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Abstract 

Many economic and financial time series exhibit a phenomenon known as heteroscedastic, where the 

variance of the series changes over time. This research study focuses on financial time series modelling, 

with special application to modelling the price of Libyan Brent Oil. In particular, the theory of univariate 

nonlinear time series analysis is explored and applied to the price Libyan of Brent Oil, spanning from 

January 2000 to December 2010. The data was obtained  from Bullent of the Platts Market Wire of 

Statistics. This study aims to evaluate the performance of ARIMA as a linear model and ARCH as a 

nonlinear modelling data. Multiple time series models were considered for fitting the data, and the best 

ARIMA models were selected based on the Akaike Information Criteria (AIC).  ARIMA (0, 1, 1), and 

ARIMA (1, 1, 0) were identified as the best models. After estimating the parameters of the selected 

models, model checking revealed that these models were not suitable for modeling the data, as they 

lacked validity according to the test of squared residuals. The goodness of fit was assessed using the 

AIC, and based on minimum AIC values, the best fit ARCH models were found to be ARIMA (0, 1, 1) - 

ARCH (1). After estimating the parameters of the selected model, a series  of diagnostic and forecast 

accuracy tests were performed. Based on this model, a twelve-month forecast of the price of Libyan 

Brent crude was made. 

 

Keywords:  ARIMA model, ARCH model, AIC, Hetroscedacity, TIME SERIES models 

 

Introduction 

Time series analysis plays a significant role  in modeling various economic phenomena and forecasting 

their future values. A key requirement for effective modeling is that the series should  be stationary. 

However, most financial and economic data do not meet this condition, often exhibiting varying levels 

of volatility over different periods, with variance changing over time. For example, when analysing the 

time series of a stocks in financial markets, we might observe periods of both low and high volatility 

across different periods of the series. 

This variability necessitates the use of specialised models to handle the changing volatility in time series 

data. Robert Engel (1982) was the first to introduce models capable of addressing this issue through his  

research on estimating inflation variation in the United Kingdom. These models, known as 
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Autoregressive Conditional Heteroscdasticity (ARCH) models, are formula for nonlinear models and 

based on the use of unconditional variance to examine the time dependent fluctuations in the data, 

discarding the assumption of constant error variances. 

The aim of this study is to evaluate the performance of Autoregressive Integrated Moving Average 

ARIMA as linear model compared to ARCH, as nonlinear model, in modeling the monthly price of 

Libyan Brent Oil. The general objective of the study is to address the problem of variance instability in 

time series models. Furthermore, the study aims to highlight the importance of ARCH models in 

volatility modeling, and  demonstrate that the Box-Jenkins methodology is less efficient than ARCH 

models in dealing with financial time series. 

 

Literature Review 

 Engle (1982) introduced ARCH  models, revealing that, these models were designed to address the 

assumption of non-stationary often found in real life financial data. He further not that these models 

have become widely used tools for dealing with time series heteroscedastic. The ARCH and GARCH 

models treat heteroscedasticity as a variance that needs to be modelled. The goal of such models is to 

provide a measure of volatility, such as the standard deviation, which can be used in financial decisions 

concerning risk analysis. 

Hamilton (1994) emphasized the importance of forecasting conditional variance, nothing that sometimes 

we may be interested not only in forecasting the level of the series but also its changing variance. He 

further described those changes in variance are crucial for understanding financial markets, since 

investors require higher expected returns as compensation for holding riskier assets.  

Chatfield (2000) discussed in his book that the idea behind a GARCH model is similar to that behind 

ARMA model. In the sense that a higher-order AR or MA model can often be approximated by a mixed 

ARMA model with fewer parameters using a rational polynomial approximation. Thus, a GARCH 

model can be seen as an approximation to a higher-order ARCH model, as similarly suggested by Ngailo 

Edward (2011).  

Hansen and Lunde (2005) compared 330 ARCH-type models based on their ability to describe the 

conditional variance. They conduced out-of-sample comparisons using DM- $ exchange rate data and 

IBM return data, with the latter based on a new dataset of realized variance.  

