

E-ISSN: 2582-2160 • Website: www.ijfmr.com

Email: editor@ijfmr.com

Comparative Study of Synthetic Hormones Ovaprim and Pituitary Extract in Induced Breeding of Indian Major Carps (Imc)

Sonawane S. D¹, Shaikh J. D²

^{1,2}Department of Zoology, Maulana Azad College, Dr. Rafiq Zakariya Campus, Rauza bagh Rd, Aurangbad, MH-431001, India

Abstract:

In the present study during June 2020- May 2021 observed the spawing response of ovaprim compard with pituitary extract in Indian major carps (IMC). The research work was carried out at fish breeding center, Jayakwadi Paithan 60 K.M away from Aurangabad (M.S) India. Total ten trial doses of carp pituitary extract (CPE) used for induced breeding in Indian major carps i.e. Catla catla, Labeo rohita and Cirrhinus mrigala.

The percentage of fertilization ranged (88.11-97.94%) was found with ovaprim treatment and (53.19-85.48 %) with pituitary extract treatment. The percentage hatchling ranged (74.70-95.92 %) with ovaprim treatment and (60- 58.82%) with pituitary extract treatment.

Keywords: Synthetic hormone ovaprim • Carp pituitary extract • Indianmajor carps and fish breeding.

Introduction:

Due to advancement in science and technology now a days, science has made wonderful progress in every aspects of techniques including agriculture, aquaculture, sericulture fish culture and explored for the development of common people. Along with other developmental programmes aquacultures stand at the top due to multidimensional applicability in research and as commodity values. Heavy populationgrowth in India facing several problems of malnutrition and health hazards in common people. To mitigate the increasing demand of nutritious food and to get rid of malnutrition scientists are busy to explore the aquatic resource to the maximum to tide over the problem of people.

Fish serves as an important source of human diet as they provide proteins, fats especially vitamins A andD special feature of fish is that they contain vitamin B which is not present in the plant food. fish is the good source of calcium polysaturated fatty acids belonging to linolenic acid series (18:3) are present in fish coronary heart diseases patient required fish oils. Balanced ratio of ω^2 linolenic acid (18:3) and linolenic acid (18:2) in fish flesh are found to be useful for mentioning healthy heart [1]

Fish culture is parallel to agriculture. It aims to increase the production of food above the level which would be produced naturally just like agriculture, fish culture includes the ploughing, fertilization sowing weed control and eradication of undesirable animals their replacement by desirable species. The

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

improvement of those species by breeding and selection [2 and 33]

Induced breeding means technique of fish breeding in confined water, stimulated by artificial hormone administration, which is agonadotropin. In India pituitary hormones were successfully administered to *Catla catla*, *Labeo rohita*, *Cirrhinus mrigala* and spawning were observed. Artificial reproduction and selective breeding producers gametes preservation hasbecome very popular now a days in theage of science and technology at present.

Various spawning agents have been reported in fishes namely, pituitary extract [3-8] human chorionic gonadotropin [9] mammalian pituitary hormone [10] domperidone or pimozide, ovaprim [11-13] ovatide [14] and pheromones [15-17]

In present investigation ovaprism and pituitary extract were used to induce final maturation and spawning in fresh water fishes *Catla catla, Labeo rohita and Cirrhinus mrigala* as trial to know the effectiveness of ovaprim is to be compared with pituitary extract

Materials And Methods

The experiments were conducted during June 2020 August 2020 and June 2021 – August 2021 (breeding season) at fish breeding center Jayakwadi, Paithan Dist- Aurangabad in Maharashtra state 55 km away from Aurangabad.

Total number of 47 females and 56 females *Catla catla* 54 females and 62 males *Labeo rohita* and 51 femals and 60 males, *Cirrhinus mrigala* were injected intramuscularly with ovaprim in a single dose effective dose was found to be 0.2-0.3 ml/kg and 0.4 - 0.6ml/kg body weight male and female respectively. While total numbers of 37 females and 47 males *Catla catla*, 38 females and 45 male *Labeo rohita* and 41 males and 50 females *Cirrhinus mrigala* two different dose to femals first dose was given 0.2 -0.4 ml/kg body weight and 0.6-0.8 as second dose to female fish were injected intramuscularly with pituitary extractin two doses for females.

Chemicals:

In the experimentation for the present study the ovaprim (syndel laboratories canada) was used to induce final maturation spawning and effectiveness was compared with pituitary extract.

