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ABSTRACT 

A malignant disease that affects the blood's lymphoid and myeloid components is termed as a leukemia. 

It is a cancer that poses serious problems for individuals, families and the healthcare systems around the 

world. The study sought to examine how the immunotherapy of adoptive T cells affects the growth of 

coexistence of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) cells. The 

compartmental system of ordinary differential equations and Caputo’s fractional differential sense were 

developed to analyze the coexistence of CLL and AML in a single patient. The study showed that disease 

free and endemic equilibrium points were proved to be globally asymptotically stable. Numerical 

simulations were also performed to support the analyses. The studies showed that the concentration levels 

of both types of leukemia cells were very high before the introduction of immunotherapy of the adoptive 

T cells. 
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1. Introduction 

The parts of the immune system that fight against bacteria, viruses and germs are the White Blood Cells 

(WBC). A decreased in the number of WBC (leucocytes) in the blood is referred to in Medical terms as 

Leukopenia. Leukopenia can be more serious since it can increase one’s risk of developing potentially life 

– threatening infections [1, 2]. 

A malignant disease that affects the blood′s lymphoid and myeloid components is termed as     

 a leukemia.  It is a malignant disease which is characterized by a rapid and uncontrolled proliferation and 

growth of premature WBCs [3]. The rapid increase in the number of premature cells inhibit the mature 

WBCs production [4]. The indolent B-cell lymphoproliferative neoplasm that normally occurs in adults 

is the chronic lymphocytic leukemia (CLL). It has favorable survival rate of 5 years [5]. There are a lot of 

clinical case studies that confirmed the CLL and AML coexistence in a single patient [5, 6, 7]. The studies 

revealed that the coexistence of AML and CLL in a single patient is usually caused by the methods of 

treatments [5]. 
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There has been an extensive work on how to treat or control the spread of leukemia cells in the recent 

years. A thorough review of the difficulties, advancements, and potential uses of chimeric antigen receptor 

(CAR) T cell therapy in the treatment of acute myeloid leukemia (AML) was presented in [8, 9, 10]. The 

comprehensive evaluations covered the body of research, data from clinical trials, and professional advice 

on CAR T cell treatment and AML. According to the study, adding more receptors or the right cytokines 

could enhance CAR therapy. The study in [10] suggested identifying the best clinical conditions, such as 

minimal residual disease (MRD), low-burden disease, and early salvage, for the application of 

immunotherapies. The study [11] confirmed the efficacy of unselected donor lymphocyte infusions, or 

DLIs, in the post-allogeneic treatment of AML and T-ALL patients. 

In addition to the many clinical trials, there have been other extensive works on mathematical models that 

examined the progression and control of leukemia cells. In [12, 13], mathematical models were developed 

to distinguish between the sensitivity of normal and mutant stem cells of bone marrow microenvironment. 

Three different equilibria corresponding to the normal hematopoietic state, chronic state and the 

accelerated-acute phase of the disease were predicted. The studies [14 - 16] also developed different 

classical and fractional differential systems to describe the dynamic of myeloid leukemia. The Lyapunov 

functions were developed in [14] to perform the global stability of both the endemic and disease-free 

equilibrium points. An ordinary differential system was formulated in [17, 18] to determine the impact of 

genetically modified patient T lymphocytes against leukemia cells. The outcome demonstrated that the 

concentration of leukemia cells and infected cells in the blood is decreased by external infusion of T- cells, 

or immune cells. The appropriate Lyapunov functions was developed to prove the global stability of the 

disease-free equilibrium and endemic equilibrium [14]. In [17, 18] the researchers investigated the effects 

of engineered patient’s T- cells on the spread of leukemia using classical differential models. The adoptive 

T - cell therapy was found to be more effective in controlling the concentration of leukemia cells. 

The researchers were motivated by the work in [17, 18] and decided to extend it to the coexistence of CLL 

and AML in a single patient. The classical differential system has also been extended to the Caputo’s 

fractional differential sense in the study. 

 

2.  𝐌𝐚𝐭𝐞𝐫𝐢𝐚𝐥𝐬 𝐚𝐧𝐝 𝐌𝐞𝐭𝐡𝐨𝐝𝐬 

In this session, the researchers reviewed the models in [17, 18] which served as the bases for the study. 

They also developed the classical differential models and the Caputo’s fractional differential systems. 

Some basic of properties of Fractional Calculus were also reviewed. 

