

E-ISSN: 2582-2160 • Website: www.ijfmr.com

Email: editor@ijfmr.com

The Impact of Superposition Principle on Human Cognition: A Scoping Review

Sarath C Jayadevan¹, Neha Gupta², Anjani K M³

¹Research Scholar, Department of Psychology, IIT Bhubaneswar
 ²Research Scholar, Department of Psychology, CMR University, Bangalore
 ³UG Student, Department of Social Science, IGNOU, New Delhi

Abstract

The research tries to explore how the superposition principle from quantum mechanics can be applied to understand human cognition. It aims to identify the potential application and implications of this principle in fields such as psychology, education and mental health and also seeks to challenge traditional cognitive models and open up new research paths, ultimately it hopes to help us understand more about how people think and behave. The methodology of this research involved establishing a research team of 3 individuals, who are experts in psychology, research and data synthesis to move forward with the study. They then created the research question and selected online databases like ResearchGate, PubMed, and Google Scholar and used keywords like "superposition principle" and "human cognition". The researchers screened and selected relevant studies, analysed the data systematically and applied a structural approach to make sure it was accurate and reliable. The method aims to capture the most current literature and minimize biases in the research process. The Impact of Superposition Principle on Human Cognition examines how the superposition principle from quantum mechanics challenges traditional cognitive models, providing new frameworks for research in psychology and related fields. It suggests that this principle not only introduces non-linear probabilistic models to better reflect the dynamic nature of human cognition but also shows the areas for practical application, such as decision-making under uncertainty and mental health research.

Keywords: Decision Making, Superposition Principle, Human Cognition, Cognitive Science, Quantum Mechanics, Psychology.

Introduction

"Even though emotions, or feelings, are the most significant events in our lives, there has been relatively little contact between theories of emotions and emerging theories of consciousness in cognitive science," (LeDoux, et al., 2017)[1]. Expanding the sensation-perception model based on quantum information theory aims to formalize this connection within a quantum-like framework for cognition (Khrennikov, 2015)[2].

Human cognition has long fascinated researchers, leading to extensive studies aimed at understanding and enhancing cognitive processes. Recently, the intersection of quantum mechanics and cognitive science has emerged as a promising field of inquiry. Central to this interdisciplinary approach is the Principle of Superposition, a key concept in quantum mechanics that suggests particles exist in multiple states simultaneously until they are measured or observed (Marshall, 2013)[3]. Applying the Principle of

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Superposition to cognitive phenomena offers a unique framework that challenges the classical deterministic view of cognition. It proposes that mental states can exist in multiple dimensions at once, reflecting the uncertainties and complexities inherent in human thought processes. This paradigm shift could have profound implications for psychology, neuroscience, and educational psychology, offering new perspectives on the structure and function of cognitive processes.

The principle of superposition is a foundational concept in both classical and quantum physics, playing a crucial role in the understanding and application of wave phenomena and the behavior of quantum systems. In classical physics, particularly in the context of wave theory, the principle states that when two or more waves overlap in space, the resultant wave displacement at any point is the algebraic sum of the displacements of the individual waves. This principle explains a wide range of phenomena, from the interference patterns seen in light and sound waves to the behavior of mechanical waves on strings and surfaces (Saleh G, 2024)[4]. In quantum mechanics, the principle of superposition is even more profound. It asserts that any quantum state can be represented as a linear combination of other distinct states. This concept is pivotal for understanding the behavior of particles at the quantum level, leading to phenomena such as quantum interference and entanglement. For instance, the superposition principle allows a particle, such as an electron, to exist in multiple states or locations simultaneously until measured, which is a fundamental departure from classical deterministic views (Aiello C D, 2023)[5].

The challenge of correctly interpreting a quantum state, typically represented by a wave function, remains one of the most perplexing issues in the foundations of quantum mechanics. Currently, there is a vast array of interpretations, which some view as indicative of a fundamental crisis in the field. This issue also arises when applying quantum mechanics (QM) to new scientific domains. Broadly speaking, QM interpretations fall into two main categories: (a) the quantum state is seen as the physical state of an individual system, or (b) the quantum state is regarded as a unique (probabilistic) representation of information about potential measurement outcomes on an ensemble of identically prepared systems. The first approach is often termed the physical interpretation, while the second is known as the informational interpretations of quantum states, such as quantum information theory, giving rise to more subjective interpretations of quantum states, such as quantum Bayesianism by Fuchs and the informal interpretations by Zeilinger and Brukner, which align with the principles of quantum-like cognition (Fuch, 2010; Zeilinger, 2010; Brukner, 2010).[6,7,8].

Human cognition, the intricate interaction of mental processes that enables perception, memory, reasoning, and problem-solving, has intrigued scholars for centuries. The 21st century has witnessed significant progress in understanding these cognitive functions, thanks to interdisciplinary approaches that include psychology, neuroscience, artificial intelligence, and cognitive science. A critical factor in these advancements is the emergence of advanced neuro imaging techniques like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which have enabled researchers to observe brain activity in real time. These technologies have illuminated how various brain regions contribute to cognitive functions, uncovering the neural bases of memory, attention, and decision-making. Additionally, the merging of cognitive psychology with computational models has produced theories that more accurately describe how the brain processes information. For example, the predictive coding theory suggests that the brain continuously creates and updates a mental model of the environment based on sensory input, predicting future events. This theory highlights the brain's role as an active interpreter of

sensory data, rather than merely a passive receiver, fundamentally reshaping our understanding of perception and cognition (Antonello R, et al., 2024)[9].

The burgeoning area of research at the intersection of human cognition and quantum mechanics has sparked intriguing discussions among theorists. The proposition that principles from quantum mechanics could potentially influence cognitive processes opens up a realm of possibilities that, if substantiated, could significantly transform both fields. This speculative yet captivating idea suggests a profound connection between the everyday human experience in the macroscopic world and the intricate phenomena of quantum physics in the microscopic realm. This Scoping Review aims to delve into the exploration of how the Principle of Superposition, a fundamental concept in quantum mechanics, can be harnessed to enhance the understanding of human cognitive processes and functions. Through an interdisciplinary lens, this research seeks to unveil how principles borrowed from quantum mechanics can illuminate the landscape of cognitive science and psychology, offering insights into theoretical frameworks and practical applications.

Rationale

The superposition principle, a cornerstone of quantum mechanics, asserts that a physical system can exist in multiple states at the same time until being measured. The principle of quantum superposition, fundamental in quantum mechanics, suggests that a system can simultaneously occupy multiple states until observation collapses it into one. When applied to cognitive science, this principle provides a novel framework for understanding the complexities of human thought and decision-making processes (Aerts D., et al., 2015)[10]. This scoping review aims to investigate the potential applications and implications of the superposition principle in the context of human cognition. It seeks to identify current research trends and literature gaps and propose directions for future research in this area.

The intersection of quantum mechanics and cognitive science represents a burgeoning field that integrates principles from physics into psychological and cognitive models. Traditional cognitive theories have often been limited by linear and deterministic frameworks. The incorporation of the superposition principle introduces the possibility of non-linear, probabilistic models that can more accurately reflect the dynamic and often ambiguous nature of human cognition. Interdisciplinary approaches can offer novel insights into the complexities of human thought processes, potentially leading to groundbreaking theoretical and practical advancements. Enhanced Understanding of Psychological Phenomena: Many psychological phenomena, such as decision-making under uncertainty, emotional variability, and mental health disorders, may benefit from a quantum perspective. Understanding these phenomena through the lens of superposition could lead to more effective therapeutic strategies and interventions.

Insights from the superposition principle can also impact educational psychology by informing teaching methods that accommodate the probabilistic and multifaceted nature of learning and cognition, potentially leading to more personalized and effective educational practices. The current Scoping Review tries to examine and explore the application and potentiality of the Principle of Superposition in the field of psychology and cognitive science widely.

Objectives

• To examine how the Principle of Superposition could be used in understanding and developing Human Congnition

• To explore the theoretical and empirical research that integrates the Principle of Superposition in the field of Psychology and Cognitive Science.

Method

This scoping review begins with the establishment of a research team consisting of individuals with expertise in psychology and data synthesis. The team advised on the broad research question to be addressed and the overall study protocol, including identification of search terms and selection of databases to search. The methodology for this scoping review is based on the framework outlined by Arksey, et al., (2021)[11] and ensuing recommendations made by Levac, et al., (2010)[12]. The review includes the five key phases as identifying the research question, which defines the central focus of the review. Identifying relevant studies, which is searching relevant databases for potential studies. Study selection, focus on rigorously screening titles, abstracts, and full texts based on pre-determined criteria. Charting the data, which is systematically extracting key information from included studies. Collating, summarizing, and reporting the results summarizes findings thematically using a narrative approach. Regular team meetings ensured consistency throughout the process. The final report findings include overall findings of each article and their future implications are to be mentioned in key findings, and recommendations for future research.