Preparation of PituitaryExtract:

The pituitary glands were collected from Indian major carps in the month of June to August. To gain access to the pituitary the top of the skull is removed with a knife. Pituitary gland is left behind on the base of skull. Collected pituitaries werehomogenized in 0.6 % salt solution or distilled water. The solution is centrifuged and the clear supernatants were used for injection. Sometimes preserved pituitary gland may also be used for extract preparations. Pituitary glands were preserved in absolute alcohol immediately after collection. Each gland was kept in a separate phialwith fresh absolute alcohol and stored in a cool shady place at room temperature or under refrigeration untilneeded.

Experimental Methodology

The most of the breeding experiments were conducted in clothhapas. The general size of cloth hapas are

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

2.5 X 1.2 X 1m cloth hapas were fixed in earthen ponds or Banglabundh. The present experiments were conducted in circular hatchery. It is the most popular circular hatchery developed in china during 1960. This system adopted all over the country. This system possesses principle components viz breeding pool, hatching pool, overhead tank, spawnand egg collection chamber.

Selection of Brooders for Experiment

It is most important for induced breeding experiment. Healthy and disease free brooders of *Catla catla*, *Labeo rohita and Cirrhinus mrigala* of 2-5 years old are selected for every trial in the weight ratio of (1:1) male and female (kg) for the collection of brooders drag net was wed for netting (to avoid gill injury). Brooder fisheswere identified and selected for the experiment on the basis of following morphological characteristics as the bulging abdomen, soft ventralabdominal region, comparatively large size, felt pectoral spine, smooth pectoral fin and swelling anal fin with reddish colour of females. But incomparison to males the normal abdomen, milt comes out with gentle pressure on the abdomen smaller size of similar age serrated pectoral spine, rough pectoral fin and concave anus from exterior was found.

Methods of Injection

The selected brooders were keftin breeding pool for acclimatization. They were made to fast for 4-6 hrs before injection to release fecal matter outside the body and easy for spawning. Brooders were one by one netted out in hand net. They were placed on a cloth are carefully injected avoiding wriggling movement. There are several ways of hormone administration to matured carps such as intracranial, intraperitoneal and intramuscular injection was given at the base of caudal fin above the lateral line in our every trial.

Injected brooders were released in a breeding pool. Experimental brooders were observed for 36 hrs. After injection fishes give interval of 4 to 6 hrs the response to behavioural changes, ovulation and spawning etc. For the hatching of eggs, Incubation or hatching pool was used which is circular cemented tank. Ovaprim was used to induce in the present study for comparisons with pituitary extract.

Methods for Assessment of ResultCounting of Egg:

The eggs of Indian Major carps are non floating, non-adhesive and round in shape, average diameter of eggs and colour of eggs are varies from species to species i.e Catla catla 4.6mm and color is light red, Labeorohita 3.78mm and colour is reddish.Cirrhinus mrigala 5.5mm and colour is bluish [18]. The eggs were collected in a bucket they put in a mosquito net held in water. The eggs laid (approx) can easily calculated by following formula.

Total no of Eggs Laid(Approx) = Average no of egge in each sample beaker X Number of beakers of eggs

Percentage of Fertilization:

Fertilized eggs of Indian major carps are transparent, non-adhesive, round in shape while unfertilized eggs are opaque. The fertilization rate was calculated through random sampling by examining 2-3 samples from each breeding tank by using following formula.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Æverage no of fertilized eggs Eggs in a sample

Fertilization rate (%) = $\boxed{\text{Everage no of eggs in a sample}}$ x 100

Percentage of Hatchling:

Percentage of Hatchling was calculated by following formula Total No.of SpawnHatchling (%) = Total no of Fertilized eggs

Results:

In present study carried out form June to August 2020 and June to August 2021 (breeding season The results of the experimentation carried out Indian major carps i.e. *Catla catla, Labeo rohita* and *Cirrhinus mrigala* treated with ovaprim and pituitary extract has been presented in table no 1,2 and overall effect of ovarprim and pituitary extract are shown in table 3 and 4

Catla catla:

Total 47 females of *Catla catla* treated with ovaprim the effective dosewas found to be 0.2-0.3 ml/kg and 0.4 -

0.6 ml/kg body weight of male and female respectively. They were induced spawning after 10-12 hrs. The percentage of fertilization observed and recorded was (92-96.02%) and percentage of hatchling (89.31-95.17%) was observed and recorded. when both male and female were treated with ovaprim and overall percentage of fertilization and percentage of hatchling observed and recorded was (94.05%) and (92.05%) respectively (table no-1 and 3, figure 1 and 4) Similarly total 37 females of *Catla catla* were injected with pituitary extract twice in two different dose to female. The first dose was given 0.2-0.4 ml/kg body weight and 0.6-0.8 as second dose to female fish. The time interval between the two successive doses was 6 hrs spawning started after 6 hrs of second dose. The percentage of fertilization was (69.38-85.29%) and the percentage of hatchling was (58.82-78.82%).