2.1.  Mathematical Model Development 

The models in [17] were modified by Khatum and Biswas in [18] by adding β1 as a new parameter to 

indicate the infected cells' rate of decay. The concentrations of susceptible cells, infected cells, leukemic 

cells, and white blood cells are denoted by the state variables s, i, c, and w respectively. Figure 1 below 

shows the schematic transfer of the leukemia cells from Khatum and Biswas. 

https://www.ijfmr.com/
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Figure 1: Transmission Diagram of Leukemia in the Patients 

From the schematic diagram, Figure 1, they came out with the modified models as given below: 
ds

dt
  =   A - a0s – βsc 

dy

dt
  =  βsc - β0y - β1ci                                                                                 (1) 

dc

dt
  =   k - k0c − k1cw 

dw

dt
  = B + bc - b0w - b1wc 

The other parameters in (1) have the same meaning as in [18]. 

2.2. The Modification of the Model 

The researchers extended the work in [18] to cover the progression of CLL and AML coexistence in a 

single patient. So the models in [17, 18] were modified by introducing a new compartment in order to get 

two leukemic cells compartments, one for CLL and other for AML. The two parameters, 𝜑 𝑎𝑛𝑑 𝛾 were 

also introduced to represent the transfer rates of infected cells from infested compartment to CLL and 

AML compartments respectively base on the type of infected cells as shown in the schematic diagram, 

fig.2 below 

Below is the schematic transmission diagram of leukemic cells. 

 

 
Figure 2: The Modified Transmission Diagram of Leukemia in the Patients 

https://www.ijfmr.com/
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From Figure 2 above, the red arrows indicate the white blood cell self-renewal rates as a result of the 

leukemia relapse, whereas the curves without arrows indicate the interactions between the cells of the 

various compartments. The state variables 𝑥, 𝑦, 𝑧𝑎, 𝑧𝑐 𝑎𝑛𝑑 𝑤 represent the concentration levels of the 

healthy cells, the infected cells, AML, CLL and white blood cells respectively. The classical models are 

given below: 
dx

dt
=   A - a0x – βxy 

dy

dt
= βxy - β0y −  γy − φy − β1y(za + zc) 

dza

dt
=   γy   − γ0za − γ1zaw                                                                    (2) 

dzc

dt
=   φy  −φ0zc − φ1zcw 

dw

dt
= B + b(za + zc) - b0w - b1w(za + zc) 

The table below gives the descriptions of the parameters and values used the above models. 

 

Table 1: Summary of Notations 

Notations Definition 

𝐴 The constant rate of susceptible blood cells recruitment 

𝑎0 Natural death rate of susceptible cells 

𝛽 Rate of infection of healthy cells 

  𝛽0 Natural death rate of infected cells 

 𝛽1 Decay rate of infected cells 

𝛾 Transfer rate of infected cells to AML compartment 

𝛾0 Natural death rate of acute leukemic cells 

𝛾1 Decay rate of AML cells due its interaction with immune system 

𝜑 The transfer rate of infected cells to CLL compartment 

𝜑0 Natural death rate of chronic leukemic cells 

𝜑1 Decay rate of CLL cells due its interaction  with immune system 

𝐵 External reinfusion rate of T – Cells 

𝑏 Proliferation rate of  white blood cells 

𝑏0 Natural death rate of white blood cells 

𝑏1 Decay rate of immune system due to its interaction with leukemic 

cells 

2.3.  The Fractional Calculus 

The models (2) was extended to Caputo’s Fractional derivative sense as shown (3) below. Some of the 

important properties of fractional derivatives that are applied to the study throughout are presented below, 

[15], [16]. 

Property 1. 

Given a function f(t) in the interval C[0, T], the Riemann - Liouville derivative  

C
0
𝔻

−α
t

f(t) of order 𝛼 > 0 is given by 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527556 Volume 6, Issue 5, September-October 2024 5 

 

RL
0

𝔻
α
t
f(t)  = {

1

Γ(n−q)

dn

dtn ∫
f(t)

(t−s)α−n+1 ds
t

0
,    n − 1 <  α < n, n ∈ N               

dn

dtn
,                                          n = q, n ∈  N

 

 

Property 2, 

Taking the Laplace transform Dαf(t), we have 

𝓛(Dαf(t)) =  SαF(s) - ∑ fk(0)n−1
k=0 Sα−k−1 

where F(s) is the Laplace transform of f (t). 

If k = 0, then Laplace transform of Caputo fractional derivative become: 

𝓛(Dαf(t)) =  SαF(s)  −  Sα−1f(0) 

 

Property 3 

Mittag - Leffler function with two parameters α, β where α > 0 and β > 0, is given by   Eα,β(z) =  

∑
zk

Γ(αk + β)
∞
k=0  = zEα,α+β(z) + 

1

Γ(β)
, for α, β >  0 z ϵ ℂ 

For β = 1, then Mittag - Leffler function becomes 

Eα,(z) = ∑
zk

Γ(αk + 1)
∞
k=0  ,  z ϵ ℂ 

Moreover, Mittag - Leffler function is simply an exponential function exp(z) when                                  𝛼 

= 𝛽 = 1. 