Protocol and Registration

The protocol was registered on Figshare for transparency and to reduce selective reporting risks (https://doi.org/10.6084/m9.figshare.26085553.v1). This registration ensures adherence to predefined methods and allows public scrutiny. Any updates or amendments were documented and justified to accommodate new insights or logistical considerations, maintaining the review's integrity and transparency.

Eligibility Criteria

Inclusion Criteria; Peer-reviewed articles, Conference papers, and Book chapters. Papers in the English language are being considered. Research focusing on the application of the Superposition principle in Psychology or Cognitive Science. Both theoretical and empirical details could be considered.

Exclusion Criteria; Researches outside the domain of human psychology, non-peer-reviewed articles, and studies not available in full text.

Information Sources

A comprehensive search was conducted across PubMed, ResearchGate, and Google Scholar for the scoping review on the superposition principle's influence on human cognition. The search strategy used both controlled vocabulary (e.g., MeSH terms) and free-text terms, including "superposition principle", "quantum cognition", "human cognition", and "quantum mechanics". References from relevant articles were also manually reviewed to ensure thoroughness.

Search

The searches and exploration on the topic are expected to start on May 19, 2024 and conclude by August 20, 2024. The databases to be covered include ResearchGate, Google Scholar and PubMed.

Keywords: Superposition and Psychology, Superposition and Emotion, Quantum Mind.

Selection of Sources of Evidence

The researchers referred to three different online databases: PubMed, Research Gate, and Google Scholar. These databases were selected due to their comprehensive coverage of scientific literature, ease of access, and relevance to the research topics. PubMed was chosen for its extensive repository of biomedical and life sciences research. ResearchGate was included for its active academic community and access to preprints and unpublished work, which can provide the latest research findings. Google Scholar was used for its broad indexing of academic articles across various disciplines, ensuring no relevant studies were overlooked.

Data Items

The data items to be extracted from each selected article will include study identification details, such as Study Title, Authors, Year of Publication, Journal/Source, and DOI/URL. The second part of the data items will include Study Characteristics, such as Type of Study/Design, Theoretical Framework, and Study Setting. The third part will cover Participants/Subjects, including Population, Sample Size, and Inclusion and Exclusion Criteria. The fourth part of the data items to be extracted will involve the Intervention/Phenomena of Interest, including the Description of Phenomena/Intervention and the Concept being Studied. The fifth part will focus on Outcome Measures, consisting of Primary Outcome and Secondary Outcome. The sixth part will detail the Methodology, covering the Data Collection Method and Data Analysis Method. The seventh part will summarize the Key Findings, including Main Findings and Implications. The eighth part will assess Quality, including Bias Assessment and Study Limitations. The ninth part will synthesize evidence, comparing Findings, Patterns/Themes, and contradictions.

Critical Appraisal of Individual Sources of Evidence

To ensure the robustness and reliability of the included studies, each selected article underwent a critical appraisal process. The appraisal criteria were adapted from established quality assessment tools relevant to both quantitative and qualitative research designs. Key elements assessed included the clarity of research objectives, appropriateness of methodology, rigor in data collection and analysis, consideration of biases, and validity of conclusions. Two independent reviewers conducted the appraisal, and any discrepancies were resolved through discussion or consultation with a third reviewer if necessary.

Synthesis of Results

In synthesizing the results of the scoping review, the team employs the Population, Concept, and Context (PCC) framework to ensure a structured and comprehensive analysis. Data are extracted using a standardized form to capture essential study characteristics, then categorized and coded based on the PCC framework. The data is to be sorted based on the standard data items proposed and the common factors and specific components could be categorised for the evaluation.

Results

The following portion involves Data Synthesis from Google Scholar, PubMed and ResearchGate. We analyzed the data thematically to uncover recurring patterns and ideas about how the superposition

principle might affect human thinking. A standardized form ensured consistent data extraction from the included studies. The flowchart and tables provide a clear overview of the findings.

Fig 1.1 PRISMA flow chart

The flowchart in this scoping review visually represents the systematic process of selecting relevant articles. Initially, keyword searches across multiple databases yielded 112,423 articles. The first step involved reviewing the titles of all these articles, narrowing the selection down to 63. The second selection criterion, based on abstracts, further reduced the number to 24 articles. These were then filtered to include only fully downloadable articles, resulting in 14 articles. Applying inclusion and exclusion criteria and eliminating duplicates reduced this number by one. The remaining shortlisted articles, totaling six, were reviewed with a supervisor, ultimately leading to the final selection of seven articles. This flowchart highlights the rigorous and systematic approach taken to ensure the inclusion of the most relevant and high-quality studies in the review. This flowchart shows the careful screening and selection process used to include only the most relevant and high-quality studies. The findings reveal that from a large initial pool of articles, a systematic review process narrowed it down to a small, targeted set of studies that met all criteria. This ensures the final review is thorough and pertinent.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	Table 1.1: Study Identification Details						
S.N o.	Authors	Title of the Study	Year of Publicati on	Journal/Sou rce	DOI/URL		
1.	Domuschiev, I.	Psychophysiolo gical coherence and consciousness through the eyes of quantum theory.	May 2024	RUDN Journal of Philosophy.	DOI: 10.13140/RG.2.2.12460.07042		
2.	Bhattacharj, A., & Mukherjee, J.	A Critical Deconstruction of Quantum Cognition and Usability in Psychology	Novembe r 2023	Atlantis Press	DOI 10.2991/978-94-6463-294-1_3		
3.	Yu, S.	Evolutionary Psychology: Perspectives on Free Will	2021	Society	DOI: 10.54254/2753- 7048/46/20230886		
4.	Khrennikov, A., Basieva, I., Pothos, E. M., & Yamato, I.	Quantum probability in decision making from quantum information representation of neuronal states	2018	Scientific Reports	doi: 10.1038/s41598-018-34531- 3.PMID: 30385809		
5.	Kvam,P.D., Pleskac,I.J.,Y u,S., & Busemeyer, J.R.,	Interference effects of choices on confidence:Qua ntum characteristics of evidence accumulation	Aug, 2015	Proceedings of the National Academy of Sciences of the United States of America (PNAS)	https://doi.org/10.1073/pnas.150 0688112		

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

6.	Busemeyer,.J. R., & Wang,Z.	WhatisQuantumCognitionandHowisitAppliedPsychology	2015	Association psychologica 1 science	DOI 10.1177/0963721414568663
7.	Pothos,E.M., & Busemeyer,J. R.	Quantum principles in psychology:the debate,the evidence,and the future.	2013	City Research Online	doi: 10.1017/s0140525x12003226

Figure 1.2: Focused Schools In Psychology

The table 1.1 detailing the Study Identification Details includes the following headings: Authors, Title of the Study, Year of Publication, Journal/Source, and DOI/URL. This table provides a clear and organized overview of the key identification information for each study included in the review. The "Authors" column lists the researchers who conducted the study, allowing for recognition of their contributions. The "Title of the Study" column provides the specific titles, enabling easy reference to the focus of each study. The "Year of Publication" column indicates when the studies were published, providing context regarding the recency and relevance of the research. The "Journal/Source" column identifies where the studies were published, highlighting the credibility and dissemination channels of the research. Lastly, the "DOI/URL"

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

column offers direct access to the digital versions of the studies, facilitating further reading and verification. Observing these details allows for a comprehensive understanding of the origins and accessibility of the included studies, ensuring transparency and traceability in the review process. Out of the 7 finally selected articles, 4 articles were found to give a major focus in the school of Cognitive psychology, 2 articles were found to focus in the area of Biopsychology and 1 article in the area of environmental psychology. Fig1.2 divides the studies into three main categories: Biopsychology, Cognitive psychology, and Evolutionary psychology. The figure indicates that the first study is classified under biopsychology, while studies 2,4,5 and 6 fall into cognitive psychology, which focuses on mental processes, such as perception, memory and reasoning. Additionally, studies 2 and 7 are grouped under evolutionary psychology. This distribution provides a clear summary of how research is spread across these psychological fields, offering insights into the focus and categorization of various studies within these areas.

S .	Type of Study/Design	Theoretical Framework	Study Setting
No.			
1.	The type of study is a	This study's theoretical	Since the emphasis appears
	psychophysiological coherence	framework investigates quantum	to be on conceptual and
	study that uses quantum theory	phenomena in the human body,	theoretical aspects rather
	to examine consciousness. The	psychophysiological coherence,	than a particular
	study also mentions other	and the possible contributions of	experimental or
	works about photonic effects on	quantum biology and psychology	observational setting is not
	the human mind and sense	to the understanding of	specifically described in the
	datum, and it appears to touch	consciousness. Further	excerpts that are provided.
	on the theory of generalized	references to human mind-body	The investigation of
	relativity.	connection and quantum physics	psychophysiological
		show that this framework's	coherence and
		theoretical investigation takes a	consciousness within the
		multidisciplinary approach.	context of quantum theory
			seems to be the main focus
			of the study.
2.	The research is categorized as a	The theoretical framework of	The study critically
	review or critical analysis. The	quantum cognition applies	examines a research paper
	research, theories and papers	concepts of quantum theory like	on quantum cognition in
	that have already been	complementarity and	psychology, offering a
	published are carefully	superposition, to provide a new	review and assessment of
	examined and analyzed in this	approach to understanding	the existing literature and
	kind of study to determine their	human cognition in psychology.	arguments.
	merits and demerits as well as		
	their contributions to the field.		

