• Email: editor@ijfmr.com

Integration of Aluminium Formwork in Sustainable and Affordable Housings

Reena Sharma¹, Dr. Bipasha Kumar², Dr. Deepashree Choudhury³

¹M.Arch 1st Year, AIT-SAP, Greater Noida, India ^{2,3}Professor At AIT-SAP. Greater Noida. India

Abstract:

India is characterized by the presence of a vibrant construction industry that has contributed to economic growth in the country, particularly in fast-growing urban areas.

The high demand for housing in India, which has the second highest urban population globally, calls for an affordable form of building that caters for the need of everyone and does not harm environment. This calls for new strategies to ensure that there are sustainable and affordable methods of building houses. The paper aims at explicating how aluminum formwork can be employed to deal with these difficulties/challenges.

Aluminum Form-Work provides several advantages over traditional systems such as faster construction time;stronger structures and less environmental impact.This study assesses the effectiveness of aluminum form-work systems on sustainable & affordable housing in India through case studies and comparison

The research looks into factors such as cost-effectiveness, energy efficiency and durability all of which will help us understand when and where aluminium form-work may be preferable. This paper evaluates thoroughly the analyses, cases tudies, concluding how integration can be implemented in line with aluminum formwork in relation to sustainable & affordable house development.

Keywords: Aluminium Formwork, Sustainable Construction, Affordable Housing, Low Cost Housing Solution, Rapid Construction Technique, Modular Construction, Lifecycle Assessment.

Introduction

The construction industry in India plays a pivotal role in the country's economic advancement, particularly in its bustling urban areas, the housing landscape of which is a mosaic of contrasts.

Amidst towering skyscrapers, one can still find sprawling informal settlements, a stark reminder of the affordable sustainable challenges in providing and housing for all.A drive through Mumbai, for instance, reveals a juxtaposition of luxury high-rises and densely packed slums, demonstrating the housing disparity that persists (Kundoo, 2014). This dynamic underscores the urgent need for innovative construction methods that can address the country's diverse housing demands. With urbanization on the rise. India faces the challenge of providing affordable and sustainable housing to its growing population. This challenge is compounded by traditional construction methods that may not adequately meet the needs of modern, eco-conscious development (Mandala & Nayaka, 2023).

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

The quest for affordable and sustainable housing in India is not just a matter of economic growth but also one of social justice and environmental responsibility.Traditional construction methods,while familiar and reliable,often fail to meet the demands of the modern world, especially in terms of the speed,cost&sustainability(Cherian et al.,2020).This presents an opportunity for new technologies,such as aluminum formwork, to bridge the gap between the past and the future,offering a pathway to a more equitable and resilient housing landscape.

Aluminum formwork emerges as a promising solution to address these challenges by offering an array of benefits, such as expedited construction timelines, enhanced structural integrity, and minimized environmental impact(Azharuddin Ansari, 2018; Magdum et al., 2017). This innovative technique also promotes the efficient use of resources, aligning with sustainable construction practices (Liebringshausen et al., 2023).

This paper delves into the potential of aluminum formwork in the context of India's housing crisis.By exploring its integration into sustainable and affordable housing projects, the research aims to assess the impact of aluminum formwork on cost-effectiveness, energy efficiency & longevity

Aims and Objectives

This paper aims to explore how well Integration of aluminum formwork works in India when building affordable and sustainable housing. This study looks at a number of factors, including durability, energy efficiency, cost-effectiveness, productivity. The goal is to determine how aluminum formwork might assist satisfy the nation's expanding housing demand while reducing its negative environmental effects.

Methodology

In approaching the research on the Integration of aluminum formwork in sustainable and affordable housing, a multi-method strategy was employed to provide a comprehensive understanding of the topic.

- Literature Review: to identify the trends & gaps in the existing knowledge on aluminum formwork in housing projects.
- Research Questions:

What is Aluminium Formwork(MIVAN) Technology? How It works?

What are the environmental benefits of using aluminum formwork compared to traditional methods? How does the cost of aluminum formwork compare to other construction methods over the life cycle of a building?

- **Research Design**: involves case studies of existing projects, interviews with stakeholders (architects, engineers, builders), & comparative analysis of different construction methods.
- Data Collection: includes integration process right from drawings to construction.
- Site visits to observe ongoing projects using aluminum formwork.
- **Data Analysis**: Analyze the data collected to draw meaningful conclusions. Use both qualitative (thematic analysis of interviews, for example) and quantitative (cost-benefit analysis) methods as appropriate.
- **Findings**: Summarizing findings based on the analysis. Highlighting the advantages and challenges of using aluminum formwork in affordable and sustainable housing.
- **Conclusion**: Summing up the key points of research, emphasizing the significance of using aluminum formwork in achieving affordable and sustainable housing goals.

Background Study

The landscape of housing in India is a complex and multifaceted one,driven by rapid urbanization and an ever-increasing demand for affordable homes.With a burgeoning urban population,the country faces significant challenges in meeting housing needs,especially in terms of sustainability & affordability (Kundoo, 2014).

Given that the country's urbanization rate is predicted to reach 55–60 percent in the next 10–15 years, 75 million new dwellings must be constructed in India.

What location will these houses be?

The majority will be found in the 100 smart cities that the Indian government has suggested, as well as in large cities like Mumbai, Delhi, Bangalore, Hyderabad, Chennai, and Ahmedabad.

India will have 900 million urban residents by 2050. However, purchasing a property in the cities will get harder due to growing land costs and an average household income of \$1,876 (INR 1,31,320) in 2020. (Source:Amplify Infra)

The pressing need for affordable homes stems from the widening gap between housing supply and demand, exacerbated by factors such as rising land prices and construction costs. Many urban areas face a severe shortage of housing, particularly for low-income and middle-income groups. This shortage contributes to the proliferation of informal settlements and overcrowded living conditions, which pose health and safety risks to residents (Windapo et al., 2021)

Sustainability is another crucial aspect of the housing challenge. Traditional construction methods often result in substantial waste, excessive energy consumption, high carbon emissions. As global awareness of climate change and environmental degradation increases, there is a growing call for construction practices that minimize ecological impact and promote resource efficiency (Cherian et al., 2020).

Traditional construction methods often fall short in addressing these demands due to lengthy construction times, highlabor costs, and significant environmental impacts. These are often resourceintensive and can contribute to ecological degradation (Bayliss et al., 2016). As the world becomes more conscious of the need for sustainable development, there is a growing imperative to adopt construction methods that are both environmentally responsible and economically viable. Therefore, we need housing that is more affordable, built faster, and of better quality, all while adhering to environmental standards.

The skyline of modern Indian cities is punctuated by cranes and scaffolding, a testament to the country's rapid urbanization and economic growth (Sharma & Agarwal,2023). As demand for housing rises, the construction industry finds itself at the intersection of tradition and innovation.