 

Property 4 

Given a Mittag function, f(t) = 𝑡𝛽−1𝐸𝛼,𝛽(±𝑎𝑡𝛼), 𝑡hen Laplace transform of f(t) is given by 

𝓛(𝒇(𝒕)) =
𝑺𝜶

𝑺𝜶±𝜶
 ,  for Re(S) > |𝑎|

1

𝛼 and Re(β) > 0. 

2.3.1. The Fractional Derivative Model 

The researchers extended the developed models (2) to the Caputo’s Fractional derivative sense in order to 

apply the Fractional Derivative techniques to perform the stability test of the system (1).                                                                                                                                                                                                            

The Fractional derivative form of the models (3) are given as 

 
 C
0

𝔻
𝛼
𝑡
𝑥(𝑡) =  A − 𝑎0𝑥 –  𝛽𝑥𝑦                                                                                           

 
C
0
𝔻

𝛼
𝑡
𝑦(𝑡) =   𝛽𝑥𝑦  − 𝛽0𝑦 − γy − φy − 𝛽1𝑦(𝑧𝑎 + 𝑧𝑐)                                              

 
C
0
𝔻

𝛼
𝑡
𝑧𝑎(𝑡) =  𝛾𝑦  − 𝛾0𝑧𝑎 − 𝛾1𝑧𝑎𝑤                                                                     (3)      

 
C
0
𝔻

𝛼
𝑡
𝑧𝑐(𝑡) =   𝜑𝑦  −  𝜑0𝑧𝑐 − 𝜑1𝑧𝑐𝑤                                                                                 

    
C
0
𝔻

𝛼
𝑡
𝑤(𝑡) =   B +  b𝑧𝑎 + 𝑏𝑧𝑐  −  𝑏0𝑤 − 𝑏1𝑤𝑧𝑎 − 𝑏1𝑤𝑧𝑐                                            

 

Subject to the initial condition 

𝑥0 ≥ 0,  𝑦0 ≥ 0, 𝑧𝑎(0) ≥ 0, 𝑧𝑐(0) ≥ 0 𝑎𝑛𝑑 𝑤0 ≥ 0 

Whereas the operator, 
C
0
𝔻

𝛼
𝑡

 represents the Caputo’s fractional derivative of order 0 < 𝛼 ≤ 1 

All the models’ parameters are assumed to be non-negatives. The functions 𝑥(t), 𝑦(t), 𝑧𝑎(t),  𝑧𝑐(𝑡) and 

𝑤(t) are also continuous functions. 

https://www.ijfmr.com/
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3.   The Model Analysis 

3.1. Positivity Solutions of the System 

The system (3) is defined as: 

Λ+ = {(x, y,  za, zc,  w) ∈ R5 ∶ x(t) ,y(t), za(t), zc(t),  w(t)  ≥ 0}.                                                       Suppose that, 

(x0, y0,  za(0), zc(0), w0) ∈ x(t)-axis = {(x(t), 0, 0, 0, 0) ∶ x(t) ≥ 0} . 

 

Appling property 4 above to system (3) along the vector x(t) axis, the system (3) becomes: 

ℒ (
C
0
𝔻

α
t
x(t)) =  ℒ(A − a0x) 

SαX(s) − Sα−1x(0) =  
A

S
− a0X(s) 

SαX(s) + a0X(s) =  
A

S
 +Sα−1x(0) 

X(s)( Sα + a0) = 
A

S
+ Sα−1x(0) 

X(s) = 
A

S( Sα+ a0) 
+ 

( Sα−1x(0)

( Sα+ a0) 
=  

ASα−(α+1)

Sα+ a0
+

Sα−1x(0)

Sα+ a0
                                                              (4) 

 

The inverse Laplace transform of (4) is given as: 

x(t) = AtαEα,(α+1)(−a0tα) + x(0)Eα,1(−a0tα)                                                                 (5) 

Hence, system (3) along the x(t) axis, yields 

{(x, y, za, zc, w) = {(A𝑡𝛼𝐸𝛼,(1+𝛼)(−𝑎0𝑡𝛼)  +  𝑥(0)𝐸𝛼,1(−𝑎0𝑡𝛼), 0, 0, 0,  0): 𝑥(𝑡) ≥ 0} 

Similarly system  (3) along the vectors y(t), 𝑧𝑎(𝑡), 𝑧𝑐(𝑡) and w(t) axes also resulted in the following points: 

(x, y, zc, za,  w) = (0, y(0)Eα,1(−β0)tα),0,  0,) ∈ y(t)-axis; 

(x, y, za, zc, w)  = (0, 0, za(0)Eα,1(−γ0)tα), 0,  0,) ∈ za(t)-axis;.                         