Table 1	.2: St	udy Ch	aracteristics
---------	--------	--------	---------------

E-ISS

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	The study's design is		
	qualitative.		
3.	The study described in the	The theoretical framework	The study setting described
	document is mainly a	outlined in the document merges	in the document involves a
	theoretical and conceptual	principles of evolutionary	theoretical and conceptual
	exploration at the crossroads of	psychology with philosophical	analysis within the domains
	evolutionary psychology and	ideas to investigate decision-	of evolutionary psychology
	philosophy, examining	making processes and free will. It	and philosophy. It
	decision-making processes and	seeks to combine these	examines decision-making
	the likelihood of free will from	perspectives to examine how	processes and free will,
	an evolutionary standpoint.	evolved cognitive systems	concentrating on the
		interact with concepts of	intersection of evolutionary
		determinism, indeterminism, and	principles with
		the nature of free will	determinism
		the nature of free will.	indeterminism and
			compatibilism
4.	Theoretical modelling and	A model inspired by quantum	The main focus is on the
	analysis of quantum probability	physics to explain how neurons	theory and the ideas behind
	in decision-making processes	process information in the	creating a model that works
	using quantum information	brain's electrochemical	like quantum physics.
	representation of neuronal	environment.	1 1 2
	states.		
5.	The study investigates how	The study's framework	The study involved asking
	choices affect subsequent	compares two models: one based	people to make decisions
	confidence judgments using	on quantum principles and	about moving dots and then
	two models: Quantum Random	another following traditional	rate their confidence in
	Walk (QRW) and Markov	theories. The quantum-based	their choices. The
	Random Walk (MRW). It finds	model suggests that decision-	researchers looked at how
	that the QRW model, which	making shapes our beliefs,	these decisions affected
	treats evidence accumulation as	challenging the idea that	people's confidence. The
	a superposition state, better	decisions are solely based on	goal was to understand how
	of choices on confidence	existing evidence.	how confident people are in
	compared to the MPW model		their judgments
	which follows classical		then judgments.
	stochastic principles This		
	challenges the traditional views		
	on how judgements and		
	decisions are made.		
6.	The design of the study	Researchers use quantum theory	The significance of
	involves exploring how	to explain complex cognitive	applying quantum theory to
	quantum principles can offer		psychology and its

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	innovative solutions to	phenomena that traditional	promising implications for
	longstanding problems in psychology.	theories struggle to address. It emphasizes the importance of considering quantum phenomena when exploring intricate cognitive processes. The integration of quantum theory into psychology opens up new avenues for research and has the potential to shed light on previously unexplained aspects of human cognition.	advancing our understanding of cognitive processes and behaviors.
7.	The research discusses the application of quantum principles in modelling cognition. This work can be classified as a theoretical review paper, combining elements of theoretical psychology, cognitive science, and quantum theory. The authors explore the potential of quantum cognitive models, analyze existing challenges, and propose new conceptual tools to understand cognition. Specifically, the study delves into the debate surrounding the use of quantum principles in psychology, evaluates the evidence supporting quantum cognitive models, and considers the future implications of such an approach. By synthesizing current knowledge and proposing new perspectives, the document contributes to ongoing discussions on the fundamental aspects of cognition, bridging the gap between quantum mechanics and cognitive psychology.	The research explores the potential application of quantum principles to cognitive science, focusing on concepts like the uncertainty principle, incompatibility, entanglement, and superposition. By integrating quantum mechanics with cognitive architectures, the study aims to propose a new theoretical framework for understanding cognitive processes, questioning existing formal frameworks while opening debates about fundamental aspects of cognition.	The research does not explicitly specify any particular study setting, as it primarily addresses theoretical and conceptual aspects rather than experimental or observational settings. The research examines the potential application of quantum principles in modelling cognition and discusses the theoretical implications and challenges associated with this endeavour. Hence, the study setting is more conceptual and theoretical, focusing on proposing and evaluating new ideas rather than conducting empirical observations or experiments in a specific setting.

Figure 1.3: Types Of Research Being Focused.

The table 1.2 detailing the Study Characteristics includes the following headings: Type of Study/Design, Theoretical Framework, and Study Setting. This table provides a comprehensive overview of the foundational elements of each selected study, allowing for a clear comparison and understanding of the research methodologies employed. The "Type of Study/Design" column categorizes the nature and structure of the studies, highlighting whether they are experimental, observational, qualitative, or mixed-methods. The "Theoretical Framework" column provides the basic ideas and theories that support the research, indicating the theoretical perspectives or models applied. The "Study Setting" column specifies the context in which the studies were conducted, including geographical locations, institutional environments, or specific populations. Observing these characteristics enables a systematic interpretation of how different research designs and theoretical approaches are applied across various settings. In Fig 1.3, the researches are categorised into 3 groups: The Narrative Research, two under the Experimental Research and three under Narrative Research. The researches are categorised after going through type of study, theoretical framework and study setting.

	Table 1.3: Participants/Subjects				
S. No.	Population	Sample Size	Inclusion Criteria	Exclusion Criteria	
1.	N/A	N/A	N/A	N/A	
2.	N/A	N/A	N/A	N/A	
3.	N/A	N/A	N/A	N/A	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

4.	N/A	N/A	N/A	N/A
5.	N/A	N/A	N/A	N/A
6.	The research uses a large, representative sample from across the U.S., including people from different backgrounds and regions. This approach helps researchers understand a wide range of cognitive responses and behaviours from various groups of people in the country.	The research includes a large sample size, with over 1,000 participants in most surveys conducted in 70 field experiments using U.S national representative samples. This large number of participants is important for making sure the findings about order effects and interference effects in cognitive judgements are reliable and can be applied more broadly.	The inclusion criteria select individuals who can offer insights into how quantum concepts are applied to psychological processes.	Participants with pre-existing medical conditions or cognitive and those fluent in the language used during the study are considered.
7.	N/A	N/A	N/A	N/A

The table 1.3 detailing Participants/Subjects includes the following headings: Population, Sample Size, Inclusion Criteria, and Exclusion Criteria. This table provides essential information about the study participants. The "Population" column describes the general group of people being studied. The "Sample Size" column indicates the number of participants included in each study, giving an idea of the study's scale. The "Inclusion Criteria" column lists the specific characteristics required for participants to be included in the study, while the "Exclusion Criteria" column outlines the factors that disqualify participants from being part of the study. Observing these details helps to understand the demographic and methodological consistency across the studies, ensuring that the selected articles are relevant and comparable.

	Table 1.4: Intervention/Phenomena of Interest					
S.	Description of	The Phenomenon/ concept being studied				
No.	Intervention/					
	Phenomenon					
1.	N/A	The study looks at psychophysiological coherence (PPC), an optimal state where the body's systems, like heart rate variability (HRV), are well- balanced. Researchers are exploring possible connections between PPC and quantum processes in the brain's neurons, which they believe could be the starting point of consciousness. The study also points to new research in quantum biology, psychology, and information science that could help us better understand how consciousness might work through quantum principles.				

2.	N/A	This review paper examines a phenomenon known as quantum cognition, which is the
		application of ideas from quantum theory to the
		study of intricate psychological cognitive
		processes. In order to offer a new perspective on
		human cognition and possible explanations for
		complex cognitive phenomena observed in
		psychology quantum cognition challenges
		conventional classical models by introducing
		concepts like superposition and complementarity.
3.	N/A	The study examines the relationship between
		evolutionary psychology and free will, looking at
		how evolved cognitive mechanisms affect how
		decisions are made and how they interact with
		ideas from philosophy such as compatibilism.
		determinism, and indeterminism. It seeks to
		examine how evolutionary theories can shed light
		on the beginnings and bounds of free will, offering
		a novel viewpoint on this hotly contested
		philosophical topic.
4.	The creation of a quantum-like model to	Application of quantum-like modelling to
	explain how neurons process information	comprehend how neurons process information
	when making decisions.	and how people make decisions.
5.	The research primarily discusses contrasting	The research investigates how choices affect
	the Quantum Random Walk (QRW) with the	confidence judgments during decision-making by
	Markinov Random Walk (MRW) model in the	comparing two models: Quantum Random Walk
	context of decision-making and confidence	(QRW) and Markov Random Walk (MRW). It
	judgements. However, it does not explicitly	aims to understand the cognitive processes that
	mention any external interventions or specific	shape confidence levels after making choices,
	phenomena beyond the comparison of these	challenging traditional views of decision-making
	models and their implications for	mechanisms.
	understanding human decision-making.	
6.	Researchers explore how concepts from	The concept being studied is Quantum Cognition,
	quantum mechanics can offer new insights into	which explores how ideas from quantum
	psychological processes. This intervention	mechanics, a branch of physics, can help us
	aims to use quantum cognition to address	understand now people think and make decisions.
	puzzing indings and challenges in	
	psychology research. The intervention	
	involves designing experiments and tasks	
	inspired by quantum theory to study cognitive	
	phenomena.	