When treated with pituitary extract. The overall percentage of fertilization and percentage of hatchling observed and recorded was (77.12 % and 68.25 %) respectively (table no 2 and 4 figure 1 and 4)

Labeo rohita:

Total 54 females of *Labeo rohita* treated with ovaprim the effective dose was found to be 0.2- 0.3ml/kg and 0.4-0.6 ml/kg body weight of male and female respectively which induced spawning after 10-12 hrs of injection. The percentage of fertilization was (88.11- 97.94%) recorded and percentage of hatchling recorded was (82.93-96.15 %) when treated with ovaprim. Overall percentage of fertilization and percentage of hatchling observed and recorded was (94.06%-91.36%) respectively (table 1 and 3 figure 2 and 5)

Similarly total 38 females of *Labeo rohita* were injected with pituitary extract twice in twodifferent doses to female. The first dose given was 0.2-0.4 ml/kg body weight and 0.6

-0.8 as second dose to female fish. The time interval between the two doses was 6 hrs. Spawning started after 6 hrs of second dose. The percentage of fertilization was (68.8-85%) and percentage of hatchling (62.20-75.73%) was recorded whentreated with pituitary extract. Overall percentage of fertilization and

percentage of hatchling observed and recorded was (94.06%) and (91.36%) respectively (table no 2 and 4 figure 2 and 5).

Cirrhinus mrigala:

Total 51 females of *Cirrhinus mrigala* treated with ovaprim the effective dose wasfound to be 0.2-0.3 ml/kg body weight of male and female respectively. They were induced spawning after 10-12 hrs of injection. The percentage of fertilization was (87.88 –95.94%) and percentage of hatchling (74.70 - 96.45%) when treated with ovaprimpercentage of hatchling observed and recorded was (92.89 %) and (88.34%) respectively (table 1 and 3 figure 3 and 6)

Similarly, total 41 females of *Cirrhinus mrigala* were injected with pituitary extract twice in two different doses to female. The first dose given was 0.2- 0.4 ml/kg body weight and 0.6 -0.8 as second dose to female fish. The time interval between the two doses was 6 hrs. Spawning started after6 hrs of second dose.

The percentage of fertilization was (53.19% - 85.48%) and percentage of hatchling (60-79.24%) was recorded when treated with pituitary extract. Overall percentage of fertilization and percentage of hatchling observed and recorded was (94.06%) and (91.36%) respectively (table 2 and 4 figure 3 and 6)

Discussion:

It has been reported, overall fertilization percentage (91.01%) and overall hatchling percentage (67.50%) average number of egg kg (67670), average number of fertilized egg kg (61620), average number of hatchling kg (41584) in *Catla catla* [19 and 33]

The rate of fertilization and hatchling percentage are generally higher with ovaprim as compared to pituitary extract [20 and 21]. The number of eggs obtained 2,40,000 with fertilization percentage 90 and hatchling percentage 90 in *Labeo rohita* and 1,40,000 with fertilization percentage 95 hatchling percentage 80 in *Cirrhinus mrigala* [22] present study shows that the results of fertilization and hatchling percentage were higher in ovaprim treatment compared to pituitary extract treatment [23] has reported 28-100% fertilization in *C. striatus* with regard to pituitary extract and [24] reported 45% fertilization in *H. fossilus*

[25] has noticed percentage of fertilization 60- 68% with regard to pituitary extract and percentage of fertilization (95- 98%) with regard to ovarprim. In terms of fertilization and hatchling ovarprim yielded better result [26 and 33].

The highest percentage of fertilization (95-98%) was observed in ovaprim treatment

C. striatus and C. mrigala injected with ovaprim 90% fertilization was observed by [27 and 28]

It has been noticed that whatever the earlier findings were their they are positive correlation with the findings of the present study. It is observed that the highest percentage of fertilization (87 %) and the highest percentage of hatchling (87.33%) at 27-28°c in *Labeo rohita* with pituitary extract treatment.

Conclusions:

Based on present study it is consequently concluded that the rate of fertilization and hatchling were generally higher in ovaprim. When compared with pituitary extract. Reduced handlings of brood fish due to single dose administrated to both the sexes at the same time due to decrease post spawning, mortality

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

of fish and increase spawning response in ovaprim treatment when compared to pituitary extract treatment.

Acknowledgements:

The authors are grateful to the Principal, Head of Department of Zoology Maulana Azad College of Arts, Commerce and Science, Rafiq Zakariya Campus, Rauza Bagh Rd, Aurangabad-431001 (M.S) forproviding laboratory facilities. Also the authors are thankful to the former Assistant fishery development officer Ghushige, Sapkal and R. Kamble and Assistant fishery Development officer patel madam for providing facilities during the study.