 (x, y, za, zc, w)  = (0, 0, 0, zc(0)Eα,1(−φ0)tα)  0,) ∈ zc(t)-axis and 

(x, y, za, zc, w)  = (0, 0, 0, 0, BtαEα,   α+1((− b0 )tα) + w(0)Eα,1(−b0)tα)) ∈w(t)-axis respectively. 

 

The above points show that x(t), y(t), za(t), zc(t) and w(t) are solutions of the system and positive 

invariants sets and hence, Λ+ is a positive invariants set. 

 

3.2. The Uniqueness of the Solution 

Lemma 1 

Assume that Φ(t, u(t)) satisfies the following: 

1. Φ is a continuous function with respect to t for all u(t) ∈ Rn, 

2. Φ and 
∂Φ

∂u
 are continuous functions with respect to u(t) ∈ Rn, 

3. ||Φ||≤ a1 + a2||u|| for all u ∈Rn, and all a1, a2 > 0. 

Then, system (3) possesses a unique solution on [0, + ∞), [19]. 

Theorem 1. 

The System (3) attains unique solution on [0, + ∞) and remains non-negative and bounded for all t ≥ 0. 

Proof. 

According to [19], the system, (3) can be reformulated into a Caputo fractional derivative system of order 

0 < 𝛼 ≤ 1, as follows: 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240527556 Volume 6, Issue 5, September-October 2024 7 

 

C
0
𝔻

α
t
u(t) =  Φ(t, u(t)), for, t ≥ 0, with u(0) = u0∈ ℝ+

5,                                                           (6) 

where Φ ∶ ℝ+ × ℝ5 → ℝ, Φ(t, u(t)) = v + Au(t) + �⃐� (t)Bu(t), u(t) = (x(t), y(t), 𝑧𝑎(t), 𝑧𝑐(𝑡), w(t))T, 

V = (A  0  0  0  B)𝑇 , 𝑣 = IV,      𝑢0 =  (x0, 𝑦0, za(0), 𝑧𝑐(0), w0)T 

where �⃐�  represents not u on the row, 

 

A = 

(

 
 

−a0

0
0

0
−β0

0
  

0      0       0
0     0        0
−γ0  0       0

0 0 0    −k0     0

0 0 b       b   −b0 )

 
 

 

 

B = 

(

 
 

0
β
0

  
−β
0
γ

  
0                  0                0

−(γ + β1) −(φ + β1)  0
0                 0             −γ1

0     (φ)   0                  0            −φ1

0   0 −b1             −b1           0 )

 
 

 

 

It could be seen that both 
∂Φ

∂u
  and Φ are continuous functions and hence the conditions 1 and 2 of Lemma 

1 above are satisfied by the function u(t). 

The system (3), can be expressed as 

‖
C
0
𝔻

α
t
u(t)‖ ≤ ‖v‖ + (‖Au(t)‖ + ‖u⃐ (t)‖‖B(t)‖)‖u(t)‖                                                 (7) 

The norm, (7), is also used to confirm the condition 3 of lemma (1) above. Hence, (3) has a unique solution 

on (0, +∞). 

 

3.3. Basic Reproduction Number 

The average number of secondary infections caused by a single primary infection in a susceptible 

population is called the basic reproduction number (R0) [18]. 

The Next - Generation method was used to determine  R0 for the system (3) as shown below: 

Let U = (y, za, zc,  x, w)T. The system (3) is then expressed as 
du

dt
  = F(U) – V(U), where 

ℱ = 

(

 
 

βxy
0
0
0
0 )

 
 

  and 𝒱 = 

(

 
 

− β0y − γy − φy − β1y(za + zc)
γy  − γ0za − γ1zaw

φy  − φ0za − φ1zaw
A − a0x –  βxy

B +  bza + bzc  −  b0w − b1wza − b1wzc)

 
 

 

 

The Jacobean matrices ℱ and 𝒱 with respect to the infected, acute leukemic and chronic cells at the 

DFEP, E =  (
A

a0
 , 0,  0,  0, 0) are shown below: 

 