The challenge lies in balancing speed and cost-effectiveness with long-term durability and energy efficiency. With this approach, the industry can keep pace with the growing demands of urban development while contributing positively to the environment and the lives of those who call these houses their homes.

This context has opened the door for modern construction techniques like aluminum formwork, which offers a pathway to achieve sustainable and affordable housing. Aluminum formwork systems streamline the construction process by enabling the rapid casting of entire building sections, reducing both labor and time costs (Magdum et al., 2017). Additionally, the material's reusability and minimal waste production align with contemporary sustainability goals (Cherian et al., 2020). Aluminum formwork can revolutionize India's housing sector by delivering affordable, sustainable homes efficiently. This innovative technique streamlines construction, reduces resource waste, and aligns with sustainability

goals, addressing the environmental and economic challenges of traditional methods. It offers significant advantages, making construction more sustainable, efficient, and cost-effective.

Literature Study

Literatur	0			Table 1				
Title	Author/	Theoretica	Resear	Methodol	Analysis	Conclusio	Implica	Implic
	Date	l/	ch	ogy	&	ns	tions	ations
		Conceptua	Questi		Results		for	For
		1	on(s)/				Future	practi
		Framewor	Hypot				researc	ce
		k	heses				h	
А	Azharuddin	Not	The	Literature	Provides a	n Alumin	Further	Offers
Review	Ansari, A.	explicitly	paper	review of	overview o	of um	research	insight
Paper	A. (2018)	mentioned	review	existing	aluminum	formwo	is	s into
on			s the	research	formwork	rk is a	needed	how
Alumini			utilizat	and case	technology	, promisi	on long-	alumin
um			ion of	studies	highlightin	ng	term	um
Formw			alumin		g i	ts technol	durabilit	formw
ork and			um		benefits	ogy for	y and	ork can
It's			formw		such a	afforda	large-	streaml
Utilizati			ork in		efficiency	ble	scale	ine
on in			afforda		and reduce	d housing	implem	constru
Afforda			ble		labor costs	,	entation	ction
ble			housin			though		proces
Housin			g			some		ses and
g						challen		save
						ges		costs
						exist		for
								develo
								pers
Constru	Atta, N.,	The paper	The	Case	The	The	Further	The
ction	Dalla Valle,	discusses a	paper	studies	analysis	authors	research	decisio
technol	А.,	decision	evaluat	and a	highlights	emphas	is	n
ogies	Campioli,	support	es	decision	the need for	or ize the	needed	suppor
for	А.,	tool for	differe	support	careful	importa	to refine	t tool
sustaina	Chiaroni,	selecting	nt	tool to	considerati	nce of	decision	can aid
ble	D.,	constructio	constru	analyze	on of loca	al selectin	-making	practiti
afforda	&Talamo,	n	ction	constructio	contexts	g	tools	oners
ble	C. (2021)	technologi	technol	n	and	technol	and	in
housing		es for	ogies	technologi	community	ogies	assess	choosi
within		sustainable	for	es	needs whe	n that	the	ng
fragile		affordable	sustain		choosing	balance	long-	approp
contexts		housing	able		constructio	o cost-	term	riate

E-ISSN: 2582-2160 • Website: www.ijfmr.com

			afforda		n	effectiv	impact	oonstar
Duon o co					n taabualaaia		of	constru
Proposa			ble		technologie	eness		ction
l of a			housin		S	with	selected	technol
decision			g			sustain	technolo	ogies,
support						ability	gies on	balanci
tool						and	commu	ng
						commu	nities	afforda
						nity		bility
						prefere		and
						nces		sustain
								ability
"A state	Mandala,	The paper	The	Literature	The paper	Alumin	Future	This
of art	R. S. K.,	reviews	paper	review and	compares	um	research	paper
review	&Nayaka,	various	aims to	analysis of	different	formwo	could	can
on time,	R. R.	modern	evaluat	case	modern	rk	focus on	guide
cost and	(2023)	constructio	e time,	studies	constructio	stands	refining	practiti
sustaina		n	cost,	from	n	out as a	these	oners
ble		techniques	and	recent	techniques	sustain	modern	toward
benefits		for	sustain	constructio	and their	able	techniqu	adopti
of		affordable	able	n projects	impact on	constru	es and	ng
modern		housing,	benefit		cost, time,	ction	implem	alumin
constru		including	s of		and	techniq	enting	um
ction		aluminumf	differe		sustainabilit	ue with	them on	formw
techniq		ormwork,	nt		у	potenti	a larger	ork
ues for		through a	constru			al for	scale	and
afforda		sustainabili	ction			cost		other
ble		ty lens	techniq			and		moder
housing			ues			time		n
"			used			savings		techniq
			for			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ues to
			afforda					improv
			ble					e
			housin					afforda
			g					bility
			g project					and
			s					sustain
			5					ability
								in
								nn housin
								g project
								project
	A _h 1 1'	Devi	D1	T :4 a 4-	Duez-1-1-	A 1	E	S Offers
А	Azharuddin	Reviews	Evalua	Literature	Provides an	Alumin	Future	Offers

E-ISSN: 2582-2160 • Website: www.ijfmr.com

Review	Ansari, A.	the	tes the	review of	overview of	1100	research	incidht
Paper	Alisali, A. A. (2018)	utilization	advant		aluminum	um formwo	could	insight s into
-	A. (2016)	of		existing research	formwork	rk is a		s into how
on Alumini		aluminum	ages and				focus on large-	alumin
					technology,	promisi	U	
um Formw		formwork	challen	studies	highlightin	ng technol	scale	um formuna
		for	ges of		g its benefits		implem entation	formw
ork and		affordable	using			ogy for		ork can
It's		housing	alumin			afforda	and	streaml
Utilizati			um		efficiency	ble	long-	ine
on in			formw		and reduced	housing	term	constru
Afforda			ork in		labor costs	, ,1 1	durabilit	ction
ble			afforda			though	У	proces
Housin			ble			some		ses and
g			housin			challen		save
			g			ges		costs
						exist		for
								develo
				~			_	pers
Constru	Atta, N.,		Evalua	Case	Analysis	Empha	Future	The
ction	Dalla Valle,	a decision	tes	studies	highlights	sizes	research	decisio
technol	A.,	support	differe	and a	the need for	the	should	n
ogies	Campioli,	tool for	nt	decision	careful	importa	refine	suppor
for	A.,	selecting	constru	support	considerati	nce of	decision	t tool
sustaina	Chiaroni,	constructio	ction	tool to	on of local	selectin	-making	can aid
ble	D.,	n	technol	analyzeco	contexts	g	tools	practiti
afforda	&Talamo,	technologi	ogies	nstruction	and	technol	and	oners
ble	C. (2021)	es for	for	technologi	community	ogies	assess	in
housing		sustainable	sustain	es	needs when		the	choosi
within		affordable	able		choosing	balance	long-	ng
fragile		housing	afforda		constructio	cost-	term	approp
contexts			ble		n	effectiv	impact	riate
:			housin		technologie	eness	of	constru
Proposa			g		S	with	selected	ction
1 of a						sustain	technolo	technol
decision						ability	gies on	ogies,
support						and	commu	balanci
tool						commu	nities	ng
						nity		afforda
						prefere		bility
						nces		and
								sustain
								ability
Structur	Sanket S.	Focuses on	Explor	Analytical	Analysis	Alumin	Suggest	Offers