7.	N/A	Investigates how quantum principles like
		uncertainty, entanglement, and superposition can
		be applied to model cognitive processes, offering
		new insights that challenge traditional
		psychological frameworks. It compares classical
		probability theory with quantum cognitive models
		to enhance the understanding of cognitive
		functions and decision-making, emphasizing the
		unique properties captured by quantum concepts.

Figure 1.4: Areas in quantum cognition being focused.

Categorisation based on phenomena being studied

The table 1.4 detailing the Intervention/Phenomena of Interest includes the following headings: Description of Intervention/Phenomenon and The Phenomenon/Concept being Studied. This table provides a concise overview of the core elements being investigated in each study. The "Description of Intervention/Phenomenon" column outlines what the intervention involves or what phenomenon is being observed, offering insight into the specific actions, treatments, or conditions being examined. The "Phenomenon/Concept being Studied" column specifies the broader idea or concept that the research is focused on, providing context for the intervention or observation. This information helps to understand the focus and scope of each study, allowing for a clearer comparison of the different approaches and areas of interest covered in the review. In Figure 1.4, we categorized the phenomena being studied into three distinct areas: Quantum Psychophysiology, Quantum Biology, and Quantum Consciousness. We identified one study in Quantum Psychophysiology, which explores the intersection of quantum mechanics and physiological processes, investigating quantum mechanisms underpinning psychophysiological responses. Another study falls under Quantum Biology, examining biological processes through the lens

of quantum theory and focusing on phenomena such as entanglement and coherence in biological functions. The majority of the research, with five studies, is categorized under Quantum Consciousness, exploring the potential quantum basis of consciousness, including aspects like quantum coherence in neural processes, the quantum mind hypothesis, and the role of quantum theory in explaining subjective experiences. This categorization underscores the emerging intersections between quantum theory and biological phenomena, highlighting significant contributions to each field and the growing interest in the potential quantum basis of consciousness.

S.	Primary Outcome	Secondary Outcome
No.		
1.	The primary outcome of the study is not clearly	The secondary outcome of the study is not
	stated. It seems to be more interested in	clearly mentioned. The focus seems to centre
	exploring the connection between	on the theoretical exploration of
	psychophysiological coherence and quantum	psychophysiological coherence (PPC) and its
	phenomena. It talks about how PPC might	potential connections to quantum phenomena
	affect how our bodies work and mentions the	and consciousness.
	need for more research.	
2.	The primary outcome of the study discussed is	The secondary outcome of the study
	mainly about analyzing arguments made by	compares how a quantum model and a
	Busemeyer and Wang about using quantum	Markov model predict decisions. The results
	principles in psychology. It tries to understand	showed that the ability of quantum models to
	the good and bad parts of using quantum	show interference effects is better, deviating
	cognition to explain how people think. It also	from the classical law of total probability.
	talks about what might happen if we use	
	quantum theory to explain cognitive processes.	
3.	The primary outcome of the study focuses on	The study's secondary outcome looks at how
	how evolutionary psychology affects the theory	unpredictability can arise from the interaction
	of determinism, especially in decision-making.	between evolved decision-making processes
	It suggests that our cognitive processes, shaped	and changing environments. This adds
	by natural selection, usually work in a	complexity to the idea that our cognitive
	determined way to help us make adaptive	processes are purely deterministic, showing
	choices. However, some unpredictability can	that environmental factors can introduce
	occur when these processes interact with	variability into the way we make decisions
	different environmental factors.	based on inherited traits from our ancestors.
4.	The primary outcome aims to build a theoretical	It explores how neurons process information
	framework linking how neurons work to	in a way similar to quantum mechanics,
	quantum-like patterns in decision-making.	including how neurotransmitters in the
		brain's electrochemical environment help
		create overlapping states of information that
		neurons handle.
5.	The primary outcome of the research focuses on	The secondary outcomes may involve the
	comparing two models: the Quantum Random	cognitive and neural implications of

Table 1.5: Outcome Measures

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	Walk(QRW) and the Markov Random Walk(MRW), to see how they explain the impact of choices on confidence judgements during decision-making. The study looks at how making decisions influences how confident people feel afterwards, challenging	employing the QRW model over the MRW model for evidence accumulation. Specifically, it could look at how well these models describe the processes behind the judgements and decision-making, challenging traditional theories within these	
	main goal is to understand how these models	neids.	
	can help us grasp how decisions affect our		
	confidence levels.		
6.	The primary outcome of this study is to	The secondary outcome involves creating	
	investigate how applying quantum principles to	quantum theory-inspired experiments to	
	psychology, known as quantum cognition, can	observe responses to these tasks. By	
	help address current challenges and puzzles in	incorporating quantum tasks and training,	
	understanding human thought processes.	researchers aim to uncover unique cognitive	
		behavior patterns, demonstrating the benefits	
		of integrating quantum ideas into psychology	
		and solving mysteries of human cognition.	
7.	Examining how the consideration of quantum	Exploring how quantum cognitive models	
	cognitive models can stimulate debates and	can address empirical challenges, enhance	
	discussions about the core elements of	our understanding of cognitive phenomena,	
	cognition, challenging traditional frameworks	and potentially offer new insights into the	
	and opening up new avenues for understanding	complexities of human cognition	
	the workings of the mind		

The table 1.5 detailing Outcome Measures includes the following headings: Primary Outcome and Secondary Outcome. This table provides crucial information about the results each study aims to achieve. The "Primary Outcome" column identifies the main result that the study is designed to measure, which is the primary focus and most significant indicator of the study's success or impact. The "Secondary Outcome" column lists additional results that are measured, providing further insights and context to the primary findings. Observing these outcomes allows for an understanding of the key objectives and the breadth of results considered in each study, highlighting both the main impacts and additional effects of the interventions or phenomena studied.

S.	Data Collection Method	Data Analysis Technique	
No.			
1.	N/A	N/A	
2	The study collected data by running	The study's data analysis compared predictions	
	experiments to see how participants made	from a quantum model with a Markov model in	
	decisions in various situations. Participants decision-making tasks. Resea		
	were given tasks involving categorization	experiments and examined participants'	
	and decision-making, both separately and	responses to assess interference effects and	

Table 1.6: Methodology

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

	together. The researchers then analyzed the	differences from the classical law of	
	responses to compare how well the quantum	probability, checking how well the quantum	
	model's predictions matched up against a	model explained the results.	
	classical Markov model, paying attention to		
	interference effects and differences from the		
	classical law of probability.		
3.	N/A	N/A	
4.	N/A	N/A	
5.	The data collection method involved		
	experimental tasks in which participants	The analysis likely involved comparing how	
	made judgements about the direction of the	well two different models, the Quantum	
	motion in dynamic dot displays and provided	Random Walk (QRW) and the Markov Random	
	confidence ratings for their decisions. This	Walk (MRW), explain the impact of choices on	
	information was collected using software	confidence judgements. Researchers may have	
	programs that recorded participant's	used computer simulation to see how these	
	responses and confidence ratings, enabling	models performed in understanding how	
	the investigation of how choices influenced	choices affect confidence levels after making	
	subsequent confidence judgements. The aim	decisions. This comparison helps to see which	
	was to compare the Quantum Random Walk	model best fits the observed interference effects	
	(QRW) and Markov Random Walk (MRW)	on confidence judgements.	
	models in explaining these interference		
	effects.		
6.	Researchers employed a systematic approach	The study employs quantum probability theory	
	to data collection, involving structured	to model decision-making processes, inspired	
	experiments and tasks inspired by quantum	by the principles of quantum mechanics.	
	mechanics principles.	Researchers use Bayesian inference to analyze	
		cognitive tasks and decision outcomes based on	
		probabilistic reasoning and updating beliefs	
		according to new information.	
		Statistical modeling techniques are applied to	
		examine the relationships between quantum-	
		inspired cognitive tasks and traditional	
		psychological paradigms.	
7.	N/A	N/A	

The table 1.6 detailing Methodology includes the following headings: Data Collection Method and Data Analysis Technique. This table provides a clear overview of how data was gathered and analyzed in each study. The "Data Collection Method" column describes the techniques and tools used to collect data, such as surveys, interviews, or experiments, indicating the approaches taken to obtain information. The "Data Analysis Technique" column outlines the methods used to process and interpret the data, such as statistical analysis, thematic analysis, or qualitative coding. Observing these details helps to understand the rigor and

validity of each study, as well as the different methodological approaches used to conclude. This ensures a clear understanding of the processes behind the research findings.