Igogo (2010) studied the effect of real exchange rate volatility on trade owes in Tanzania from 1968 to 

2007. The studies employed recent ARCH family models to measure volatility. Initially, the GARCH 

(1,1) model was employed but was found to violate the non-negativity condition. The study then used 

the EGARCH (1,1) model proposed by Nelson (1991) to resolve this issue. The adequacy of the 

EGARCH (1,1) model to measure real exchange rate volatility was confirmed by testing for ARCH 

effect after running the model. 

 

1.1 Methodology  

1.1. 1 Time Series Models 

 The Box-Jenkins method is founded on statistical concepts and principles, providing a range of models 

that adequately represent many time series encountered in practice. This methodology, often referred to 

as ARIMA (Autoregressive Integrated Moving Average) models, is based on the assumption that the 

processes being modeled are dynamic and subject to statistical fluctuations (Box & Jenkins, 1976). 
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1.1.2   Determine the Order of The Model 

Identifying the order of AR and MA models is often best done using the PACF (Partial Autocorrelation 

Function) and ACF (Autocorrelation Function), respectively. For ARIMA models, our aim was to find 

an appropriate model based on the ACF and PACF plots. Initial analysis suggested that ARIMA (1, 1,  

and 0) and ARIMA (0, 1, and 1) might be the best fit for the data. 

 

Table (1.1): Summarizes the characteristics of theoretical ACF and PACF for stationary process. 

Process ACF PACF 

AR(p) Tails off as exponential decay or 

damped sine wave 

Cut off after lag p 

MA(q) Cut off after lag p Tails off as exponential decay or 

damped sine wave 

ARMA(p,q) Tails off after (q-p) Tails off after (p-q) 

 

1.1.3   Asset Return 

Most financial studies involve returns rather than prices of assets. Campbell, Lo, and MacKinlay (1997) 

provide two main reasons for using returns: first, the return of an asset is a complete and scale-free 

summary of the investment opportunity, and second, return series are easier to handle than price series 

due to their more attractive statistical properties.  

There are several definitions of an asset return. Where pt denote the price of a financial series at time t; 

the return at time t can be defined as: 

𝒂𝒕=
𝒑𝒕−𝒑𝒕−𝟏

𝒑𝒕−𝟏
           𝐨𝐫        𝒂𝒕 =

𝒑𝒕

𝒑𝒕−𝟏
− 𝟏 

For modeling the changing volatility frequently observed in such series, Engle (1982) introduced the 

Autoregressive Conditional Heteroscedastic process of order q, ARCH (q) (see chapter three for more 

details) 

1.1.4   Heteroskedasticity 

In statistics, heteroscedasticity refers to the phenomenon where the standard deviations of a variable, 

monitored over a specific amount of time, are non-constant. This condition can arise in two forms: 

conditional and unconditional. Conditional heteroskedasticity occurs when the  volatility of a series id 

non-constant, and future periods of high and low volatility cannot be predicted. In contrast, 

unconditional heteroskedasticity is observed when such periods of varying volatility can be identified in 

advance.  

In finance, conditional heteroskedasticity is often seen in the prices of stocks and bonds, where the level 

of volatility cannot be predicted over any period of time (Lopez, 1999). Unconditional 

heteroscedasticity, on the other hand, is typically seen in variables with identifiable seasonal variability, 

such as electricity usage. 

1.1.5   ARCH(q) Model 

   The first model that provides a systematic framework for volatility modeling is the ARCH model 

introduced by  Engle (1982). The basic idea of ARCH models is as follows: 

a) The shock at of an asset return is serially uncorrelated but dependent.  
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b) The dependence of 𝒂𝒕 can be described by a simple quadratic function of its lagged values.  