REFERENCES:

- 1. Crawford M.A, W.Doyle, G. Williams and P.J Drury 1989. The role of fats and EFA's for the Structures in growth of foetus sp. and neonate. In: The role of Fat in Human Nutrition (Vergroesen A.J and Crawford ets) pp:81-115. Academic press Canada.
- 2. Agrawala S.C 2008 . A Handbook of fish farming.
- 3. Khan H.1938. Ovulation in fish : Effect of administration of anterior lobe of Pituitary gland. curr.sci.7:233-234
- 4. Alikushi K.H, K.K. Sukumaran and S.Parmeshwaran 1962. Induced Spawning of the Chinese grass carp *Ctenoharyngodon idella* (C and V) and silver carp *Hypopthalamichtys molitrix* (C and V) in ponds at Cuttak India. Proc. Indo.Pacit. Fish Counc, 10(2):181-204
- 5. Chaudhari H, 1976. Use of Hormones in induced spawning of carps. J. fish Res. Bd. can. 33:940-947
- Chonder S.L. 1986. Repeated breeding of Indian and Chinese major carps during the spawning season. Induced breeding of carp CIFRI, Barrockpore, pp:40-43 Chonder S.L.1994. Induced carp breeding 3rd Edn. CBS pub. New Delhi
- 7. Peter R.E.H.R Lin Van der kroak, 1988. Induced ovulation and spawning of cultured freshwater fish in China: Advances in application of GnRH analogues and dopamine antagonists, Aquaculture, 74 :1-10
- 8. Lakra W.S., A.Mishra R. Dayal and A.K. Pandey 1996. breeding of Indian Major carps with the synthetic hormone drug ovaprim in Uttar Pradesh J.Adv.zool. 17: 105 109
- 9. Pandey A.K. R.S Patiyal, J.C Upadhyay M.T Tyagi and P.C Mahanta 1998. Induced spawning of the golden mahseer, (Tor putitora) with ovaprim at state fish farm near Dehradun. Indian J.fish .45:457-459
- 10. Pandey A.K C.T Mohapatra, M.Sarkar, G. Kanungo, G.C Sahu and B.N.Singh 2001 ovatide induced spawning in the Indian major carp production. J.Adv. 2001 .22:70-73
- 11. Chakraborthy R.D and D.S Murthy 1972. Life history of Indian major carps. *Cirrhinus mrigala* (Ham) *Catla catla* (Ham) and *Labeo rohita* (Ham) J. inland fish. soc India. 4:132-161
- 12. Muhammad Naeem, Abdus salam and Arghwan, 2005 induced spawing a major carp *Catla catla* by a single intramuscular injection of ovaprim –C and fecundity at fish hatchery Islamabad, Pakistan. J Biological Sci./ 5(6) : 776- 780.
- 13. Ragade V.R. 2000. An observation of gonadal axis in relation with spawning activity in Indian major carps. Ph. D. Thesis. Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, India
- 14. Jagtap Hanumant .S. 2002. Study of the affect of prostrate glands on reproduction of Indian Major carps

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

and ornamental fish. Ph.D Thesis University of Pune India.