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

1				1	• • •	[6 .1	• 1
al D	Desai, Dr.	structural	es the	and case	includes	um	s further	guidan
Design	V. R. Rathi	design	applica	study	structural	formwo	research	ce for
of	(March	aspects of	tion	approach	performanc	rk	into	engine
Alumini	2022)	aluminum	and	examining	e,	provide	advance	ers and
um		formwork	perfor	the	efficiency,	s high	d design	develo
Formw		used in	mance	structural	and	efficien	features	pers on
ork		high-rise	of	design	adaptability	су,	and	adopti
Used in		buildings	alumin	aspects of	of	improv	optimiz	ng
High-			um	aluminum	aluminum	ed	ation of	alumin
rise			formw	formwork	formwork	structur	aluminu	um
Buildin			ork in		in high-rise	al	m	formw
g			high-		buildings	integrit	formwo	ork for
			rise			y, and	rk for	efficie
			buildin			reduced	complex	nt and
			g			constru	structur	durabl
			constru			ction	es	e high-
			ction			times		rise
						for		buildin
						high-		g
						rise		constru
						buildin		ction
						gs		
Alumini	HimanshuR	Discusses	Investi	Literature	Analysis	Alumin	Suggest	Offers
um	ivankar,	aluminumf	gates	review and	includes	um	S	guidan
Formw	AkshayCho	ormwork	the	case	cost-	formwo	explorin	ce for
ork	rdiya (April	technology	advant	studies	effectivenes	rk is	g	constru
Technol	2017)	and its	ages	focusing	s, time	benefic	advance	ction
ogy		application	and	on	efficiency,	ial for	ments in	practiti
		in	challen	aluminum	and	its	aluminu	oners
		constructio	ges of	formwork	structural	speed,	m	on the
		n	using	technology	integrity of	cost-	formwo	efficie
			alumin		aluminum	effectiv	rk	nt use
			um		formwork	eness,	technolo	of
			formw		in	and	gy and	alumin
			ork in		constructio	strengt	its	um
			constru		n	h, but	applicati	formw
			ction			require	on in	ork for
			project			s initial	various	differe
			S			investm	building	nt
						ent	types	project
							JT - ~	s
					1	1		
Analysi	SujitShelke.	Explores	Investi	Case	Analysis	Alumin	Suggest	Provid
Analysi s of	SujitShelke, Kanupriya	Explores the	Investi gates	Case studies	Analysis shows that	Alumin um	Suggest s further	Provid es

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Alumini Waghmare, analysis of the and aluminum formwo research practic Nikhil aluminum efficie analytical formwork um rk is to al Formw Thorat, formwork ncy of approach offers effectiv optimiz insight RohanWade ork structures alumin assessing significant e for e S for Structur kar. Prof. focusing um the use of time and reducin formwo constru Nikhil rk ction e Based on duration formw aluminum cost savings g Maske and cost ork in formwork profess on in constru design (June 2021) constructio ionals Duratio terms ction for even and of time n projects time greater n on Cost and efficienc leverag and cost costs ing y saving while alumin S improvi um formw ng ork for quality faster. more costeffecti ve project S Pre-Shroff, Investi Case D. Examines Analysis Prefabr Suggest Offers Fabricat N., & Joshi, pregates studies shows pres further ication insight ed A. T. fabricated how and fabricated is an explorat S for Archite (2022)architectur factory analysis of architecture effectiv ion of urban cture e and its -built precan offer e for its prefabri planne For fabricated sustainable potential constru adaptab cated rs and architectur Urban for ctions and flexible ility systems constru e projects Adapta sustainable can solutions and and ction bility: and provid for profess urban sustain material ionals Factory flexible constructio ability for e S Built wider urban sustain n in on Constru constructio able urban urban integra ctionsn solutions and environ applicati ting Sustain adapta prefabr ments on able & ble icated Flexible urban archite Urban solutio cture Solutio for ns flexibl ns e urban develo

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • E

								pment
Compar	Cherian, P.,	Focuses on	Investi	Comparati	The study	The use	Suggest	Offers
ative	Palaniappa	comparing	gates	ve analysis	finds that	of	s further	practic
study of	n, S.,	the	the	of case	GFRG-	GFRG	research	al
embodi	Menon, D.,	embodied	differe	studies	based	can	on the	guidan
ed	&Anumolu,	energy of	nces in	involving	houses	lead to	long-	ce for
energy	М. Р.	affordable	embod	houses	exhibit	signific	term	archite
of	(2020)	houses	ied	constructe	lower	ant	durabilit	cts and
afforda		using	energy	d with	embodied	energy	y and	builder
ble		GFRG	betwee	GFRG and	energy	savings	perform	s on
houses		(Glass	n	convention	compared	and	ance of	adopti
made		Fiber	afforda	al	to	reduced	GFRG-	ng
using		Reinforced	ble	technologi	convention	environ	based	GFRG
GFRG		Gypsum)	houses	es	al	mental	houses	for
and		and	constru		constructio	impact		more
convent		convention	cted		n	in		energy
ional		al building	using			afforda		-
building		technologi	GFRG			ble		efficie
technol		es	and			housing		nt and
ogies in			traditio			projects		sustain
India			nal					able
			metho					constru
			ds					ction
Compar	Magdum,	Explores	Investi	Case	The study	The	Suggest	Offers
ative	M. J. S.,	the	gates	studies	examines	paper	s further	insight
Study	Kumthekar,	comparativ	the	and	several	identifi	research	s for
of	М. В.,	e analysis	perfor	comparati	types of	es the	to	constru
Various	&Jadhav,	of different	mance,	ve analysis	aluminum	best-	optimiz	ction
Types	G. D.	types of	efficie	of	formwork	perfor	e the	practiti
of	(2017)	aluminum	ncy,	different	systems,	ming	design	oners
Alumini		formwork	and	aluminum	evaluating	alumin	and use	on
um		systems	applica	formwork	their	um	of	choosi
Formw			bility	types	efficiency,	formwo	aluminu	ng the
orks			of		cost, and	rk	m	most
			various		applicabilit	systems	formwo	suitabl
			alumin		У	in	rk in	e
			um			terms	various	alumin
			formw			of cost-	construc	um
			ork			effectiv	tion	formw
			system			eness	scenario	ork
			S			and	S	system
						constru		for
						ction		specifi

