhard formula for the longitudinal dielectric function is given by 
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Here, 𝞭 is a positive infinitesimal constant, Vq is Veff(q)-Vind(q) and fk is the carrier distribution function which 

is the Fermi-Dirac distribution function for electrons in thermodynamic equilibrium. However this Lindhard 

formula is valid also for nonequilibrium distribution functions. It can be obtained by first-order perturbation 

theory and the random phase approximation (RPA). 

 

3. RESULT AND CONCLUSION- 

The Lindhard formula for the longitudinal dielectric function is given by 

 
Here, δ is a positive infinitesimal constant, Vq is Veff(q) - Vind(q) and fk is the carrier distribution function 

which is the Fermi-Direc distribution function for electrons in thermodynamic equilibrium. However this 

Lindhard formula is valid also for nonequilibrium distribution functions. It can be obtained by first-order 

perturbation theory and the random phase approximation (RPA).  

Limiting cases 

To understand the Lindhard formula, consider some limiting cases in 2 and 3 dimensions. The 1- dimensional 

case is also considered in other ways. 

Long wavelength limit 

In the long wavelength limit (q → 0), Lindhard function reduces to 

 
where  is this the three-dimensional plasma frequency (in SI units, replace  

 
the factor 4 by 1/For two-dimensional systems, 

 

 
This result recovers the plasma oscillations from the classical dielectric function from Drude model and from 

the quantum mechanical free electron model. 

Static Limit 

Consider the static limit (⍵ + iδ → 0) 

The Lindhard formula becomes 
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Inserting the above equalities for the denominator and numerator, we obtain 

 
Assuming a thermal equilibrium Fermi–Dirac carrier distribution, we get 

 
Therefore, 

 

Here, 𝛋 is the 3D screening wave number (3D inverse screening length) defined as 

 
Then, the 3D statically screened Coulomb potential is given by 

 
And the inverse Fourier transformation of this result gives 

 
known as the Yukawa potential. Note that in this Fourier transformation, which is basically a sum over all q, 

we used the expression for small |q| for every value of q which is not correct. 
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Statically screened potential(upper curved surface) and Coulomb potential(lower curved surface) in three 

dimensions 

For a degenerate Fermi gas (T=0), the Fermi energy is given by 

 
So the density is, 

 
Inserting this into the above 3D screening wave number equation, we obtain 

 
This result recovers the 3D wave number from Thomas–Fermi screening. 

For reference, Debye–Hückel screening describes the non-degenerate limit case. The result  

 
is known as the 3D Debye–Hückel screening wave number.8 

In two dimensions, the screening wave number is 

 
Note that this result is independent of n. 

The lindhard theory of screening is a cornerstone in the study of effective electron-electron interactions in a 
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many body electron system by deriving the Lindhard function and analyzing its impact on the dielectric 

function and screened coulomb potential and the power of the lindhard theory of screening in studying 

effective electron-electron interactions in solid. 

The Lindhard screening theory is used to describe the collective electronic response of a many electron system 

to an external perturbation, such as an electric field. In conclusion, this theory provides a framework for 

understanding how the electrons in a material screen or shield each other from external influences. 

It is so useful in the study of plasmas,semiconductors and metals,where electron-electron interactions are 

important. Lindhard screening theory has been a valuable tool in condensed matter physics and solid state 

physics, helping to explain phenomena like the dielectric response of materials and electron-electron 

interactions. 
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