- 15. Dhabe priyakumari .S 2002. Comparative study on application of pituitary extract and ovaprim in Indian major carps. Ph.D. Thesis Dr. Babasaheb Ambedkar Marathwada University, Aurangabad India.
- 16. Kolhi. M.P.S and U.C Goswami 1987. Spawning behaviour of fresh water air breathing Indian cat fish *Heteropneustes fossilis* (Bloch) Matsya, 12:180-183
- 17. Mohammed Hanifa, Thangarose Merlin Junaith, Shaikh Mohamed. 2000. induced spawning of the striped murrel *Channa-striatus*. Acta. IchtPiscut. 30(1):53-60
- 18. Quazi Zahangir Hossain Altaf hossain and Selina parween, 2007. Breeding for performance and nursery practices of *Labeo bata* (Hamitton buchanan,1822). Scientific world .5, No.5.
- Sahoo S.K , S.S giri S. Chandra and A.K. Sahu 2007. effect of ovaprim does and latency period on induced spawning of *Clarias batrachus*: Observation on larval deformity Indian J. Experiment Biol, 45 : 920-922
- 20. Das S.K 2004- Evaluation of a new spawning agent Ovopel in induced breeding of Indian carps Asian fish. sci . 17 : 313-322
- Krejszeff S. Kucharczyk D. Kupren K. Targonska K. Mamcarz A. Kujawa .R. Kaczkowski Z. Ratajski .S. 2008 – Reproduction of chub leuciscus cephalusL, under controlled conditions aquacult. Res. 39:907-912
- 22. Alam MS and Islam MS (2005) Population genetic structure of *Catla catla* (Hamitton) revealed by microsatellite DNA markers, Aquaculture 246: 151-160
- 23. DOF (2006) Fishery statistical yearbook of Bangladesh ministry of fisheries and livestock Dhaka 87. Pp
- 24. FAO (2007) world Aquaculture production of fish, crustaceans mollusks etc.,by principal species in 2005. yearbook of fishery statistics Rome, Italy 125 pp
- 25. Islam M.S and Alam M.A (2004) Randomly amplified polymorphic DNA analysis of four different population of the Indian major carp, *Labeo rohita* (Hamitton) J Appl Icthyol 20:407-412
- 26. Jhingran V.G (1968) synopsis of biological data on *Catla catla* (Ham.1822) FAO Fisheries synopsis n.32,Rome,83pp
- 27. Lier Z.J and Cordes J.F (2004)DNA marker technologies and their applications in aquaculture genetics, Aquaculture 238: 1-37
- 28. Simonsen V, Hansen M.M, Mensberg KLD, Sarder RI And Alam S (2005) Widespread hybridization, Among species of Indian Major carps in Hatcheriesbut not in the wild. J. fish Biol 67:794-808
- 29. Datta T.S Acharya and Das M.K (2005): impact of water quality on the stress physiology of cultured *Labeo rohita-* Journal of environmental biology.26(3): 582-592
- 30. Patagiri. A, Goswami M.M. kar D.Barbhuiya, M.H (2001) : Comparative study on length weight relationship and relative condition factors in major and exoctic carps in ponds of Hupa Indian journal of Environment and ecoplan.5: 179-180
- 31. Sukumaran, Das A.K (2005) : limnology & fish production efficiency of selected reservoirs of Karnataka Indian Journal of fish 52(1) : 47-53
- *32.* More P. R. 2014 : Comparative study of induced breeding by the application of Pituitary extract and ovaprim in *Catla catla*.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

		-		0 1				•		un Ovapi		
			Total	Avera		Avera			Average	Average		
		No.	wt	geno.		geno.	Fotal		no.	no.	Averag	Δvera
		of	offe	U	Dose	U		erageno		Hatchling	Ŭ	ge
Species	Month			eggs				eggs Kg-		-	c fertiliza	-
species	WIOIIIII	treated		obtain			ing	eggs Rg- 1		00	tio	i
		irealeu	(kg)		-		mg	1	KgG1	KgG ¹		
				ed	m	eggs						rangrat
Cut	T	5	17.0	1(200	0.4	15000	12500	140000	00005.0	70411 76	(%)	e(%)
Catla		5	17.0	16200				140000		79411.76		90
catla	2020	1	10.0	00		00	00	05004.1	9412	471	59	00.701
	July	4	12.0	14500					114166.	102500	94.482	
	2020			00		00	00	1765	6667		76	02
	July	4	16.0	17600				120833.	105625	97500	96.022	
	2020			00		00	00	3333			73	69
	Aug.	4	19.0	23000	0.4 -	21160	18900	110000	111368.	99473.68	92	89.319
	2020			00	0.6	00	00		4211	421		47
	Aug.	5	20.5	20000	0.4 -	19000	17900	121052.	92682.9	87317.07	95	94.210
	2020			00	0.6	00	00	6316	2683	317		53
	June	5	18.0	17000	0.4 -	15950	14400	97560.9	88611.1	80000	93.823	90.282
	2021			00	0.6	00	00	7561	1111		53	13
	July	5	17.5	20150	0.4 -	19140	18000	94444.4	109371.	102857.1	94.987	94.043
	2021			00	0.6	00	00	4444	4286	429	59	89
	July	5	20.0	24500	0.4 -	22800	21700	115142.	114000	108500	93.061	95.175
	2021			00		00	00	8571			22	44
	Aug.	5	19.5	22000					108307.	100717.9	96	92.992
	2021	C .	1710	00		00	00	122000	6923	487	20	42
	Aug.	5	20.5	22100				112820		94146.34	94,117	
	2021	5	20.5		0.6		00				65	46
Labeo		7	11.0	28600				260000		190000		82.936
rohita	2020	/	11.0	20000		00	00	200000	9091	170000	89	51
Tonna		5	9.5	23750				250000		223157.8		
	July 2020	5	7.3	23730		00	00	230000	5789	223137.8 947	63	93.927 6
		5	10.5					102222				
	July	5	10.5	19250						162857.1		
	2020		0.0	00		00	00	3333	4762	429	9	43
	Aug.	5	9.0	25200				280000				
	2020			00		00	00		5556	444	27	52
	Aug.	5	11.5	32800				285217.		260869.5		
	2020			00	0.6	00	00	3913	3478	652	95	85