G			
5.	Results/Main Findings	Implications	
No.			
1.	The study found that intentionally controlling	The study's impact is broad, as it explores how	
	the heart's rhythm can create a state of	quantum phenomena might play a role in	
	coherence, leading to positive effects on both	biology and consciousness. It offers a fresh	
	the body and mind. People who regularly	perspective on key ideas like	
	practice techniques to build coherence tend to	psychophysiological coherence, potentially	
	have less stress, better mental clarity, and an	challenging how we understand the connection	
	improved sense of well-being. The study also	between the mind and body. This theoretical	
	suggests that quantum theory may provide new	work could lead to progress in fields like	
	insights into how coherence could influence	quantum biology, psychology, and information	
	the mind and human experience.	science, and may advance the "quantum"	
	I I	concept of consciousness" theory.	
2.	The research study supported the quantum	The study's implications suggest a new way of	
	model's predictions by showing a clear	understanding cognitive phenomena by	
	departure from the classical law of total	applying quantum principles to psychology,	
	probability. The experiments revealed that	challenging traditional ideas. By exploring	
	participants could stay in a superposition state	quantum in decision-making, the study creates	
	during decision-making, causing interference	opportunities to investigate cognitive	
	between different thought paths, consistent	processes that cannot be fully explained by	
	with the quantum model's expectations.	classical theories.	
3.	The study's findings suggest that evolutionary	The findings of the study highlight the need for	
	psychology's emphasis on primal drives may	interdisciplinary cooperation to test and	
	overlook the complexity of human cognition,	improve models of human behaviour and	
	especially when it comes to free will and	volition. By understanding free will as a	
	conscious thinking about the future. It also	biological trait and making it less mysterious.	
	points out the need for stronger evidence to	the research encourages us to study more	
	back evolutionary theories and questions the	deeply and scientifically and learn where it	
	idea that decision-making mechanisms are	comes from and why it exists.	
	perfectly adapted, given challenges like	·	
	environmental shifts and historical population		
	bottlenecks.		
4.	Neurons work within a mathematical	The quantum-like model provides a new way	
	framework called Hilbert space, allowing them	to understand how the brain processes	
	to hold multiple possibilities at once and	information and makes decisions, which could	
	generate uncertain action potentials due to	improve cognitive science and artificial	
	complex chemical processes. This model,	intelligence. Its interdisciplinary approach	
	similar to quantum principles, helps explain	connects brain function with quantum ideas,	
	cognitive psychology, game theory and	creating opportunities for collaboration and	

Table 1.7: Key Findings

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	decision-making, connecting brain functions	further research into complex thinking and	
	to quantum cognition ideas.	decision-making processes.	
5.	The study found that when people make	The research suggests that by using a model	
	decisions, it affects how sure they are about	that incorporates quantum features, we might	
	those decisions. Comparing the two models,	understand better how choices affect how	
	the Quantum Random Walk (QRW)	confident we feel about our decisions. This	
	Markov Random Walk (MRW), the QRW	could mean rethinking the ways we currently	
	model, which includes quantum principles,	understand decision-making, leading to	
	was seen to better explain how choices	advanced ways of studying how people make	
	influence confidence levels. This challenges	judgements and decisions.	
	the traditional ideas about how we make		
	judgements and decisions.		
6.	The study showcased how applying quantum	Quantum cognition can revolutionize	
	mechanics principles to cognitive tasks can	psychological research by offering new	
	offer new insights into human decision-	perspectives and solutions to cognitive	
	making processes.	challenges.	
-Researchers found that quantum cognition Integrating quantum		Integrating quantum theory with psychology	
	provides a coherent and principled framework	may develop new experimental methods,	
	to address long-standing puzzles in	frameworks, and cognitive studies.	
	psychology, unveiling novel cognitive	The study emphasizes interdisciplinary	
	behaviors and decision-making patterns not	approaches like quantum cognition to broaden	
	observed in traditional psychological models.	the scope and implications of psychological	
		research, directing the way for new exploration	
		in cognitive science.	
7.	Quantum cognition model gives us a new way	Re-examination of traditional cognitive	
	to look at how people think and make	frameworks, a better understanding of	
	decisions, helping us understand the	cognitive phenomena like the conjunction	
	complexities of these mental processes.	fallacy, and the potential for advancing our	
		knowledge of human thought processes and	
		decision-making mechanisms	

The table 1.7 detailing Key Findings includes the following headings: Results/Main Findings and Implications. This table summarizes the primary outcomes and the broader significance of each study. The "Results/Main Findings" column presents the core results and discoveries made in each study, highlighting the most important data and conclusions drawn by the researchers. The "Implications" column discusses the broader impact and relevance of these findings, including how they contribute to the field, potential applications, and suggestions for future research. Observing these key findings provides a concise understanding of the main contributions of each study and their significance, helping to identify trends, gaps, and areas for further investigation.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

~			
S. No.	Bias Assessment	Study Limitation	
1.	N/A	N/A	
1. 2.	N/A The bias assessment in this study is about how cognitive biases and situations around us can affect the assumptions and predictions of quantum cognitive models, especially when making decisions. The researchers focus on conjunction and disjunction fallacies as examples of biased decision-making processes and they emphasize that these biases are often based on wrong or false beliefs. The article critically examines how these cognitive biases can affect quantum cognitive models and how they might	N/A The article oversimplifies classical cognitive theories, ignoring the variety of ideas within this field. By focusing only on commutative and distributive axioms the authors might not fully understand the complexity and depth of classical approaches, leading to an unfair comparison. To fully understand the challenges and limitations of using quantum principles in psychology, we need to critically evaluate both classical and quantum approaches.	
3.	influence our decision-making processes. The study on evolutionary psychology and free will might be biased because it relies too much on stories about how cognitive mechanisms evolved, which could lead to confirmation bias. Focusing a lot on ancestral selection pressures and not having enough direct evidence for some evolutionary stories might also lead to biased interpretations of how decision mechanisms evolved.	The main limitations of the study are its reliance on speculative stories about evolution and the lack of direct evidence for some of these stories. This can lead to biased interpretations. Another problem is the difficulty of testing historical hypotheses with modern observations, which makes it hard to strengthen evolutionary hypotheses.	
4.	N/A	The research article on the quantum-like model for brain information processing and decision- making has several limitations. It is mostly theoretical, lacks real-world validation, and makes simplifying assumptions about complex neural functions. Other challenges include the need for interdisciplinary collaboration, the model's mathematical complexity, limited practical use, and the absence of ethical considerations, which could affect its relevance and accuracy.	
5.	The bias assessment in the study involved evaluating the calibration of confidence ratings to the actual outcomes. The average bias statistic was calculated to be 7.66, indicating mild overconfidence. Furthermore, the interference effect of choice	A small and potentially non-diverse sample size, the simplification of decision-making tasks, and the abstract nature of quantum-like characteristics, which may affect the generalizability and accessibility of the findings. Also, external factors influencing participants'	

Table 1.8: Quality Assessment

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

	on confidence led to lower overconfidence	confidence judgments and the controlled
	and better calibration in the choice condition	experimental setup may limit the applicability of
	compared to the no-choice condition, with an	the results to real-world scenarios, highlighting
	average bias statistic of 8.20 in the choice	the need for further research to explore long-
	condition and 7.13 in the no-choice	term effects and additional cognitive processes.
	condition.	
6.	N/A	The study limitations include the need for further
		exploration of how quantum principles can be
		effectively integrated into psychological
		research methods and theories, highlighting the
		complexity of merging these two domains
		The study may not address the long-term effects
		or sustainability of using quantum cognition in
		psychological research, indicating a gap in
		understanding the enduring impact of applying
		quantum concepts in cognitive studies.
7.	In cognitive modeling using quantum	Limitations and challenges of assessing quantum
	principles, assessing and addressing biases is	cognitive models against classical probability
	crucial to ensure the accuracy and validity of	theory, emphasizing the need for empirical
	the models, particularly considering the	validation and further research to prove the
	potential impact of superposition and	necessity of quantum models. It acknowledges
	incompatibility features. Mitigating these	difficulties in mapping quantum evolution to
	biases enhances the reliability of quantum	cognitive processes and specific decision-
	cognitive models in understanding human	making scenarios, such as the guppy effect,
	cognition and decision-making, preventing	underscoring the importance of developing
	unintended distortions and improving	nuanced models and addressing empirical
	research effectiveness.	challenges like violations of the law of total
		probability.

The table 1.8 detailing Quality Assessment includes the following headings: Bias Assessment and Study Limitation. This table provides critical insights into the reliability and validity of each study. The "Bias Assessment" column evaluates potential biases in the study, such as selection bias, measurement bias, or researcher bias, which might affect the study's outcomes and interpretations. The "Study Limitation" column outlines the constraints and limitations faced by each study, such as small sample sizes, short duration, or limited generalizability of the results.