In ARCH models, the conditional variance has a structure very similar to that of the conditional 

expectation in an AR model (Bera & Higgins,1993). An ARCH (q) model assumes that: 

𝒂𝒕 = 𝝈𝒕 𝜺𝒕, 

𝝈𝒕  
𝟐 = 𝜶𝟎 + 𝜶𝟏𝒂𝒕−𝟏

𝟐 + ⋯ + 𝜶𝒎𝒂𝒕−𝒎
𝟐  

Let    𝑮𝒕 = {𝒂𝟏, 𝒂𝟐, … , 𝒂𝒕−𝟏} . Then:  

𝑬(𝒂𝒕\𝑮𝒕) = 𝟎 

𝑽𝒂𝒓(𝒂𝒕\𝑮𝒕) = 𝝈𝒕
𝟐 = 𝜶𝟎 + ∑ 𝜶𝒊𝒂𝒕−𝟏

𝟐

𝒒

𝒊=𝟏

 

And the error term 𝜺𝒕 is such that: 

𝑬(𝜺𝒕\𝑮𝒕) = 𝟎         𝑽𝒂𝒓(𝜺𝒕\𝑮𝒕) = 𝟏 

Here, {𝜺𝒕} is a sequence of independent and identically distributed (iid) random variables with mean 

zero and variance 1. Additionally, 𝜶𝟎 > 0, and 𝜶𝒊 ≥ 𝟎 for 𝒊 > 0. The coefficients αi must satisfy some 

regularity conditions to ensure that the unconditional variance of 𝑎𝑡 is finite. 

1.1.6 Case Study 

The data employed in this study comprises 132 monthly observations of the Libyan crude price for the 

Brent field, as reported in the bulletin of the Platts Market Wire, spanning from January 1st, 2000, to 

December 31st, 2010. Table 1.2 presents a summary of the descriptive statistics for the oil price series. 

 

Table (1.2): Descriptive Statistics for the data series.  

Statistics Mean Median Std. Dev. Kurtosis Skewness Maximum Minimum 

Price 52.19 49.64 25.4778 -0.2039 0.676 132.44 18.68 

 

To check if the data follows a normal distribution, a Jarque-Bera test was performed. The p-value 

obtained was 0.829, which is greater than 0.05. Therefore, we accept the null hypothesis at the 5% 

significance level, indicating that the distribution is normal. 

As stated earlier, most economic time series are non-stationary, with variance changing over time. By 

examining Figure 1.1, plot (a) shows the oil price series, and it is evident that the level of prices does not 

appear to be stationary. The plot indicates a clutter of activity, reflecting the non-stationary nature of the 

series. Plot (b), the Autocorrelation Function (ACF), shows that the data decays slowly, which further 

supports the non-stationarity of the time series. Plot (c), the Partial Autocorrelation Function (PACF), 

shows that the data has a cut-off after the first lag. 

To address the non-stationarity of the data, various methodologies can be employed to achieve 

stationarity. While visual inspection of the plots provides initial insights, it is not sufficient to 

conclusively prove the non-stationarity of the series. Therefore, a more robust statistical tool, the unit 

root test, is used for further clarification. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240528234 Volume 6, Issue 5, September-October 2024 5 

 

 

 
Figure (1.1) :(a) The series of monthly price Libyan of Brent oil (MPL). (b) The Autocorrelation 

Function (ACF) of the MPL time series, indicating the correlation between values over successive lags. 

(c) The Partial Autocorrelation Function (PACF) of the MPL time series, showing the correlation of the 

series with its own lagged values, after removing the effects of earlier lags.   

 

4.3   The Unit Root Tests of Series (data)  

Table 1.3 presents the results of the unit root tests applied to the time series data of monthly Libyan 

crude oil prices for the Brent field. The p-values for the Phillips-Perron (PP) and Augmented Dickey-

Fuller (ADF) tests are 0.2248 and 0.1948, respectively, both of which are greater than 0.05. This 

suggests that we cannot reject the null hypothesis of a unit root, indicating that the series is not 

stationary. Conversely, the p-value for the KPSS test is 0.01, which is less than 0.05, indicating rejection 

of the null hypothesis of stationarity. Together, these results confirm that the time series is not 

stationary. 

 

Table (1.3): Result of the unit roots test of Libyan Crude Oil Price Series. 

Decision P-

value 

Value 

of 

statistic 

Test 

Accepted 

𝑯𝟎 (non-

stationary) 

0.2248 -24.405 PP 

Accepted 

𝑯𝟎 (non-

stationary) 

0.1948 -2.918 ADF 

Accepted 

𝑯𝟏 (non-

stationary) 

0.01 3.4421 KPSS 

 

2.2 The First Difference  
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In Figure (1.2) we observe that plot (b), the Autocorrelation Function (ACF) and plot (c), the Partial 

Autocorrelation Function (PACF), of the first differenced time series for Libyan crude price for the 

Brent field indicate that the series has become stationary. This means that there is no evident trend, and 

both the ACF and PACF are within confidence interval supporting the stationarity of series. 

