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Abstract:   

This study explores the unsteady, two-dimensional flow of an electrically conductive, viscoelastic, and 

incompressible fluid past a uniformly moving, infinite, non-conducting vertical plate, in the presence of 

a uniform first-order chemical process involving mass and heat transfer. A uniform magnetic field is 

applied perpendicular to the flow, with the magnetic Reynolds number assumed small to neglect the 

induced magnetic field. The governing equations are solved using a regular perturbation method, 

yielding approximate solutions for concentration, velocity, temperature, and shear stress at the plate. 

Additionally, mass and heat transfer rates are determined, with the influence of viscoelasticity and other 

physical parameters emphasized. Where applicable, results are graphically represented. 
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1. Introduction:  

Viscoelastic fluids exhibit both viscous and elastic properties when subjected to deformation. For 

decades, the study and modeling of viscoelastic fluid flow have significantly contributed to research 

involving various industrially important fluids such as lubricants, paints, polymers, and colloidal oils. 

These studies have gained particular attention due to their applications in fields such as geothermal 

systems, oil extraction, geophysics, and magnetohydrodynamic (MHD) bearings. As a result, researchers 

have focused on MHD fluid flows with heat and mass transfer through porous media. 

Several studies have explored these phenomena. Anghel et al. [1] examined the effects of Dufour and 

Soret on free convective boundary layers over vertical surfaces in porous media. Kafousias and Williams 

[2] investigated the impacts of thermal diffusion on convective mass transfer, while Dursunkaya and 

Worek [3] explored the diffusion-thermo effects in natural convection. Additional research has been 

conducted on MHD free convection flow and mass transfer through porous media by Raptis and 

Kafousias [4], and on combined heat and mass transfer by Chaudhary and Jain [5]. Postelincus [6] 

studied the influence of magnetic fields on heat and mass transfer, while Kolar and Sastri [7], Kim and 

Vafai [8], Alam and Rahman [9], and Nazmul and Mahmud [10] all contributed to this area of research, 

particularly focusing on free convection and the Dufour and Soret effects. 

The current paper discusses the unsteady MHD flow of an incompressible viscoelastic fluid past an 

infinitely large vertical plate, considering heat and mass transfer in the presence of a first-order chemical 

reaction. 
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2. Mathematical formulation: 

The study focuses on the unsteady, two-dimensional free convective flow of an electrically conducting 

visco-elastic fluid past an infinitely large, non-conducting vertical plate that moves uniformly. The flow 

involves both heat and mass transfer, and the plate experiences a normal periodic suction velocity. A 

uniform magnetic field, denoted by strength 𝑅0, is applied perpendicular to the main flow direction. 

Apart from density, all fluid properties are constant in the buoyancy force, and the magnetic Reynolds 

number is small enough to ignore the induced magnetic field compared to the applied one. The flow 

occurs along the 𝑥-axis (parallel to the vertical plate), with the 𝑦-axis normal to it. Using these 

conditions and Boussinesq’s approximation, the governing equations for flow and transport are derived 

as follow: 
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The relevant boundary conditions are: 

�̅� = 0: 𝑢𝑥̅̅ ̅ = �̅�𝑤 , θ̅ = θ̅w + ε(θ̅w − θ̅∞)𝑒iω̅t̅, ϕ̅ = ϕ̅w + ε(ϕ̅w − ϕ̅∞)𝑒iω̅t̅      

�̅� → ∞: 𝑢𝑥̅̅ ̅ → 0, θ̅ → θ̅∞, ϕ̅ → ϕ̅∞                                                                                                                 

Equation (2.1) is trivially satisfied by 𝑢𝑦̅̅ ̅ = −𝑢0(1 + 𝜀𝐴𝑒iω̅t̅), where 𝐴 is a constant (𝐴 > 0) such that 

𝜀𝐴 < 1. 
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Substitution of (2.5) into the equations (2.2) to (2.4) yields the following dimensionless equations: 
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The corresponding boundary conditions are: 

𝑦 = 0: 𝑢𝑥 = 𝑢𝑤, 𝜃 = 1 + 𝜀𝑒𝑖𝜔𝑡, 𝜙 = 1 + 𝜀𝐴𝑒𝑖𝜔𝑡    

𝑦 → ∞: 𝑢𝑥 → 0, 𝜃 → 0, 𝜙 → 0    
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3. Method of solution: 

Using perturbation techniques for ε ≪ 1, E ≪ 1, and α₁ ≪ 1 (based on Nowinski and Ismail [11]), we 

derived expressions for the velocity, temperature, and concentration profiles. With these profiles, key 

flow characteristics such as mass flux, wall shear stress, and local heat flux are analyzed. The non-

dimensional shearing stress at the plate (y = 0) is expressed as: 

𝜏 = (
𝜎𝑥𝑦

𝜌𝑢0
2)

𝑦=0
  

Similarly, the non-dimensional heat flux at the plate (y = 0), represented by the Nusselt number (Nu), is: 