F = (

βA

a0
0 0

0 0 0
0 0 0

),  V = (
−β0 − γ − φ 0 0

γ −γ0 0
φ 0 −φ0

) 

https://www.ijfmr.com/
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The inverse (V−1) of the Jacobean matrix, V is given as 

V−1 =

(

 
 

1

β0+γ+φ
 0 0

γ

γ0(β0+γ+φ)
 

1

γ0
 0

φ

φ0(β0+γ+φ)
 0

1

φ0)

 
 

 

 

FV−1 = (

βA

a0(β0+γ+φ)
0 0

0 0 0
0 0 0

) 

 

The eigenvalue of FV−1 is given as |FV−1- I⋌ | = 0 

 

|

βA

a0(β0+γ+φ)
−⋌ 0 0

0 0 −⋌ 0
0 0 0 −⋌

| = 0 

 

The basic reproduction number, 𝑅0 is  the maximum eigenvalue (i.e. max (|⋋ |)) 

Hence, R0 = 
βA

a0(β0+γ+φ)
                                                                                                             (8) 

The DFEP would be locally asymptotically stable if  R0  < 1. That is, the concentration of the leukemia 

cells would be decreasing until the entire cells are eliminated. On the other hand, it would be unstable if 

R0  > 1 

 

3.4. The Equilibrium Points 

The system (3) has two distinct equilibrium points namely disease-free equilibrium point 

(DFEP) and endemic equilibrium, point, (EEP). 

At the DFEP, all infected cells, acute cells, chronic as well as white blood due to the infusion of adoptive 

T- cells are absent and hence set to zero, (i.e.  y = za = zc = w = 0). 

The EEPs are the steady state situations where the disease persist in the population [18]. 

To solve for both equilibria, all the derivatives are set to zero and the resulted equations are solved. 

 Hence the DFEP is, E0 = (
A

a0
, 0, 0, 0, 0) and EEEP is given by E∗(x∗, y∗,za

∗, zc
∗, w∗), 

where: 

x∗ =
A

a0R0
+

β1z∗

β
;   y∗ =

 a0μ1(R0 − 1) − a0β1z∗)

β( μ1 + β1z∗)
;  za

∗

=
a0γμ1(R0 − 1) − a0β1γz∗)(b0 + b1z∗)

((γ0b0 + γ0b1z∗) + (B +  bz∗)γ1)( β0β + γ + φ + β1βz∗)
; 

 

zc
∗ =

a0φμ1(R0−1)−a0β1γz∗)(b0+ b1z∗)

(ω0b0+ φ0b1z∗)+(B + bz∗)φ1)( β0β+γ+φ+β1βz∗)
    and  w∗ =

B + bz∗

b0+ b1z∗
; 

 

Note that, z =za + zc, zc = z − za and  μ1 = β0 + γ + φ. 

 

https://www.ijfmr.com/
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3.5.  Local Stability at Disease Free Equilibrium Point (DFEP) 

Lemma 1 

Assume that α ∈ [0, 1) for the fractional differential system (3), then the following condition holds: the 

DFEP E0 = (
A

a0
, 0, 0, 0, 0) is locally asymptotically stable if all the eigenvalues are negative. 

 

Theorem 1 

The DFEP, E0 = (
A

a0
, 0, 0, 0, 0) is said to be asymptotically stable if R0 < 1 

Proof. 

The eigenvalue of the Jacobian matrix J(E0) of (3) evaluated at DFE is given by the characteristic equation, 

|J(E0 ) − ⋋ I| = 0. 

 

|J(E0 ) − ⋋ I| = 
|

|

−a0 −⋋ −
βA

a0
0

0 μ1(R0 − 1) −⋋ 0
0
0
0

γ
φ
0

−γ0 −⋋
0
b

   

0 0
0 0
0

 − φ0 −⋋
b

0
0

− b0 −⋋

|

|
= 0 

 

The characteristic equation can be expressed as, 

(−a0 −⋋)[(β0 + γ + φ)(R0 − 1) −⋋](−γ0 −⋋)(− φ0 −⋋)(− b0 −⋋) = 0 

Hence, the eigenvalues are, ⋋1 =-a0,  ⋋2 = μ1(R0 − 1), ⋋3= −γ0, ⋋4= − φ0 and ⋋5= −b0 

4   It could be clearly seen that all the eigenvalues are negative when R0 < 1. That means that theorem 1 

and lemma 1 are proved. Hence DFE, E0 is asymptotically stable. 

 

3.6. Local Stability at Endemic Equilibrium Point (EEP), 𝐄∗ 

Theorem 2 

The EEP of system (3) is said to be asymptotically stable if R0 > 1. 