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

		[[efficien		
								C musicat
						cy		project
A. 1	Kalaharan	T1	Turne et:	Cara	A	T	Constant	needs
Adoptin	Krishnan,	The paper	Investi	Case	Analysis of		Suggest	Provid
g the	K. M.,	examines	gates	studies	case studies	cost	s further	es
Low-	Manikanda	the	the	and	and surveys	housing	research	practic
Cost	prabhu, S.,	_	potenti	surveys of	shows	technol	to	al
Housin	&Nigitha,	low-cost	al of	residential	positive	ogies	explore	insight
g	D. (2023)	housing	low-	projects in	outcomes in	are	and	s for
Technol		technologi	cost	Chennai	terms of	effectiv	compare	develo
ogy in		es in	housin	using low-	cost	e in	different	pers
Residen		residential	g	cost	savings,	achievi	low-cost	and
tial		buildings	technol	housing	faster	ng	housing	policy
Buildin		in Chennai	ogies	technologi	constructio	afforda	technolo	makers
gs in			for	es	n times, and	ble,	gies for	on
Chennai			residen		improved	sustain	broader	adopti
			tial		sustainabilit	able	applicati	ng
			buildin		У	housing	on	low-
			gs and			in		cost
			their			resident		housin
			impact			ial		g
			on			projects		technol
			cost,			in		ogies
			time,			Chenna		to
			and			i		achiev
			sustain					e cost-
			ability					effecti
								ve and
								sustain
								able
								residen
								tial
								project
								s
Compar	Magdum,	Not	The	Comparati	Findings	Alumin	Further	s Insight
ative	Magdulli, M. J. S.,	explicitly	paper	ve analysis	highlight	um	research	s into
Study	Kumthekar,	mentioned	compa	of various	the	formwo	is	how
of	M. B.,	mentioneu	res	aluminum	efficiency	rk	suggeste	differe
Various	&Jadhav,		differe	formwork	and			nt
	G. D.		nt			systems offer a		nt alumin
Types				systems	advantages		explore	
of A lumini	(2017)		types	based on	of different	range	more	um
Alumini			of	literature	aluminumf	of	types of	formw
um			alumin	review and	ormwork	benefits	aluminu	ork

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Formw			um	case	systems	in	m	system
orks			formw	studies	-)	terms	formwo	s can
			ork			of cost-	rk	be
			system			effectiv	systems	applied
			s and			eness,	and	in
			evaluat			constru	their	various
			es their			ction	suitabili	constru
			perfor			speed,	ty for	ction
			mance			and	different	project
						durabili	projects	s for
						ty	1 5	improv
						2		ed
								perfor
								mance
Afforda	AnupamaK	Examines	Investi	Review of	Focuses on	Highlig	Suggest	Offers
ble	undoo	affordable	gates	existing	the	hts the	s further	insight
Housin	(2014)	housing	strategi	literature	interplay	need	research	s into
g		through the	es and	and	between	for	into	policie
		lens of	practic	analysis of	affordabilit	innovat	integrati	s and
		inclusive	es for	case	у,	ive,	ng	practic
		urbanizatio	sustain	studies on	sustainabilit	low-	tradition	es that
		n and	able	affordable	y, and	cost	al and	can
		climate	and	housing	inclusive	housing	modern	facilita
		change	afforda		urbanizatio	solutio	building	te
			ble		n	ns that	techniqu	sustain
			housin			align	es for	able,
			g in			with	affordab	inclusi
			urban			sustain	le	ve
			setting			ability	housing	urban
			S			goals		develo
								pment

Inferences from Literature Study

Aluminum formwork has been shown to significantly improve construction speed and efficiency compared to traditional construction methods due to the reusable and easy-to-assemble nature of aluminum formwork, which allows for rapid progression of construction projects (Magdum et al., 2017).

- Purchasing aluminum formwork systems requires an initial investment, but over time, the labor and time savings during construction can result in cost benefits all around(Shelke et al., 2021).
- The quick turnaround time also allows developers to start new projects sooner, increasing their return on investment.
- Aluminum formwork enables the construction of monolithic structures, which results in better structural integrity and reduced risk of leakage or cracking.
- Higher-quality, durable buildings that require less maintenance over time (Rivankar&Chordiya,2017).

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

- The reusable nature of aluminum formwork systems contributes to a circular economy by reducing construction waste and resource consumption, minimizing the environmental impact of construction projects. This is a crucial consideration given the increasing emphasis on green building practices and the need to address climate change.
- Despite its benefits, there are challenges to widespread adoption of aluminum formwork, including high initial costs and the need for skilled labour familiar with the system (Ansari, 2018).

Nevertheless, in order to encourage and adapt a wider use of aluminum formwork, these issues point to areas that require additional research about when and how the integration of aluminum formwork is justified for affordable housing (despite the high initial cost).

Sustainability is another major theme. It's reusability and waste reduction align with eco-friendly practices and global sustainable development goals.

It significantly cuts construction costs and time, promoting resource efficiency through its reusable and recyclable nature. It enhances energy efficiency by ensuring tighter seals and better insulation, while its durability improves resistance to natural disasters. Overall, aluminum formwork supports safe, comfortable, & sustainable housing, empowering community development.

What Is Aluminium Formwork (Mivan) Technology

An Overview

Formwork, which consists of a die or mold and any supporting structures, is used to shape and support concrete until it reaches a strength that allows it to support itself. Aside from its own weight, it should be able to support any imposed dead and live loads. The surface in contact with the concrete and any required supporting structure are included in the formwork. Using this construction technique, aluminum forms are used in place of conventional lumber forms. By enabling single-pour construction, it not only expedites the building process but also increases the structure's overall strength. The MIVAN formwork technology produces buildings with flawless finishes, so that further plastering is not necessary to obtain smooth surfaces.

History:

Aluminium formwork gained prominence in the construction industry in the latter half of the 20th century. Its origins can be traced back to Europe and Asia, where it was developed as an alternative to traditional formwork materials like timber and steel.