S.	Comparison of findings	Patterns/ Themes	Contradictions/
No.			Discrepancies
1.	N/A	N/A	N/A
2.	The study compares how	The study looks at how	The study uses quantum
	quantum and Markov models	quantum principles can be	principles to explain quantum
	predict decisions. Markov	used to understand	phenomena like conjunction

Table 1.9: Synthesis of Evidence

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

Email: editor@ijfmr.com

	models follow the law of total	cognitive psychology. It	and disjunction fallacies,
	probability, while quantum	highlights the differences	judgment and decision-making
	models predict interference	between classical and	and order effects in
	effects, which break this law.	quantum models and	psychology. However, it also
	The study shows that these	emphasizes themes like	criticizes the use of quantum
	models make different	complementarity and	principles saying that it might
	predictions, highlighting the	superposition to explain	oversimplify classical cognitive
	importance of considering	cognitive phenomena. The	theories. The study notes that
	quantum principles in	analysis also examines	quantum cognition is
	understanding decision-making.	order effects in psychology	controversial within the
		using quantum cognition	scientific community and
		and presents evidence	emphasizes the need for more
		supporting the quantum	research and studies in different
		question (QQ) equality,	cultures. It also acknowledges
		which is a way to test the	that some researchers doubt the
		quantum cognition theory.	validity and generalizability of
			quantum theory's predictions.
3.	The study suggests that human	The study examines how	The study questions whether
	decision-making might be more	evolutionary psychology	evolutionary psychology can
	complex than traditional	and philosophical concepts	fully explain the complexities
	evolutionary explanations	related to free will	of human cognition, especially
	suggest. This means that our	intersect. It focuses on the	when it comes to our ability to
	evolved cognition processes	evolved cognitive	consciously think about the
	might not fully capture the	mechanisms that influence	future It also questions
	complexity of conscious	our decision-making	whether compatibilism a
	deliberation and mental	processes The study uses	philosophical view that says
	stimulation This comparison	and analytical approach to	free will and determinism can
	shows the importance of	and analytical approach to	nee will and deterministic can
	shows the importance of	understand the	coexist, can be applied to
	working together with scientists	complexities of human	evolutionary psychology. The
	from different fields and using	cognition and decision-	study suggests that there might
	rigorous empirical methods to	making from an	be limitations in explaining
	reconcile the complexities of	evolutionary perspective.	how real subjective free will
	human cognition with	It also explores the	can emerge from deterministic
	evolutionary explanations of free	potential implications for	brain mechanisms.
	will.	the nature of free will.	
4.	The research explores a	Key themes include	Challenges include fitting
	quantum-like model for neural	superposition, uncertainty	quantum-like neural state codes
	information processing and	and decoherence in	with traditional models and
	decision-making, merging	neuronal states,	extending quantum concepts
	quantum principles with	highlighting the need for	beyond physics.
	cognitive science and	collaboration.	
	neurophysiology.		

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

5.	Underscored the necessity of	Participants exhibited	The study did not explicitly
	considering both quantum-like	quantum-like	mention any contradictions or
	and classical models when	superposition patterns in	discrepancies within the
	exploring the effects of choice	their decision-making,	research findings. However, it
	on confidence in decision-	indicating that they	is important to note that the
	making contexts.	considered multiple	interference effect observed in
	By examining the differences	possibilities	the study challenges traditional
	and convergences between these	simultaneously, which	assumptions in cognitive and
	models, researchers can gain a	influenced their confidence	neural theories of decision-
	more comprehensive	judgments. Additionally,	making, particularly the read-
	understanding of the underlying	the research highlighted	out assumption. This
	mechanisms shaping confidence	that choice configurations	interference effect suggests that
	judgments and the impact of	significantly impacted	making a decision can impact
	choice configurations on	confidence levels, with	subsequent confidence
	decision outcomes.	quantum models offering	judgments, highlighting the
		distinct insights compared	complex nature of the decision-
		to classical models,	making process.
		suggesting the need for	
		further exploration into the	
		cognitive mechanisms and	
		long-term effects of choice	
		on confidence.	
6.	The research paper compares	Patterns identified in the	The focus of the study may be
	traditional psychological models	study reveal that applying	more on exploring the benefits
	with the emerging quantum	quantum mechanics	and applications of quantum
	cognition approach by exploring	concepts to cognitive tasks	cognition rather than on
	now quantum principles can	can lead to the discovery of	identifying inconsistencies or
	otter new perspectives on	novel cognitive benaviors	conflicting evidence.
	Findings from the paper suggest	and decision-making	
	that quantum aganitian provides	patterns not observed in	
	a more principled and coherent	experiments	
	framework to address	Themes highlighted in the	
	longstanding challenges in	naper include the	
	understanding cognitive	integration of quantum	
	processes, offering potential	theory with psychology.	
	solutions to persistent puzzles in	the development of	
	psychology.	quantum-inspired	
		experiments, and the	
		examination of how	
		individuals respond to	
		marriadans respond to	
		tasks designed based on	

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

7.	Quantum cognitive models	Questioning existing	The ongoing challenges and
	introduce concepts like	formal frameworks,	opportunities in utilizing
	incompatibility and	exploring the implications	quantum principles for
	entanglement, challenging	of employing quantum	cognitive modeling, prompt
	traditional frameworks and	conceptual tools in	further exploration and
	offering unique insights into	cognitive modeling, and	refinement of quantum
	cognition distinct from classical	addressing the challenges	cognitive models
	theories. However, empirical	and opportunities	
	challenges, such as violations of	presented by quantum	
	the law of total probability, and	cognitive models in	
	debates on predictive accuracy	understanding intelligent	
	and applicability, highlight	thought and everyday	
	ongoing discussions about the	judgments	
	effectiveness and limitations of		
	these models in explaining		
	cognitive and decision-making		
	processes.		

The table 1.9 detailing the Synthesis of Evidence includes the following headings: Comparison of Findings, Patterns/Themes, and Contradictions/Discrepancies. This table provides a comprehensive overview of how the findings from different studies relate to each other. The "Comparison of Findings" column highlights similarities and differences in the results across the studies, facilitating a broad understanding of the collective evidence. The "Patterns/Themes" column identifies recurring themes or trends observed in the studies, offering insights into commonalities that may point to broader conclusions or underlying principles. The "Contradictions/Discrepancies" column notes any conflicting results or inconsistencies between studies, which can indicate areas where further research is needed or where methodological differences may have influenced outcomes. Observing these elements helps to synthesize the evidence, providing a better interpretation of the overall findings and identifying areas of consensus and debate within the research.

Discussion and Analysis

The study investigates how the Principle of Superposition can be used to understand and improve Human Cognition. By reviewing existing research, the study shows how quantum mechanics connects with cognitive science. The Principle of superposition explains that quantum units, which are basic parts of matter, can exist in several states at once until they are observed (Reilly T E, et al., 1984)[13]. This discussion brings together the key findings, methodologies, implications, practical applications, and future research that bring together quantum mechanics and human cognition.

A team of four researchers independently reviewed the articles on their own after creating a Scoping Review Protocol. This Protocol is registered with Figshare ensuring that no other protocols on the same theme were registered. Databases like Google Scholar, ResearchGate and PubMed are used to find and select the most relevant research articles for data charting. Google Scholar was specifically used to find as many publications, reports and conference presentations as possible on the Superposition Principle and Human Cognition. PubMed, ResearchGate and Google Scholar helped to identify high-quality peer-

reviewed research articles in this specific area. The PRISMA SCR checklist was used to prepare the Protocol and draft the report. The Population, Content, Context framework was used for organizing the data in this Scoping Review.

The review points out that the Superposition Principle, which suggests that systems can be in multiple states at the same time until observed, offers a new way to understand how the mind works. Traditional cognitive theories often rely on straightforward and predictable models, which may not fully capture the complex and uncertain nature of human thinking (Fisher M, et al., 2018)[14]. By using this superposition principle, researchers can explore ways that better reflect the complexities of the mind, like making decisions when uncertain and dealing with changing emotions (Hilbig B E, et al., 2014)[15]. This change in thinking has an important effect on how we view mental states. It challenges the idea that thoughts are always clear-cut, suggesting that people can have mixed or conflicting emotions at the same time (Lubin K L, 2023)[16]. This view fits in psychological findings that show people always often feel uncertain or have mixed emotions when making decisions. Bringing quantum principles into cognitive science not only helps us better understand psychological experiences but also leads to the development of more detailed models that can explain the complexities of human behavior.

The methods used in the studies reviewed were quite different, ranging from theoretical discussions to practical research. Some studies provided strong evidence supporting the use of the superposition principle in understanding the mind, while others lacked strong methods. This difference shows the need for more consistent approaches in future research to ensure that the findings are reliable and accurate.

The review also found that many studies focus on specific cognitive areas like decision-making or memory, without fully considering how the superposition principle might apply to other cognitive fields. Future research should take a more complete approach, looking at how this principle can be used across different parts of cognition and psychology. The findings in this review have important practical applications for fields like psychology, education and mental health. For example, understanding cognition through the superposition principle could help develop therapeutic methods that deal with the complexities of human emotions and decision-making. Therapists could create treatments that recognize and address client's conflicting feelings, leading to a more detailed approach to mental health care. In schools, the superposition principle could change teaching methods by accepting the unpredictable nature of learning. Teachers could create programs that take into account the different ways students learn, encouraging personalized learning experiences that fit individual cognitive styles.

The methodologies section of the scoping review explains the step-by-step process used for searching, selecting and analyze relevant studies. It also describes how the superposition principle's effect on human thinking was studied. The reviewers followed a structured process to ensure the reliability and accuracy of the review's findings. They used a Population, Concept, Context (PCC) framework to organize the results, focusing on important study details and themes related to the superposition principle's impact on human thinking. Additionally, standardized forms and a systematic way of gathering data improved the quality and consistency of the review process.