 

Lemma 2 

Assume that α ∈ [0, 1) for the fractional differential system (3), then the following conditions hold: if the 

determinants of all Hurwitz matrices (Hj) of the characteristic equations are greater than zero, then the real 

part of all the eigenvalues of J(E*) are negative. 
 

Proof: 

The eigenvalues of Jacobian matrix, J at EEP is given by |J(E∗) −⋋| = 0. 

|J(E∗)| = 
|
|

T1 −⋋ −βx∗ 0
βy∗ T2 −⋋ −β1y∗

0
0
0

γ
φ
0

T3 −⋋
0
T6

   

0 0
−β1y∗ 0
0

 T4

T6

−⋋
− γ1za

∗

− φ1zc
∗

T5 −⋋

|
|
 = 0 

Where, 

T1 = −a0 − βy∗, T2 = βx∗   −  β0 − γ − φ − β1(za
∗+zc

∗), T3 =  −γ0 γ1w∗, 

 T4 =  − φ0 − φ1w∗,  T5 =   b0 + b1z∗, T6 =  b − b1w∗ 
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The characteristic equation can be expressed as, 

k0 ⋋5+ k1 ⋋4+ k2 ⋋3+ k3 ⋋2+ k4 ⋋ + k5 = 0                                                                   (9) 

The determinants of Hurwitz’s matrices |Hj| of  the above characteristic equation,                                       for 

j = 1, 2, 3, 4, 5, are given below: 

|H1| = k1;   |H2| = k1k2 − k3;      |H3| = (k1k5 + k1k2k3) - (k1
2k4 + k3

2
); 

|H4| = (k1k2k3k4 + 2k1k4k5 + k2k3k5) - (k2
2k1k5 + k1

2k4
2
 + k3

2k4) and 

|H5| = (k1k2k3k4k5 + 2k1k4k5
2 + k2k3k5

2) - (k5
3 + k1k2

2k5
2
 + k1

2k4
2k5 + k3

2k4k5) 

 

For |Hj| > 0, then the following inequalities should hold: 

k1 > 0;  k1k2 > k3; (k1k5 + k1k2k3) > (k1
2k4 + k3

2
);  (k1k2k3k4 + 2k1k4k5 + k2k3k5) > (k2

2k1k5 

+ k1
2k4

2
 + k3

2k4) and (k1k2k3k4k5 + 2k1k4k5
2 + k2k3k5

2) > (k5
3 + k1k2

2a5
2 + k1

2k4
2k5 + 

k3
2k4k5) 

 

Based on Hurwitz’s stability criterion, if the above inequalities are met, then the endemic equilibrium 

point, E* is asymptotically stable and hence, R0 > 1. 

 

3.7. Global Stability of Disease Free Equilibrium Point, E0. 

Lemma 3 

Let Φ(ω(t)) ∈ R+ be a continuous and differentiable function. Then, for any time, t ≥ t0, the extended 

Volterra-type Lyapunov function, 

C
0
𝔻

α
t
Φ[ω(t) − ω0 −

ω0lnw(t)

ω0 ] ≤ (1 −
ω0

ω
)

C
0
𝔻

α
t
ω(t), ω0 ∈ R+ for α ∈ (0, 1).                       (10) 

Theorem 3 

If α ∈ (0, 1), then the disease-free equilibrium point, E0 is globally asymptotically stable when R0  ≤ 1 

Proof: 

The Lyapunov function, U which is nonnegative at the DFE point, E0 and a global minimum is constructed 

as U : Ω → R, where U is given by, 

U(t) = Φ(x(t)) + y(t) +
β0 + γ+φ

γ
za +

β0 + γ+φ

φ
zc + w(t)                                                       (11) 

By applying the extended Volterra-type Lyapunov inequality (10) to the function (11), then it becomes: 

C
0
𝔻

α
t
U(t) =

C
0
𝔻

α
t
Φ (x(t)) +

C
0
𝔻

α
t
y(t) +

βA

a0γR0

C
0
𝔻

α
t
za(t) +

βA

a0φR0

C
0
𝔻

α
t
zc(t) + 𝔻

α
t
w(t)] 

≤ (1 −
x0

x(t)
)

C
0
𝔻

α
t
x(t) +

C
0
𝔻

α
t
y(t) +

βA

a0γR0

C
0
𝔻

α
t
za(t) +

βA

a0φR0

C
0
𝔻

α
t
zc(t) + 𝔻

α
t
w(t)          (12) 

 

By substituting the system (3) into (12) and simplifying, it becomes 

C
0
𝔻

α
t
U(t) ≤   −(a0x0 − ρxyR0)