Table 1: Spawning response of female Indian major carps with Ovaprim

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

						T		r	r		r	
	June	6	12.0s	30400		27900	25000	253333.	232500	208333.3	91.776	89.605
	2021			00	0.6	00	00	3333		333	32	73
	July	5	9.5	30500	0.4 -	29100	27300	321052.	306315.	287368.4	95.409	93.814
	2021			00	0.6	00	00	6316	7895	211	84	43
	July	5	10.0	25000	0.4 -	23800	21500	250000	238000	215000	95.2	90.336
	2021			00	0.6	00	00					13
	Aug.	5	9.0	28500	0.4 -	26800	23900	316666.	297777.	265555.5	94.035	89.179
	2021			00	0.6	00	00	6667	7778	556	09	1
	Aug.	6	14.5	39000	0.4 -	38200	36300	268965.	263448.	250344.8	97.948	95.026
	2021			00	0.6	00	00	5172	2759	276	72	18
Cirrhin	June	7	13.0	18200	0.4 -	17000	12700	140000	130769.	97692.30	93.406	74.705
US	2020			00	0.6	00	00		2308	769	59	88
mrigala												
	July	4	8.5	14450	0.4 -	12700	12250	170000	149411.	144117.6	87.889	96.456
	2020			00	0.6	00	00		7647	471	27	69
	July	5	10.5	17350	0.4 -	15610	13700	165238.	148666.	130476.1	89.971	87.764
	2020			00	0.6	00	00	0952	6667	905	18	25
	Aug.	4	7.5	13000	0.4 -	12350	11000	173333.	164666.	146666.6	95	89.068
	2020			00	0.6	00	00	3333	6667	667		83
	Aug.	5	11.5	20900	0.4 -	20000	18000	181739.	173913.	156521.7	95.693	90.0
	2020			00	0.6	00	00	1304	0435	391	78	
	June	6	10.5	15200	0.4 -	13700	11500	144761.	130476.	109523.8	90.131	83.941
	2021			00	0.6	00	00	9048	1905	095	58	61
	July	5	9.5	15000	0.4 -	13900	12250	157894.	146315.	128947.3	92.666	88.129
	2021			00	0.6	00	00	7368	7895	684	67	5
	July	5	11.5	17250	0.4 -	16550	15300	150000	143913.	133043.4	95.942	92.447
	2021			00	0.6	00	00		0435	783	03	13
	Aug.	5	9.0	14900	0.4 -	14000	11900	165555.	155555.	132222.2	93.959	85
	2021			00	0.6	00	00	5556	5556	222	73	
	Aug.	5	10.0	16000	0.4 -	15100	14500	160000	151000	145000	94.375	96.026
	2021			00	0.6	00	00					49