Data selection involved a thorough process, including refining search terms, searching multiple databases (ResearchGate, Google Scholar, PubMed) and a two-step screening to choose relevant studies. This careful approach is aimed at the most current studies and relevant studies while reducing bias. The discussion could highlight the importance of using the superposition principle in studying human thinking, showing its potential effects on cognitive models, therapy methods and understanding complex mental functions. It could also explore how comparing quantum principles to cognitive processes might lead to

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

new research ideas and teamwork across different fields in quantum cognition and psychology. The data charting process involved systematically gathering key study details from the chosen articles. Study identification details, study characteristics and participant information were carefully made to make comparing studies easier. Tables were used to display this information clearly, helping leaders better understand the reviewed studies. Figure 1.1 shows the PRISMA flow chart, which visually explains the process of selecting relevant articles. This flow chart gives a clear overview of the review's articles selection process including initial keyword searches, screening based on titles and abstracts, applying inclusion and exclusion criteria, and the final selection of articles that met the criteria. The flow chart shows the careful and systematic approach used in choosing the most relevant and high-quality studies for the review. In the scoping review, Table 1.1 provides a detailed list of study identification details that are important for understanding how the Principle of Superposition is applied in psychology and cognitive science. This table organizes relevant studies by listing the authors, titles, publication years, journals or sources, and corresponding DOI and URLs. Each entry serves as a reference, helping readers trace the origin of the research and assess the reliability of the findings. The variety of studies included, from psychophysiological coherence to quantum cognition, shows the interdisciplinary nature of research, demonstrating how different aspects of quantum theory connect with cognitive processes. This structured summary not only helps readers understand the current literature but also highlights gaps and opportunities for future research. The studies in Table 1.1 are grouped into three main areas: biopsychology, cognitive psychology and evolutionary psychology as shown in Fig 1.2. The first study is categorized under biopsychology. Studies 2, 4, 5 and 6 fall under cognitive psychology, focusing on understanding mental processes like perception, memory, and reasoning. Studies 2 and 7 are classified under evolutionary psychology, exploring how evolutionary processes affect human behaviour and mental traits. This grouping shows that there is one study in biopsychology, four studies in cognitive psychology and two studies in evolutionary biopsychology, giving a clear overview of how research is distributed across these psychological fields.

Table 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9 as well as Figures 1.3 and 1.4 are critical components of the scoping review on the impact of the superposition principle on human cognition. They provided detailed insights into the essential findings, citations and key themes from various studies. They likely include information such as primary outcomes, secondary outcomes, methodological details, critical discoveries, and the broader significance of each study. These tables and figures can help to identify trends, gaps and areas for further investigation in the context of quantum cognitive models and human thought processes. On the other hand, figures 1.3 and 1.4 are visual aids that might showcase conceptual framework, models or relationships between quantum mechanics and cognitive science in a graphical format. These figures could potentially illustrate the interplay between quantum principles and human cognition, offering a visual representation of the complex and multifaceted relationship between these domains. Overall, these tables and figures likely serve as crucial components of the scoping review, providing researchers with a structured approach to analyze data, identify emerging themes, visualize key components, and synthesize the implications of applying quantum principles like superposition principles to the study of human cognition.

By openly discussing the study's limitations, researchers can make their work more trustworthy. This helps other scientists improve future studies. By acknowledging problems like search mistakes, potential biases, or limited applicability of the results, the study contributes to better research methods and understanding.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

The analysis in the scoping review's discussion section focuses on compiling the data that was extracted and discussing the major conclusions, ramifications, constraints, and reasons for the outcomes. The synthesis of findings using the Population, Concept, and Context (PCC) framework is a crucial step in this process because it enables a thorough and organised examination of the data pertaining to the impact of the superposition principle on human cognition. By utilizing a standardised form for data extraction, it is possible to identify common themes, patterns, and contradictions throughout the reviewed literature by ensuring that crucial study characteristics are recorded and categorised following the PCC framework.

By presenting the methods used for conducting the data synthesis understandably and transparently, the discussion section of the analysis can support the findings. It might cover the actions done to guarantee the validity and dependability of the review process, like following PRISMA SCR reporting guidelines, using Zotero as a reference management tool, and methodically extracting and charting data.

Moreover, because the scoping review employs an expansive and exploratory methodology, the discussion justifies the outcomes by clarifying the reasoning behind the eligibility requirements, search approach, and date selection procedure. This guarantees that the chosen evidence is in line with the review's objectives and scope and that the reviewed literature is representative of the pertinent studies that are currently available.

The discussion will also include a careful evaluation of different sources of evidence, emphasizing the criteria used to assess the quality and reliability of the included research. It will address how to adapt well-known quality assessment tools for both quantitative and qualitative designs. This will focus on incorporating rigorous assessment criteria for research objectives, methods, data collection and analysis, consideration of biases, and the validity of conclusions.

In addition, the analysis ought to assess the key discoveries concerning the superposition principle and human cognition critically, clarify how these discoveries might advance our knowledge of human cognition, and offer a fair examination of the study's acknowledged shortcomings. This thorough approach guarantees that the discussion convincingly explains the significance, dependability, and validity of the review's findings, providing a solid basis for further investigation and use in this field.

All things considered; the scoping review's discussion section is well-positioned to provide insights into the revolutionary possibilities of using the superposition principle in the study of human cognition. The review adds to a deeper understanding of cognitive processes from a quantum-inspired perspective by synthesizing key findings, examining implications, identifying study limitations, and filling in gaps in the literature. It also paves the way for future research, innovation, and collaboration in this multidisciplinary field.

According to Busemeyer, et al., (2015)[17], superposition is the idea that cognitive states can exist in multiple potential states at the same time, while interference is the description of how these states interact. This method provides logical jurisdictions for puzzling psychological results, like concept combination and order effects in sequential measurements (Aerts, et al., 2012)[18]. Human reasoning may involve a superposition of logical and conceptual processes, with conceptual processes frequently taking precedence (Aerts et al., 2014)[19]. The nature of human thought and decision-making is revealed by this quantum perspective on cognition, which may have consequences for fields such as artificial intelligence and quantum computing (Aerts, et al., 2012)[18].

By applying ideas from quantum theory to the study of human cognition, quantum cognition challenges conventional models that rely on classical probability. The quantum ideas of superposition and interference, in particular, play a key role in the understanding of cognitive processes. It is observed after reading through relevant papers and journals that human reasoning usually combines logical and

conceptual thinking, with conceptual reasoning usually having the upper hand. Superposition and other ideas from quantum theory are applied in quantum cognition to explain some aspects of human cognition and decision-making. Superposition is one of the quantum mechanical concepts that is used to model certain cognitive effects and concept combinations. According to this method, human cognition can be viewed as a superposition of conceptual and logical reasoning, with a tendency for the latter to predominate. The interaction between emergent and logical reasoning is how the quantum theoretical framework models human reasoning and decision-making. It is also noted that quantum probability theory may be superior to classical probability theory in modeling specific cognitive processes.

Gaps in the Literature and Future Research Directions

Despite the promising findings, the review also uncovered significant gaps in the literature. There is a need for more empirical studies that rigorously test the theoretical models proposed by the superposition principle in cognitive contexts. Additionally, research exploring the implications of this principle in diverse populations and settings is limited. Future studies should aim to investigate how cultural, social, and contextual factors influence the applicability of the superposition principle in understanding cognition. Furthermore, interdisciplinary collaboration is essential for advancing this field. By integrating insights from quantum physics, psychology, and neuroscience, researchers can develop a more comprehensive understanding of cognition that transcends traditional disciplinary boundaries.

Conclusion

In conclusion, the scoping review underscores the potential of the superposition principle to transform our understanding of human cognition. By challenging conventional cognitive models and offering new theoretical frameworks, this principle opens up exciting avenues for research and application in psychology and related fields. Continued exploration of this intersection between quantum mechanics and cognitive science is crucial for fostering a deeper understanding of the complexities of human thought and behavior.

Acknowledgement

We would like to express our deepest gratitude to Mr. Sarath C. Jayadevan, CEO of Auramah Care, for his invaluable guidance and support throughout the research process. His insights and encouragement were instrumental in the successful completion of this work. His vast knowledge and experience have been a constant source of inspiration, helping us navigate through the complexities of this study. His insightful feedback and constructive criticism greatly improved the quality of this work, and his encouragement motivated us to strive for excellence. We are sincerely thankful for his mentorship and the opportunities that he provided, which significantly enhanced our learning experience.