(x − x0)2

xx0
− ρxyR0(

x − x0

x0
− 1)   − ( β1z − μ1)y – (γ0

+                          γ1w)
zaμ1

γ
− (φ0 + φ1w)

zcμ1

φ
− (b0 + b1z)w + (B +  bz) 

Where β =
μ1R0

x0
  ; ρ = 

μ1

x0
;  A = a0x0 and   

βxy(x−x0)

x
 = –

βxy(x−x0)2

xx0
+

βxy(x−x0)

x0
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It could be seen that the inequality  
C
0
𝔻

α
t
U(t)  ≤   0  may not hold when R0  ≤ 1,  at the DFEP.  For DFEP 

to be globally asymptotically stable, then the following conditions need to be satisfied when R0  ≤ 1:   

a0x0 ≥ ρxy;   x ≤ 2x0;   β1z ≥  μ1;   B +  bz ≤ 0; 

 

3.8.  Global Stability of Endemic Equilibrium Point (EEP) 

Lemma 4 

Let ξ(ω(t)) ∈ R+ be a continuous and differentiable function. Then, for any time, t ≥ t0, the extended 

Volterra-type Lyapunov function, 

C
0
𝔻

α
t
ξ[ω(t) − ω∗ −

ω∗lnω(t)

ω∗
≤ (1 −

ω∗

ω
)

C
0
𝔻

α
t
ω(t), ω∗ ∈ R+ and α ∈ (0, 1).                          (13) 

Theorem 4 

If α ∈ (0, 1), then the EEP is globally asymptotically stabl when R0  > 1 

Proof: 

Similar to the global stability proof of DFEP, the Lyapunov’s function, V which is nonnegative at the 

endemic equilibrium point, E* and has a global minimum of  T∗  is construted as V : Ω → R, where V is 

given by 

V(t) = ξ(x(t)) + ξ(y(t)) +
β0+γ+φ

γ
ξ(za(t)) +

β0+γ+φ

φ
ξ(zc(t)) +  ξ(w(t))                   (14) 

By applying the extended Volterra-type Lyapunov inequality (13) to the function (14), it becomes: 

C
0
𝔻

α
t
V(t) =

C
0
𝔻

α
t
ξ(x(t)) +

C
0
𝔻

α
t
ξ(y(t)) +

μ1

γ

C
0
𝔻

α
t
ξ(za(t)) +

μ1

φ

C
0
𝔻

α
t
ξ(zc(t)) +  

C
0
𝔻

α
t
ξ(w(t)) ≤

                      (1 −
x∗

x(t)
)
C
0
𝔻

α
t
x(t) + (1 −

y∗

y(t)
)
C
0
𝔻

α
t
y(t) +  

μ1

γ
(1 −

za
∗

za(t)
)

C
0
𝔻

α
t
  +  

μ1

φ
(1 −

                     
zc

∗

zc(t)
)
C
0
𝔻

α
t
zc + (1 −

w∗

w(t)
)

C
0
𝔻

α
t
w(t)                                                                     (15) 

 

By substituting the system (3) and A = a0x∗ +  βx∗y∗; B = −bz∗ + b0w∗ + b1w∗z∗, the inequality (15) 

becomes, 

C
0
𝔻

α
t
V(t)  ≤  (1 −

x∗

x(t)
)(a0x∗ +  βy∗x∗  −  a0x –  βxy) + (1 −

y∗

y(t)
)(βxy − β0y −  γy − φy

−                     β1yz) + ( 
μ1

γ
(1 −

za
∗

za(t)
)(γy  − γ0za − γ1zaw) +

μ1

φ
(1 −

zc
∗

zc(t)
)(φy  

− φ0zc −                  φ1zcw) 

+ (1 −
w∗

w(t)
 ) ( −bz∗ + b0w∗ + b1z∗w∗ +  bz − b0w − b1wz )             (16) 

By equating,   βx∗y∗ (x(t)− x∗)

x(t)
  = −βx∗y∗ (x(t)− x∗)2

x∗x(t)
+  βx∗y∗ (x(t)− x∗)

x∗
 and 

b1z∗w∗ (w(t)− w∗)

w(t)
  = −b1z∗w∗ (w(t)− w∗)2

w∗w(t)
+ b1z∗w∗ (w(t)− w∗)

w∗
, 

the inequality (13) is simplified as; 

C
0
𝔻

α
t
V(t) ≤ −(a0 + βy∗)

(x(t)− x∗)2

x(t)
− (b0 + b1z∗)

(w(t)− w∗)2

w(t)
− β(y − y∗)(x − x∗) − (β1z −

                  βx +
βA

a0R0
) (y − y∗) + βAy

(za(t)−za
∗)

a0zaR0
− (γ0 +  γ1w)