- **a.** Mivan is a quality aluminum structure developed by a European construction company known as Mivan Company Ltd. In 1990, the company from Malaysia began manufacturing these formwork systems. (*YogeshRadheshyamJangid et al.*) *Therefore is is commonly known as MIVAN Technology*.
- **b.** The Aluminium Formwork System was developed by W. J. Malone, a Canadian Engineer in the late 1970s as a system for constructing low–cost housing unit in developing countries.(*Prasanth S-Grand Edifice Developers ,Azharuddin Ansari*)
- c. Several nations, including Egypt, Hong Kong, India, Indonesia, Malaysia, Philippines, Singapore, South Korea, Taiwan, and Thailand, have effectively employed the aluminum formwork system (Vrushalkokane)

Features:

- 1. The MIVAN Formwork is lightweight, weighing approximately 18–20 kg per square meter. In spite of this, it can handle an impressive 7-8 tonnes of weight per square meter.
- 2. After 36 hours of concreting or when the concrete reaches a strength of 10N/mm2, horizontal panels

made with MIVAN can be removed. Even faster disassembly times are possible for vertical walls: 12 hours after concreting or when the concrete reaches a strength of 2N/mm2.

- 3. Since aluminum is used to create the formworks, they can be reused over 250 times and are exceptionally durable.
- 4. With the MIVAN formwork system, a floor can be cast within just 7-8 days, significantly reducing the construction timeline.

Advantages:

- 1. Consistent Dimensions: The high-quality aluminum formwork ensures consistent dimensions in construction, as it is resistant to damage.
- 2. Smooth Finish: After removing the formwork, the concrete construction boasts a smooth finish, eliminating the need for rectification.
- 3. Customizable: The formwork can be tailored to suit the specific requirements of each project.
- 4. Easy Assembly: Skilled labor is not required for assembling the formwork, simplifying the construction process.
- 5. Faster Construction: MIVAN technology enables much quicker construction timelines.

Disadvantages:

- 1. Costly Modifications: Modifying the formwork can be challenging and expensive, as each piece is cast with a mould.
- 2. Seepage Issues: During monsoons, seepage and leakage problems may arise.
- 3. Shrinkage Cracks: The box-type construction method can make buildings susceptible to shrinkage cracks.
- 4. Cost-Effectiveness for Large Projects: MIVAN forms may not be cost-effective for large projects such as townships or extensive residential and commercial complexes if not used repeatedly at a large volume.
- 5. Skillful Joint Setting: Setting joints for construction requires skillful execution.

Table 2: Technical Sp	Table 2: Technical Specifications(Source : Multiple Vendors/Manufacturers)					
Formwork Material:	6061-T6/6082-T6 Aluminium alloy					
Thickness of material:	4mm					
Туре:	Flat,corner,beam,etc.					
Weight:	18-22kg					
Thickness of Formwork:	65mm					
Safe Working Load:	60kN/m2					
Cycle Times:	≥300					
Shape:	Rectangular, customized					
Size:	0.5m-11.85m, non-standard:custom-made as/requirement					
Process:	Drilling, bending, welding, precise cutting, punching					
Standard:	EN755-9, GB/T6892-2015, GB5237.1-2008, JGJ386-2016					
Package:	Standard pallet with waterproof film or acc. to requirement.					

Techincal Specifications:

Table 2: Technical Specifications(Source : Multiple Vendors/Manufacturers)

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Picture 1:Formwork for beams(Source-Goldapple)

Picture 2: Formwork for Walls (Source-Walcoom)

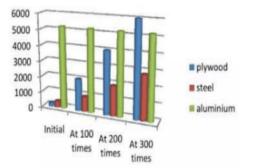
Benefits of Using Aluminium Formwork compared to Traditional Methods

Table 3:Comparitive Analysis of Aluminium Formwok Technologe & Other Shuttering Technology

	Aluminium	Steel	Timber	Plywood	Plastic
Characteristics	Formwork	Shuttering	Shuttering	Shuttering	Shuttering
					Toughened
				Engineered	plastic (often
				wood panels	with
Material	Aluminium	Steel	Wood	with veneers	fiberglass)
			Light to		
Weight	Lightest	Heavy	Medium	Light	Lightest
		Requires			
		skilled labor	Requires	Requires	Easy to
		for	skilled labor	cutting and	assemble
		fabrication	for cutting	framing with	with
	Easy and fast with	and	and	timber	interlocking
Assembly	modular panels	assembly	assembly	supports	panels
				Requires	
		Time-	Time-	careful	
Deshuttering	Quick	consuming	consuming	handling to	Easy

E-ISSN: 2582-2160 • Website: www.ijfmr.com

I		I		avoid damage	
			Limited		
			reusability	Limited	Moderate
			(prone to	reusability	reusability
		Highly	warping,	(delamination,	(depending
Reusability	Highly reusable	reusable	damage)	(defainination, warping)	(depending on quality)
Reusability		Teusable	Lower for	warping)	on quanty)
				Lower for	
		Higher due	simple		
	I amon due to factor	Higher due	designs,	simple	
Lahar Casta	Lower due to faster	to skilled	higher for	designs, higher	Madanata
Labor Costs	assembly/disassembly	labor needs	complex	for complex	Moderate
			Finish can	Finish can	Finish can be
			vary	vary	smooth, but
			depending	depending on	may require
	Generally smooth	Smooth	on wood	plywood	additional
Concrete Finish	finish	finish	quality	quality	treatment
				Susceptible to	
			Susceptible	delamination,	Moderate
	Durable with proper		to rot,	warping, and	durability
	care (corrosion		warping,	moisture	(depending
Durability	resistant)	Very durable	and fire	damage	on quality)
					Varies
			Renewable		depending
		High carbon	resource,	Wood with	on material
	More environmentally	footprint due	but requires	potential for	source and
Environmental	friendly due to high	to steel	tree	formaldehyde	recycling
Impact	reusability	production	harvesting	in adhesives	options
Cost (Initial				Low to	
Investment)	Highest	High	Low	moderate	Moderate
		Moderate			
		overall cost		Low to	
		(depending	Low overall	moderate	Moderate
		on	cost for	overall cost	overall cost
Cost (Life	Lower overall cost	maintenance	simple	(depending on	(depending
Cycle)	due to reusability	needs)	projects	reuse)	on reuse)
		,	Suitable for		/
			simple, low-		Suitable for
			rise		simple
		Suitable for	projects, or	Suitable for	curves,
	Ideal for repetitive	high-load	when	walls, beams,	architectural
	pours, complex	projects,	budget is a	columns (often	finishes,
	designs, high-quality	repetitive	major	with timber	limited reuse
Suitability	finishes	pours	concern	support)	projects
Sunaonny	111151105	Pours	concern	support)	projects


E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Aspect	Aluminum Formwork	Conventional Shuttering		
Installation	5-7 days	7-10 days		
Reinforcement	3-4 days	3-4 days		
Placement				
Concreting	1 day	3-4 days		
Curing	7-10 days (can overlap with	7-10 days		
	dismantling)			
De-shuttering	2-3 days	5-7 days		
Total Time per floor	7-8 days	14-21 days		
Cost	Higher initial cost,	Lower initial cost,		
	cost-effective in long-term	higher long-term cost		
Quality	Higher quality finish,	Require additional finishing		
	No plastering needed	work		
Labor	Requires skilled labor	Can use semi-skilled labor		
Reusability	Up to 200-300 uses	Up to 20-25 uses		

Effectiveness Analysis of Aluminium Formwork v/s Traditional Formwork Table 4: Effectiveness Comparison of Aluminium Formwork Shuttering & Traditional Shuttering

Cost Comparitive Analysis:

Chart 1: Cost Analysis Graph (for Repetitions)Source:Civilenggseminar.blog(prem mohan)

Impact on Indian Real Estate:

The MIVAN Formwork System is widely recognized and utilized in Gulf, European, and select Asian countries,

A recent application of the Aluminium Formwork System in India has been in the implementation of the PradhanMantriAwasYojana (PMAY).