𝑁𝑢 = (
𝜕𝜃

𝜕𝑦
)

𝑦=0
  

And the non-dimensional mass flux at the plate (y = 0), represented by the Sherwood number (Sh), is: 

𝑆ℎ = (
𝜕𝜙

𝜕𝑦
)

𝑦=0
  

 

4. Results and Discussion: 

Analytical calculations were performed for velocity, temperature, concentration, shearing stress, Nusselt 

number, and Sherwood number to gain a physical understanding of the problem. We used various values 

for the visco-elastic parameter 𝛼1, thermal Grashof number Gr, solutal Grashof number Gm, magnetic 

parameter M, Soret number Sr, and chemical reaction parameter Kc, while keeping constants such as 

E=0.001, ε=0.01, K=0.2, A=0.3, S=1, Sc =0.8, 𝑢𝑤 = 1, Pr =4, ω=1, and ωt =π/2 throughout the 

calculations. When 𝛼1 ≠0, the fluid is visco-elastic, and when 𝛼1=0, it represents Newtonian fluid flow. 

Figures 1 through 6 depict the variation in fluid velocity 𝑢𝑥 against y with different flow parameters. The 

graphs show that fluid velocity decreases as the distance from the plate increases for both Newtonian 

and visco-elastic fluids. Additionally, fluid velocity slows down as the visco-elastic parameter 𝛼1  

increases (𝛼1=0, -0.02, -0.04), compared to Newtonian fluid flow. Higher values of the thermal Grashof 

number Gr (Figs: 1 and 2) and solutal Grashof number Gc (Figs: 1 and 3) lead to an increase in fluid 

velocity, indicating that both concentration and thermal buoyancy forces tend to accelerate the fluid. 

Increased magnetic parameter M reduces fluid velocity in both types of fluids (Figs: 1 and 4), as the 

transverse magnetic field generates a Lorentz force that slows down the fluid. Higher values of the Soret 

number Sr (Figs: 1 and 5) and chemical reaction parameter Kc (Figs: 1 and 6) show a decreasing trend in 

fluid velocity. Likewise, variations in shearing stress, Nusselt number, and Sherwood number are 

observed with changes in Gr, Gm, M, Sr, and Kc as well as other flow parameters. 

 

5.   Conclusions: 

The study concludes that the velocity field is strongly influenced by the viscoelastic parameter at every 

point in the fluid flow region. As the absolute value of the viscoelastic parameter increases, it indicates a 

deceleration in fluid velocity compared to the behavior seen in Newtonian fluids. Enhancements in 

various key flow parameters significantly impact the shear stress, Nusselt number, and Sherwood 

number in both Newtonian and non-Newtonian fluid scenarios. 
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Figures: 

                 

Fig 1. Variation of 𝒖𝒙 against 𝒚 for 𝑮𝒓 = 𝟓,  𝑮𝒎 = 𝟒,  𝑴 = 𝟐,  𝑷𝒓 = 𝟒,  𝑺𝒓 = 𝟑 𝐚𝐧𝐝 𝑲𝒄 = 𝟑 

 

                 
Fig 2. Variation of  𝒖𝒙 against  𝒚 for 𝑮𝒓 = 𝟕,  𝑮𝒎 = 𝟒,  𝑴 = 𝟐,  𝑷𝒓 = 𝟒,  𝑺𝒓 = 𝟑 𝐚𝐧𝐝 𝑲𝒄 = 𝟑 

 

 

Fig 3. Variation of 𝒖𝒙 against 𝒚 for  𝑮𝒓 = 𝟓,  𝑮𝒎 = 𝟓,  𝑴 = 𝟐,  𝑷𝒓 = 𝟒,  𝑺𝒓 = 𝟑 𝒂𝒏𝒅 𝑲𝒄 = 𝟑. 
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Fig 4. Variation of 𝒖𝒙 against 𝒚 for 𝑮𝒓 = 𝟓.  𝑮𝒎 = 𝟒,  𝑴 = 𝟑,  𝑷𝒓 = 𝟒,  𝑺𝒓 = 𝟑 𝒂𝒏𝒅 𝑲𝒄 = 𝟑. 

 

 

Fig 5. Variation of 𝒖𝒙 against 𝒚 for 𝑮𝒓 = 𝟓,  𝑮𝒎 = 𝟒,  𝑴 = 𝟐,  𝑷𝒓 = 𝟒,  𝑺𝒓 = 𝟒 𝐚𝐧𝐝 𝑲𝒄 = 𝟑 

 

 

Fig 6. Variation of 𝒖𝒙 against 𝒚 for 𝑮𝒓 = 𝟓,  𝑮𝒎 = 𝟒,  𝑴 = 𝟐,  𝑷𝒓 = 𝟒,  𝑺𝒓 = 𝟑 𝐚𝐧𝐝 𝑲𝒄 = 𝟒 
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