βA(za(t)−za
∗)

a0γR0
 + βAy

(zc(t)−zc
∗)

a0zcR0
−

              (φ0 +  φ1w)
βA(zc(t)−zc

∗)

a0φR0
   +b1z∗w∗ (w(t)−w∗)

w(t)
− b1z(w − w∗) + 

b(z – z∗)(w(t)−w∗)

w(t)
     (17) 
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It could be seen that for inequality  
C
0
𝔻

α
t
V(t) ≤ 0 to hold when R > 1, then the following conditions need 

to be satisfied: x ≥ x∗; y ≥ y∗; za ≥ za
∗; zc ≥ zc

∗; z ≥ z∗; w ≥ w∗; βAy(za − za
∗) ≤ 0 and βAy(zc −

zc
∗) ≤ 0. 

Hence the endemic equilibrium point would then be globally stable. 

 

4. Results and Discussion 

Effects of Adoptive T cells on Growth of CLL and AML 

Case 1:  When the immune response is neglected (i.e.  w = 0) 

In the situation when the immune system is so weak in such a way that its response, w to the cancer cells 

is zero, then the endemic equilibrium values of system (3) becomes: 

x∗ =
μ1+β1z∗

β
;    y∗ =

βA−a0μ1−a0β1z∗

β(μ1+β1z∗)
;   za

∗ = 
γy∗

γ0
;      zc

∗ = 
φy∗

φ0
;    w* = 0                               (18) 

Its observed from (18) that, the level of concentration of both cancer cells, (i. e.  za and zc) are only 

controlled by the natural death. This could enable the cancer cells to grow out of bound leading to 

worsening of clinical condition of the patient. 

Case 2: When there is no dormant membrane or immune response activation cells 

(i.e. b = 0): 

The immune response activator, b activates the immune system or produces the required number of white 

blood cells when the cancer cells relapse. So we want to consider immunotherapy by assuming that there 

is no immune response activation from professional antigen presenting cells. In that case the endemic 

equilibrium points of (3) becomes: 

x∗ =
μ1+β1z∗

β
;   y∗ =

βA−a0μ1−a0β1z∗

β(μ1+β1z∗ ; w∗ =
B

b0+ b1z∗ ;   za
∗ = 

(
γ

γ0
)y∗

(1+

γ1
γ0

B

b0+ b1z∗

; zc
∗= 

(
φ

φ0
)y∗

(1+

φ1
φ0

B

b0+ b1z∗)

    (19)           It could 

be seen that the level of concentrations of both cancer cells (i.e. za, zc) are also checked by the immune 

response activation as a result of infusion of adoptive T – cells, B in the blood.       In view of that the 

equilibrium values of both cancer cells in (19) are lesser than that of (18). It implies that immunotherapy 

by engineered T - cells has effects on the growth of cancer cells in the blood even when no antigenicity 

due to cancer cells is present. 

Case 3: When there no engineered T – cells Therapy (B = 0) 

We want to consider a situation when the external engineered adoptive T – cell is not applied to the 

leukemia patient. In that case, the endemic equilibrium values of (3) are as follows: 

x∗ =
μ1+β1z∗

β
;     y∗ =

βA−a0μ1−a0β1z∗

β(μ1+β1z∗)
;    w∗ =

 bz∗

b0+ b1z∗ ;   za
∗ = 

(
γ

γ0
)y∗

(1+

γ1
γ0

b1z

b0+ b1z∗)

;   zc
∗ = 

(
φ

φ0
)y∗

(1+

φ1
φ0

b1z

b0+ b1z∗

   (20) 

It’s observed that the population of leukemia cells in (18) is greater than that of (20) due to the present of 

white blood cells. According to [19], the equilibrium value of immune cells due to external infusion of 

engineered T cells is normally greater than the case without immunotherapy. 

 

5. Conclusion: 

The findings show that the levels of concentrations of both AML and CML during the immunotherapy of 

external infusion of engineered adoptive - T cells are less than when immunotherapy engineered adoptive 

T – cells was not introduced. This implies that the immunotherapy of engineered adoptive T- cells has 
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impact on the concentration level of dual AML and CLL and hence can be applied in controlling the 

growth of both AML and CML. 

Based on the findings, it is recommended that there should be further studies that will incorporate genetic 

mutations and environmental factors to provide a more comprehensive understanding of leukemia 

progression and treatment responses. The recommendations aim to contribute to the ongoing efforts to 

improve the understanding and management of leukemia, ultimately benefiting individuals affected by the 

disease and the broader healthcare community. 
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