The PMAY initiative, also known as Housing For All, aims to provide affordable housing opportunities to lower-income groups in India. This ambitious scheme requires rapid construction of residential units while ensuring high-quality and durable structures.

The MIVAN construction technology facilitates both speed and quality, unlike conventional methods, making it an essential component of the PMAY scheme.As MIVAN technology becomes more

prevalent, it is anticipated that construction costs may decrease, mitigating one of the major drawbacks of the MIVAN Formwork System.

This potential cost reduction could incentivize more developers in India to embrace MIVAN technology, paving the way for its broader adoption in the country's real estate sector.

Case Study: 11.1 Affordable Housing In Gurugram-General Information :

Built Up Area – 50,000 Sq.M. Towers-7 No.s(G+14);3No.s(G+21) ; Total Floors – 171 No.s

Picture 3(Source:DFI Renders)

Picture 4(Source:DFI Renders)

Speed- 7 days/floor COST ANALYSIS : Flats/Floor- 8No.s Aluminium Shuttering : 1800 sq.m(Approx) – 4 Sets of ½ Floors @Rs.11,000/sq.m. + 2 sets of Refabricated shuttering from other site(reusable) Cost of Shuttering: \approx Rs.11,000/sq.m Total Cost of Shuttering: \approx 2 CR.(for 171 floors) Shuttering Cost/Floor: \approx 1.15 lacs Labour Cost: \approx Rs.1000/sq.m Finishing Cost: \approx 0 Salvage Value:80% Reusable:More that 250Times

COMPARITIVE COST ANALYIS :

(to check the cost of same project for Traditional Formwork on Hypothesis that It will be Costlier)
For Affordable Housing in Gurugram:
<u>Aluminum Formwork:</u>
Qty ordered:1800 sq.m.(one floor) @Rs.11,000/sq.m.
Total Cost- 2 Cr(approx)
Reusability: 171 floors (7 Towers:G+14 & 3 Towers:G+21) (200-300 times)
Cost per floor:1.16 lac (Rs. 210/sq.m) or (Rs.21/sq.ft)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

No finishing required, Maintenance Cost: Low, Slab Cycle: 7-8 days

Let's Assume the same project for Ply Shuttering:

Traditional(Ply) Shuttering: Shuttering Cost :@Rs.650/sq.m. Total Cost-Reusability: 8-10 floors Cost per floor:3.25 lac. (considering a slab of ≈500 sq.m) Labour Cost increases with increased height, Finishing required, Maintenance/Repair Cost: High Slab Cycle: 14-21 days.

	Table 5.Cost Delicit Alla	J DID		
Cost Component	Aluminum Formwork	Conventional Shuttering		
Shuttering Costs	Rs.11000/sq.m.	Rs.2000/sq.m.		
Labor Costs	(Rs.1000/sq.m) Lower, due to	(Rs.1300/sq.m) Higher, due to		
	faster installation and deshuttering	longer installation and dismantling time		
Time-Related	Lower, due to reduced construction	Higher, due to longer construction time		
Costs	time (savings on overheads)	(increased overheads)		
Quality and	Lower, as No plaster required	Higher, due to additional plastering and		
Finishing Costs		finishing		
Reusability	Reused up to 170 times (amortized cost	Reusable up to 20-25 times		
Benefits	over multiple projects)			
Overall	7-8 days per floor	14-21 days per floor		
Construction Time				
Total Estimated	Potentially lower overall, despite higher	Potentially higher overall, due to		
Cost	initial investment	increased labor, time, and finishing		
		costs		

Table 5:Cost Benefit Analysis

Hence, The overall Quality, Time & Speed increases with Aluminium Formwork (with more repetitions) with Overall Decrease in Cost.

Site Pictures:

Picture 5(Source:Author)

Picture 6(Source:Author)

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Picture 7(Source:Author)

Picture 8(Source:Author)

Unique Features : IGBC Platinum Certified Project.

Advantages:More Seismic Resistance, Increased Durability Of Structure, Monolithic Casting,

Higher Carpet Area- Due to Thin Shear Walls.

Negligible Maintenance.

Faster Completion.

Better Sound Proof due to Natural Density of Concrete

Limitations:

Concealed services are challenging due to thin components, requiring uniform planning and elevations for cost-effectiveness. Modifications are impossible with RCC casting, and large volumes of work (\approx 200 repetitions) are needed. Shrinkage cracks and high hydration heat are issues, Despite higher initial costs, the quality and speed of construction benefit low-income housing projects.

11.2 Luxury Housing In Lucknow (Rishita Mulberry) -Rishita Developers Pvt.Ltd. General Information :

Towers -16 No.s(G+14)

Picture 9(Source:DFI Renders)

Picture 10(Source:DFI Renders)

Speed:7 days/Floor

Construction Information

Internal walls-Blockwork/Brickwork & Exterior walls-160 mm. (Conc.)

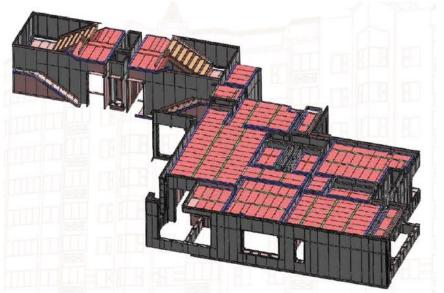
Picture 13(Source:Author)

Picture 14(Author in Picture)

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Picture 15(Source: Aluminium Formwork- An Innovation in Construction Technology (COA))

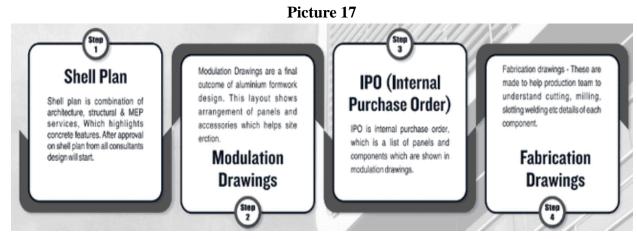
In India there are number of buildings constructed with the help of the above system which has been proved to be very economical and satisfactory for Indian Construction Environment



Data Collected

The data collected, primarily focuses on observing the construction process alongwith application of the formwork in practice.