Biography

Sarath C Jayadevan is a research scholar at IIT Bhubaneswar, in the Department of Psychology. He holds a Master's degree in Clinical and Counseling Psychology from the Central University of Karnataka, with a Bachelor's degree in Psychology (Honours) from the University of Delhi. Sarath is certified in Emotional Focused Therapy and Mindfulness showcasing his commitment to professional development in psychological practices, and research, with experience as a Research Coordinator, soft skill trainer and Psychologist at Auramah Care. He had experience working as an Assistant Professor at Central University

of Karnataka and a Behavioral Therapist at Pinnacle Blooms network. He has also contributed to the field through research publications on 'The Effect of Mindfulness Intervention in Perceived Stress and Emotional Intelligence' and 'Effect of Positive Assets Search on Reflected Feelings and Needs among Visually Impaired'. He has also authored and published 2 books entitled, 'The Reincarnation' and 'Life Beyond Death'.

Neha Gupta, a Counselling Psychologist with a Masters degree in Psychology from Jain University, Bangalore, is pursuing a PhD in Psychology from CMR University, Bangalore. As a practicing Psychologist, her work centres on improving mental health through her skills which range from child counselling to adolescents, family counselling to challenges faced at the workplace including stress, anxiety and anger management along with academic research, focusing on new and innovative therapeutic intervention techniques.

Anjani K M is currently pursuing a Bachelor of Arts in Psychology (Honors) under the Department of Social Sciences from Indira Gandhi National Open University (IGNOU), New Delhi, with their study centre located at JDT College, Calicut. Her academic journey in psychology reflects a strong passion for understanding human behaviour and mental processes, laying a solid foundation for a future career in the field.

References

- Aerts, D. "Quantum Structure in Cognition," Journal of Mathematical Psychology, 2009, 53 (5), 314– 348. <u>https://doi.org/10.1016/j.jmp.2009.04.005</u>.
- Aerts, D., De Bianchi, M. S., Sozzo, S., & Veloz, T. "Modeling Human Decision-Making: An Overview of the Brussels Quantum Approach," Foundations of Science, 2018, 26 (1), 27–54. <u>https://doi.org/10.1007/s10699-018-9559-x</u>.
- Aerts, D., Sozzo, S., & Veloz, T. "New Fundamental Evidence of Non-Classical Structure in the Combination of Natural Concepts," Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2016, 374 (2058), 20150095. https://doi.org/10.1098/rsta.2015.0095.
- Aerts, D., Sozzo, S., & Veloz, T. "Quantum Structure in Cognition and the Foundations of Human Reasoning," International Journal of Theoretical Physics, 2015, 54 (12), 4557–4569. <u>https://doi.org/10.1007/s10773-015-2717-9</u>. 10
- Aerts, D., Sozzo, S., & Veloz, T. "Quantum Structure in Cognition: Why and How Concepts Are Combinations of Natural Quantum Structures," Journal of Mathematical Psychology, 2012, 56(2), 274–293. <u>https://doi.org/10.1016/j.jmp.2012.01.002</u>. 18
- Aerts, D., Broekaert, J., Gabora, L., & Veloz, T. "The Quantum Nature of Conceptual Thought and the Potential of Quantum Models in Cognitive Science," Topics in Cognitive Science, 2014, 6(1), 1– 23. <u>https://doi.org/10.1111/tops.12096</u>. 19
- 7. Aiello, C. D. "Quantum Physics Proposes a New Way to Study Biology and the Results Could Revolutionize Understanding of New Works of Life," California Niño Systems Institute, 2023. 5
- Antonello, R., & Huth, A. "Predictive Coding or Just Feature Discovery? An Alternative Account of Why Language Models Fit Brain Data," Neurobiology of Language, MIT Press Direct, 2024, 5 (1), 64. <u>https://doi.org/10.1017/s0140525x12001525</u>. 9

- Bhattacharjee, A., & Mukherjee, J. "A Critical Deconstruction of Quantum Cognition and Usability in Psychology," Advances in Intelligent Systems Research, 2023, pp. 21–29. https://doi.org/10.2991/978-94-6463-294-1_3.
- Brukner, C. "The Information-Theoretic Interpretation of Quantum Mechanics," Nature Physics, 2010, 6 (3). <u>https://doi.org/10.1038/nphys1209</u>. 8
- Busemeyer, J. R., & Wang, Z. "What is Quantum Cognition, and How Is It Applied to Psychology?" Current Directions in Psychological Science, 2015, 24 (3), 163–169. <u>https://doi.org/10.1177/0963721414568663</u>. 17
- 12. Busemeyer, J. R., & Trueblood, J. S. "Theoretical and Empirical Reasons for Considering the Application of Quantum Probability Theory to Human Cognition," Indiana University, Bloomington Indiana.
- Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2015). Theoretical and empirical reasons for considering the application of quantum probability theory to human cognition. TopiCS in Cognitive Science, 7(1), 1–20. <u>https://doi.org/10.1111/tops.12074</u> 17
- 14. Domuschiev, I. "Psychophysiological Coherence and Consciousness Through the Eyes of Quantum Theory," ResearchGate, 2024. doi:10.13140/RG.2.2.12460.07042.
- 15. Fuchs, C. A. "Quantum Bayesianism," International Journal of Quantum Foundations, 2010, 6 (1). https://doi.org/10.1016/j.ijqf.2010.10.123. 6
- Fisher, M., & Keil, F. C. "The Binary Bias: A Systematic Distortion in the Integration of Information," Psychological Science, 2018. <u>https://doi.org/10.1177/0956797618792256</u>. 14
- Hilbig, B. E., & Moshagen, M. "Generalized Outcome-Based Strategy Classification: Comparing Deterministic and Probabilistic Choice Models," Psychometric Bulletin and Review, 2014, 21, 1431– 1443. <u>https://doi.org/10.3758/s13423-014-0643-0</u>. 15
- Khrennikov, A. Y. "Quantum-Like Model for Unconscious–Conscious Interaction and Emotional Coloring of Perceptions and Other Conscious Experiences," Biosystems, 2021, 208, 104471. <u>https://doi.org/10.1016/j.biosystems.2021.104471.2</u>. 2
- Khrennikov, A., Basieva, I., Pothos, E. M., & Yamato, I. "Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States," Scientific Reports, 2018, 8 (1). <u>https://doi.org/10.1038/s41598-018-34531-3</u>.
- 20. Kvam, P. D., Pleskac, T. J., Yu, S., & Busemeyer, J. R. "Interference Effects of Choice on Confidence: Quantum Characteristics of Evidence Accumulation," Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (34), 10645–10650. <u>https://doi.org/10.1073/pnas.1500688112</u>.
- 21. LeDoux, J. E., & Brown, R. "A Higher-Order Theory of Emotional Consciousness," Proceedings of the National Academy of Sciences, 2017, 114 (10). <u>https://doi.org/10.1073/pnas.1619316114.</u> 1
- Levac, D., Colquhoun, H., & O'Brien, K. K. "Scoping Studies: Advancing the Methodology," Implementation Science, 2010, 5 (1). <u>https://doi.org/10.1186/1748-5908-5-69</u>. 12
- 23. Lubin, K. L. "Binary Minds: Navigating the Epoch of 'Technodualism'," 2023. 16
- 24. Marshall, P. "The Role of Quantum Mechanism in Cognition-Based Evolution," Progress in Biophysics and Molecular Biology, 2013, 180 (181), 131–139. https://doi.org/10.1016/j.pbiomolbio.2023.04.007. 3

- 25. Pothos, E. M., & Busemeyer, J. R. "Can Quantum Probability Provide a New Direction for Cognitive Modeling?" Behavioral and Brain Sciences, 2013, 36 (3), 255–274. https://doi.org/10.1017/s0140525x12001525.
- 26. Pothos, E. M., & Busemeyer, J. R. "Quantum Cognition," Annual Review of Psychology, 2022, 23, 749–778.
- 27. Pothos, E. M., & Busemeyer, J. R. "Quantum Principles in Psychology: The Debate, the Evidence, and the Future," Behavioral and Brain Sciences, 2013, 36 (3), 310–327. https://doi.org/10.1017/s0140525x12003226.
- 28. Reilly, T. E., France, O. L., & Bennett, G. D. "The Principle of Superposition and its Application in Ground Water Hydraulics," Open File Report, 1984, 84-459, US Geological Survey. 13
- 29. Saleh, G. "New Discoveries About the Speed of Electromagnetic Waves," ResearchGate, 2024, Part A. doi:10.13140/RG.2.2.26148.45448.4
- Westphaln, K. K., Regoeczi, W., Masotya, M., Vazquez-Westphaln, B., Lounsbury, K., McDavid, L., Lee, H., Johnson, J., & Ronis, S. D. "From Arksey and O'Malley and Beyond: Customizations to Enhance a Team-Based, Mixed Approach to Scoping Review Methodology," *MethodsX*, 2021, 8. <u>https://doi.org/10.1016/j.mex.2021.101375</u>. 11
- 31. Yu, S. "Evolutionary Psychology Perspective on Free Will," Lecture Notes in Education Psychology and Public Media, 2024, 46 (1), 263–269. <u>https://doi.org/10.54254/2753-7048/46/20230886</u>
- 32. Zeilinger, A. "Foundational Principles of Quantum Mechanics," Physical Review A, 2010, 80 (3). https://doi.org/10.1103/PhysRevA.80.033007. 7