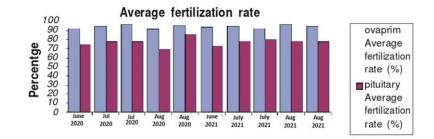
E

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

		No.	Total wt of	Average no. of	Dose ovapr		Average no. of	Total	Average no.	Average no.	Average no.	Average	45	verage
		of female					fertilized	no. of	eggs KgG'	fertilized	Hatchling eggs	fertilizatio		atchli ran
Species	Month	treat ed	(kg)	obtained	I st	II nd	eggs	hatchling		eggs KgG ¹	KgGʻ	rate (%)	rate	(%
Catla Catla	June 2020	5	17.5	1300000	0.2-0.4	0.6-0.8	970000	630000	74285.7143	55428.57143	36000	74.61		64.94
	July 2020	4	16.5	1300000	0.2-0.4	0.6-0.8	1000000	690000	78787.8788	60606.06061	41818.18	76.92		69
	July 2020	4	16.5	1200000	0.2-0.4	0.6-0.8	930000	635000	72727.2727	56363.63636	38484.84848	77.5		68.27
	Aug. 2020	3	12.0	980000	0.2-0.4	0.6-0.8	680000	400000	81666.6667	56666.66667	33333.33333	69.38		58.82
	Aug. 2020	6	21.5	1700000	0.2-0.4	0.6-0.8	1450000	1135000	79069.7674	67441.86047	52790.69767	85.29		78.82
	June 2021	3	10.5	780000	0.2-0.4	0.6-0.8	570000	380000	74285.7143	54285.71429	36190.47619	73.07		66.66
	July 2021	2	7.0	535000	0.2-0.4	0.6-0.8	420000	300000	76428.5714	60000	42857.14286	78.50		71.42
	July 2021	4	13.0	900000	0.2-0.4	0.6-0.8	720000	510000	69230.7692	55384.61538	39230.76923	80		70.83
	Aug. 2021	3	10.5	830000	0.2-0.4	0.6-0.8	650000	430000	79047.619	61904.7619	40952.38095	78.31		66.15
	Aug. 2021	3	12.0	850000	0.2-0.4	0.6-0.8	660000	450000	70833.3333	55000	37500	77.64		68.18
abeo Rohita	June 2020	5	12.0	1750000	0.2-0.4	0.6-0.8	1350000	950000	145833.333	112500	79166.66667	77.14		70.37
	July 2020	4	10.5	2500000	0.2-0.4	0.6-0.8	2000000	1450000	238095.238	190476.1905	138095.2381	80		72.5
	July 2020	5	10.0	1700000	0.2-0.4	0.6-0.8	1390000	990000	170000	139000	99000	81.76		71.22
	Aug. 2020	3	8.0	1300000	0.2-0.4	0.6-0.8	1030000	730000	162500	128750	91250	79.23		70.87
	Aug. 2020	5	10.5	1600000	0.2-0.4	0.6-0.8	1360000	1030000	152380.952	129523.8095	98095.2381	85		75.73
	June 2021	3	7.5	1150000	0.2-0.4	0.6-0.8	900000	600000	153333.333	120000	80000	78.26		66.66
	July 2021	3	8.0	1250000	0.2-0.4	0.6-0.8	860000	535000	156250	107500	66875	68.8		62.20
	July 2021	4	8.5	1280000	0.2-0.4	0.6-0.8	1050000	780000	150588.235	123529.4118	91764.70588	82.03		74.28
	Aug. 2021	3	6.5	1000000	0.2-0.4	0.6-0.8	800000	510000	153846.154	123076.9231	78461.53846	80		63.75
	Aug. 2021	3	8.0	980000	0.2-0.4	0.6-0.8	770000	530000	122500	96250	66250	78.57		68.83
Cirrhin¤s nrigla	June 2020	5	12.0	940000	0.2-0.4	0.6-0.8	500000	300000	78333.3333	41666.66667	25000	53.19		60
	July 2020	5	10.5	790000	0.2-0.4	0.6-0.8	630000	450000	75238.0952	60000	42857.14286	79.74		71.42
	July 2020	5	9.0	700000	0.2-0.4	0.6-0.8	580000	430000	77777.7778	64444.44444	47777.77778	82.85		74.13
	Aug. 2020	3	5.5	450000	0.2-0.4	0.6-0.8	360000	270000	81818.1818	65454.54545	49090.90909	80		75
	Aug. 2020	6	13.5	1030000	0.2-0.4	0.6-0.8	860000	650000	76296.2963	63703.7037	48148.14815	83.49		75.58
	June 2021	3	6.0	550000	0.2-0.4	0.6-0.8	470000	360000	91666.6667	78333.33333	60000	85.45		76.59
	July 2021	4	8.0	730000	0.2-0.4	0.6-0.8	560000	380000	91250	70000	47500	76.712		67.85
	July 2021	4	9.0	560000	0.2-0.4	0.6-0.8	450000	340000	62222.2222	50000	37777.77778	80.35		75.55
	Aug. 2021	3	7.0	750000	0.2-0.4	0.6-0.8	590000	450000	107142.857	84285.71429	64285.71429	78.66		76.27
	Aug. 2021	3	7.0	620000	0.2-0.4	0.6-0.8	530000	420000	88571.4286	75714.28571	60000	85.48		79.24

Table 3: Effect of ovaprim on spawning on Indian major carps.


Species	Number	Total wt				Average	Average	Average		
	of female					n	n	n		
	treatedobt	of female	Total	Total	Total no.	o.eggs	о.	0.	Overall	Overall
	ained	(kg)eggs	no. of	no. of		KgG ¹	fertilize	Hatchlin	fertilizatio	Hatchlin
			eggs	fertilize		U	d eggs	g eggs	n %	g %
				d	hatchlin		KgG1	KgG ¹		
					g		U	C		
Catla	47	180	197050	185570	1712400	112964.	103383.	95242.3	94.20	92.05
catla			00	00	0	88	19	9		
LabeoR	54	106.5	283000	266700	2443000	266856.	251281.	229793.	94.06	91.36
ohita			00	00	0	88	47	11		
Cirrhin	51	101.5	162250	132910	1331000	160852.	149468.	132421.	92.89	88.34
us			00	00	0	27	79	14		
mrigla										