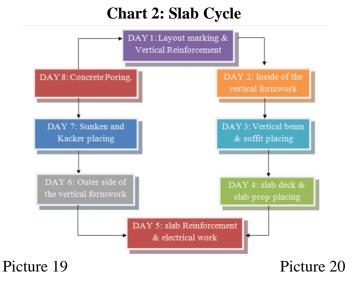
Construction Process:involves assembling a shell based on architectural designs, placing reinforcement(sariya) & pouring concrete to create seamless structures that integrate slabs and walls.


a. Preparation of Shell Plans:

Picture 16 (Source : MFS Scaffolding & Formwork)

• The authorized shell plan is followed while extruding the three-dimensional structural model. (Pic14) • The structural model is fully configured with components from the previously developed library, as depicted in the figure. At this point, the software automatically detects any overlaps or clashes, which are fixed before the program generates and releases the shop drawing. This guarantees error-free manufacture drawings, final BOQs, site operational drawings, which serve as the foundation for manufacturing of the full aluminum formwork system. The aforementioned procedure guarantees a soft mock-up of the whole project.

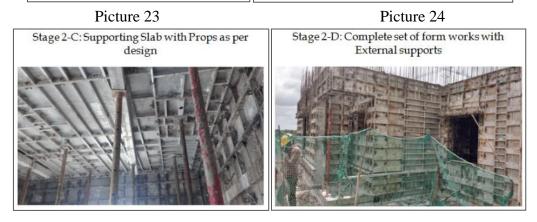
b. Design Process:

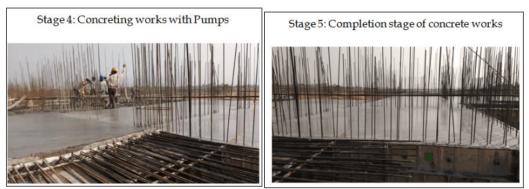


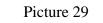
c. Production Process:

Picture 18

d. Construction Process:

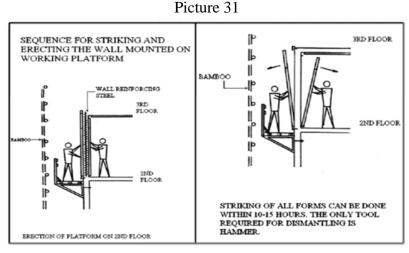



Picture 27


Picture 28

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

Email: editor@ijfmr.com



Picture 30

e. Erecting Formwork For Construction:

This system allows the walls and slabs to be poured in the same operation and provides formwork for multi-story buildings with RCC framing. This boosts productivity and results in a very sturdy building with good concrete finishing. Because of this, plumbing & electrical fixtures can be prefabricated with the assurance that they will fit perfectly when put together. The weight distribution is 23–24 kg/m^2. It may be put together entirely by hand without the need of any machinery 20-30 sq.m. can be installed each day by a skilled installer. (1 storey in every four days)

Aluminum formwork is available in a variety of standard sizes and can be assembled to suit the needs of any given project. When the formwork is reused for a new project, just 10–15% of the non-standard board needs to be changed, which lowers the cost. Aluminum Alloy Plate is used to assemble every component of the aluminum alloy formwork. After the system is put together, a complete structure with excellent stability and a bearing capacity of up to 60k per square meter will be constructed. (2020

ConstroFacilitator)

As the largest panel weighs no more than 25 kg,single worker can handle it.

Site Images -Vertical Formwork:

-Surface Finish:

Picture 34

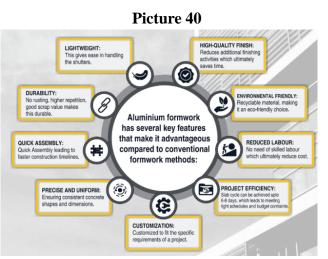
Picture 35

-MEP Services

Picture 36

Picture 37

-Storage of Raw Material:



indings

The research findings on the integration of aluminum formwork in sustainable and affordable housing projects reveal several significant advantages and insights.

• Benefits:

- **Time Savings**: This efficiency is crucial for affordable housing projects where time constraints are often strict, faster completion can result in quicker occupancy and return on investment.
- **Cost-Effectiveness**: While there is an initial investment in aluminum formwork systems, this technology's ability to expedite the building process without compromising quality can lead to overall cost savings and improved project budgets.
- **High-Quality Structures**:Creation of monolithic structures, resulting in high-quality buildings with fewer defects and greater durability contributes to longer-lasting, low-maintenance structures that can better withstand the test of time.
- **Sustainability**: The technology's reusable nature contributes to sustainability by minimizing construction waste and resource consumption.

This technology minimizes the consumption of resources and promotes a circular economy

Conclusion:

Research on aluminum formwork for sustainable and affordable housing highlights its transformative potential.

Key benefits include time and cost savings, high-quality, durable structures, and alignment with sustainability goals, positioning it as a revolutionary technology for India's housing sector.

This paper concludes that how can Aluminium Formwork (MIVAN) technology revolutionize the construction of faster, higher quality, sustainable, and cost-effective homes"

Faster: Recent years have seen a considerable evolution in construction technologies, most notably with the introduction of prefab construction methods and Mivan shuttering.

These innovations have drastically reduced construction times, enabling the completion of large residential complexes in less than half the time compared to traditional methods. Prefabricated components have streamlined commercial building construction, cutting both time and labor efforts. Additionally, advancements like 3-D printing of villas promise even faster construction timelines in the near future. Project management has also seen significant improvements with the adoption of such technology, facilitating seamless coordination between teams and better decision-making.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Better: Affordable housing no longer means compromising on quality. Technologies like Mivan Shuttering ensure uniformity and high quality in home construction, enhancing structural stability and finish. Precast walls with integrated plumbing and electrical systems further improve efficiency and quality, while mobile applications enable real-time quality checks and approvals. Artificial intelligence and machine learning will further enhance quality control by analyzing defects and suggesting corrective measures.

Sustainable: The future of building must prioritize resource efficiency and environmental impact reduction. Incorporating features like solar rooftops, rainwater harvesting, and waste recycling can minimize energy and water usage, moving towards net-zero buildings. Sustainable construction techniques like pre-fabrication, Mivan Shuttering reduce waste and pollution, contributing to a cleaner environment.

Budget-Friendly: Addressing the demand for budget-friendly homes requires a multi-faceted approach. Effective construction technologies and streamlined execution can help control costs, although challenges like fluctuating material prices persist. To truly meet the demand for affordable housing, land availability and affordability are crucial. Government institutions must make affordable land parcels accessible to developers to ensure the realization of housing for all amidst rapid urbanization. Aluminum formwork's advantages are numerous:it reduces wood use due to its reusability (200-250 times), allows faster construction with its lightweight nature, reduces production waste, and is recyclable at the end of its lifecycle. Despite higher initial costs compared to wood, frequent use and faster construction times can compensate for this expense, making it cost-effective for common designs and large projects.

References

- 1. Mandala, R. S. K., &Nayaka, R. R. (2023). A state of art review on time, cost and sustainable benefits of modern construction techniques for affordable housing. *Construction Innovation*.
- 2. Azharuddin Ansari, A. A. (2018). A Review Paper on Aluminium Formwork and It's Utilization in Affordable Housing.
- 3. Atta, N., Dalla Valle, A., Campioli, A., Chiaroni, D., &Talamo, C. (2021). Construction technologies for sustainable affordable housing within fragile contexts: Proposal of a decision support tool. *Sustainability*, *13*(11), 5928.
- 4. Navaratnam, S. (2022). Selecting a suitable sustainable construction method for australian high-rise building: A multi-criteria analysis. *Sustainability*, *14*(12), 7435.
- 5. SenarathJayasinghe, R., & Fernando, N. G. (2017). Developing labour productivity norms for aluminium system formwork in Sri Lanka. *Built Environment Project and Asset Management*, 7(2), 199-211.
- 6. Kundoo, A. (2014). Affordable Housing. *Inclusive Urbanization: Rethinking Policy, Practice and Research in the Age of Climate Change*, 108.
- 7. Bayliss, C., Stacey, M., & Carlisle, S. (2016). Towards sustainable cities. *Aluminium International Today*, 34.
- 8. Liebringshausen, A., Eversmann, P., &Göbert, A. (2023). Circular, zero waste formwork-Sustainable and reusable systems for complex concrete elements. *Journal of Building Engineering*, 80, 107696.
- 9. Hansen, S., &Siregar, P. H. (2020). Analytic Hierarchy Process-Based Decision-Making Framework for Formwork System Selection by Contractors. *Journal of Construction in Developing Countries*, 25(2), 237-255.

- 10. Magdum, M. J. S., Kumthekar, M. B., &Jadhav, G. D. (2017). Comparative Study of Various Types of Aluminium Formworks. *International Journal of Engineering Research and Technology*.
- 11. Thinley, J., &Hengrasmee, S. (2023). Sustainable alternative to Bhutan's housing construction (Doctoral dissertation, Naresuan University).
- 12. Cherian, P., Palaniappan, S., Menon, D., &Anumolu, M. P. (2020). Comparative study of embodied energy of affordable houses made using GFRG and conventional building technologies in India. *Energy and Buildings*, 223, 110138.
- 13. Xiao, Y. (2021). The importance of formwork methods in the economical execution of concrete structures.
- Toulabia, H. M., Hosseinib, M., & Of, K. R. (2018). Technical evaluation of integrated wall and roof formwork system and its comparison with ordinary concrete building construction method. *Civil Engineering Journal*, 4(2), 422-432.
- 15. Windapo, A., Omopariola, E. D., Olugboyega, O., & Moghayedi, A. (2021). Use and performance of conventional and sustainable building technologies in low-income housing. *Sustainable Cities and Society*, 65, 102606.
- 16. Sharma, V., & Agarwal, A. K. (2023). Exploring Technological Innovations in Indian Housing Sector. *European Economic Letters (EEL)*, *13*(5), 889-894.
- 17. Navaratnam, S. (2022). Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis. Sustainability 2022, 14, 7435.
- Shroff, D. N., & Joshi, A. T. (2022). Pre-Fabricated Architecture For Urban Adaptability: Factory Built Constructions–Sustainable & Flexible Urban Solutions (Doctoral dissertation, Politecnico di Torino).
- 19. Nanyam, V. N., Sawhney, A., & Gupta, P. A. (2017). Evaluating offsite technologies for affordable housing. *Procedia Engineering*, *196*, 135-143.
- 20. Pronk, A., Brancart, S., & Sanders, F. (2022). Reusing timber formwork in building construction: Testing, redesign, and socio-economic reflection. *Urban Planning*, 7(2), 81-96.
- 21. Ansari, A. A., & Ahmad, A. (2018). A review paper on aluminium formwork and its utilization in affordable housing. Journal of Emerging Technologies and Innovative Research, 5(12), 675-681.
- 22. Desai, S. S., &Rathi, V. R. (2022). Structural design of aluminium formwork used in high-rise building. International Journal of Innovative Research in Technology, 8(10).
- 23. International Research Publication House. (2017). Comparative study of various types of aluminium formworks. International Journal of Engineering Research and Technology, 10(1).
- 24. Patel, D., Pawar, S., Pawar, V., Vasave, S., Bhamare, P., &Patil, N. (2022). A review paper on comparative analysis of MIVAN formwork technology and conventional formwork technology. International Journal of Research Publication and Reviews, 3(4), 1432-1441.
- 25. Rivankar, H., &Chordiya, A. (2017). Aluminium formwork technology. International Journal of Advanced Research in Science, Engineering and Technology, 4(4), 3720.
- 26. Shelke, S., Waghmare, K., Thorat, N., Wadekar, R., &Maske, N. (2021). Analysis of aluminium formwork structure based on duration and cost. International Research Journal of Engineering and Technology, 8(6), 1685.
- 27. Thiyagarajan, R., Panneerselvam, V., &Nagamani, K. (2017). Aluminium formwork system using in high-rise buildings construction. International Journal of Advanced Research in Engineering and Technology, 8(6), 29-41.

- 28. Achour, N. (2016). Advancing products and services. In *Proceedings of the CIB World Building Congress* (Vol. 5).
- 29. Krishnan, K. M., Manikandaprabhu, S., &Nigitha, D. (2023). Adopting the Low-Cost Housing Technology in Residential Buildings in Chennai. Sustainable Innovations in Construction Management: Select Proceedings of ICC-IDEA 2023, 388, 259.
- 30. YogeshRadheshyamJangid, AhtishamMohdShamim Khan, GauravKashinathMohite, Abhishek Ashok Narvekar, Prof. KhultejGurav *Mivan Formwork in Construction*.
- 31. Formwork Technology demand for mass housing Constro Facilitator-2020
- 32. <u>D. Wijesekara</u>-2013- Cost effective and speedy construction for high-rise buildings in Sri Lanka by using aluminium panel system formworks (Corpus ID: 112404430)