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

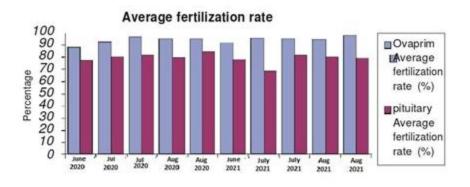
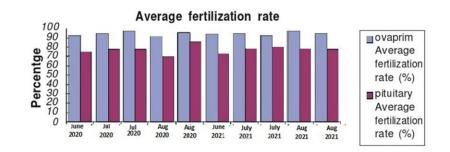

	• •• ===•••	- P	, , , , , , , , , , , , , , , , , , ,		B			ren por	
Number	Total wt					Average	Average		
of						no.	no.		
female	of female	Total	Total	Total no.	Average	fertilize	Hatchlin	Overall	Overall
treated	(kg)	no.	no.		no.	d	g		
obtained	eggs	of eggs	of	of	eggs	eggs	eggs	fertilizatio	Hatchli
			fertilize	hatchlin	KgG ¹	KgG ¹	KgG ¹	n %	ng %
			d	g	C	U	U		
37	137	103750	805000	5560000	75636	75636.3	39915.7	77.12	68.25
		00	0			3	8		
38	89.5	145100	115700	8105000	160532	160532.	88895.8	79.07	69.64
		00	00			72	3		
41	87.5	712000	553000	4050000	83031	65360	48243.7	78.59	73.16
		0	0				4		
	Number of female treated obtained 37 38 41	Number Total wt of Total wt female of female treated (kg) obtained eggs 37 137 38 89.5	Number ofTotal wt offemale treatedof female (kg)Total no.obtained 37eggsof eggs37137103750 003889.5145100 00	Number ofTotal wt ofTotal wt offemale treatedof female (kg)Total no.Total no.obtained obtainedeggsof eggs of eggsof fertilize d37137103750 00805000 003889.5145100 00115700 00	Number ofTotal wt ofTotal wt ofTotal wt offemale femaleof female (kg)Total no.Total no.Total no.obtained obtainedeggs eggsof eggs of eggsof fertilize hatchlin d gof setting37137 000103750 000805000 5560000 005560000 0003889.5 00145100 00115700 008105000 00	Number ofTotal wt ofTotal wt ofTotal rotal wtTotal rotal no.Total rotal no.Average no.female treated (kg)no.no.no.no.no.obtained obtainedeggs eggsof eggs of eggsof fertilize d gof eggseggs fertilize hatchlin d gNumber kgG137137103750 00805000 05560000 r5636 0075636 003889.5145100 00115700 008105000 160532	Number ofTotal wt ofAverage no.female treatedof female (kg)Total no.Total no.Total no.Average no.female treatedof female (kg)Total no.Total no.Total no.Average fertilize no.obtained obtainedeggs (ggs)of eggs (fertilize (d)of (gg)eggs (gg)eggs (gg)eggs (gg)37137 (00)103750 (00)805000 (556000)5560000 (75636)75636.3 (gg)3889.5145100 (115700)115700 (gg)8105000 (160532)160532. (gg)	Number ofTotal wt ofAverage Average no.Average Average no.female (kg)of female no.Total no.Total no.Total no.Average no.Average no.female (kg)no.no.no.Total no.Average fertilizeHatchlin no.obtained obtainedeggsof eggs fertilize hatchlin dof eggseggs eggseggs eggseggs eggs37137103750 00805000 05560000 556000075636 375636.3 39915.7 339915.7 33889.5145100 00115700 008105000 72160532 7288895.8 72	ofImage: constraint of the sector of the secto

Table 4: Effect of pituitary extract on spawning on Indian major carps.

Months

Fig. 1: Shows average fertilization rate (%) in Catla catla Ovaprim compared with pituitary extract

Months


Fig. 2: Shows average fertilization rate (%) Ovaprim compared with pituitary extract in Labeo rohita

Ē

E-ISSN: 2582-2160 • Website: www.ijfmr.com

Email: editor@ijfmr.com ٠

Months

Fig. 4: Shows average hatchling rate (%). Ovaprim compared with pituitary extract in Catla catla.

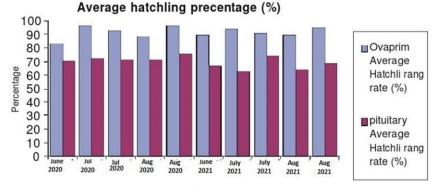
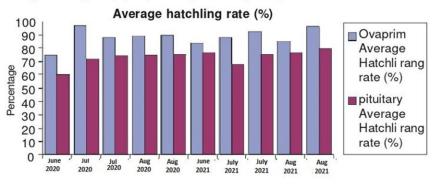



Fig. 5: Shows average hatchling rate (%)Ovaprim compared with pituitary extract in Labeo rohita.

Months

Fig. 6: Shows average hatchling rate (%). Ovaprim compared with pituitary extract in Cirrhinus mribala.