 

 
Figure (1.2) First difference of the time series, with corresponding ACF and PACF plots. 

 

Table (1.4): Result of the Unit Roots test for First Differenced Libyan Crude Oil Price Series for 

the Brent field 

Decision P-

value 

Value of 

statistic 

Test 

Accepted 𝑯𝟏(stationary) 0.01  

150.8932- 

PP 

Accepted 𝑯𝟏(stationary) 0.01 4.5532- ADF 

𝐀𝐜𝐜𝐞𝐩𝐭𝐞𝐝 𝑯𝟎(stationary) 0.1 0.0848 KPSS 

From Table (1.4) the p-value of ADF and PP tests are both 0.01, which are less than 0.05, indicating that 

we reject the null hypothesis of a unit root, thus confirming stationarity. The p-value for KPSS test is 

0.1, which is greater than 0.05, supporting the acceptance of the null hypothesis of stationarity. These 

results indicates that the time series for the monthly of Libyan crude Oil price for the Brent field  is 

stationary after first differencing, and therefore, no further differencing is required. 

 

2.3   Fitting of ARIMA Model 

2.3.1  Model Identification 

Identification of an AR model is often best done with the PACF, and while the identification of an MA 

model is typically done using the ACF.   Our aim is to  find an appropriate ARIMA model based on the 

ACF and PACF shown in Figure (4.2). It seems possible that an AR (1) might be best fit for our data, 

based on the significant spike at the first lag of PACF plot. On the other hand, an MA (1) might work 
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well, as indicated by the significant spike in the first lag of ACF plot. This primary analysis suggests that 

the models to consider for this data are ARIMA (1,1,0), ARIMA (0,1,1), ARIMA (1,1,1). 

2.3.2  Model Selection 

The strategy used for selecting the appropriate model from the competing models is based on the Akaike 

Information Criteria (AIC) and Root Mean Square Error (RMSE). R programming software was used to 

perform trials and determine the best-fitting model. Table 1.5 provides the suggested models along with 

their respective fit statistics. 

  

Table (1.5): The values of (AIC) and (RMSE) for suggested ARIMA models 

ARIMA AIC RMSE 

ARIMA (1,0,0) 946.77 9.102 

ARIMA (1,1,0) 932.87 8.696 

ARIMA (0,1,1) 932.77 8.690 

ARIMA (1,1,1) 934.75 8.724 

ARIMA (2,1,0) 934.78 8.725 

ARIMA (1,2,0) 990.58 11.201 

ARIMA (2,1,1) 934.91 8.517 

ARIMA (2,1,2) 938.08 8.562 

The results from the above Table 1.5 show that the ARIMA (0,1,1) and ARIMA (1,1,0) models had the 

smallest AIC values, while the ARIMA(1,1,1) model had the second smallest AIC value (934.75). The 

ARIMA (2,1,1) model has lowest RMSE (8.517). Therefore, we will proceed to estimate the parameters 

of our suggested models.  

 

2.3.3   Model Estimation  

By using R software packages to estimate the parameters of the models ARIMA (0,1,1), ARIMA (1,1,1), 

ARIMA (2,1,1), and ARIMA (1,1,0), we obtained the following results: 

1- ARIMA (0,1,1) model: 

Table (1.6): Parameter estimate for ARIMA (0,1,1) 

 

From Table (1.6) the coefficient of the ARIMA (0,1,1) model is significantly different from zero. Fitted 

model in this case is (∆�̂�𝒕) = (𝟏 + 𝒐. 𝟐𝟏𝟖𝑩)(𝜺𝒕)  (4.1)                            

with estimated variance, �̂�𝑡
2= 75.3, and log likelihood = -465.38  

 

2-  ARIMA (1,1,1) model: 

This model is chosen because it seemed to fit the data well, the model is chosen based on the ACF and 

PACF behavior see Figure (1.2). 

 

 

 

 

 

Parameter Ma1(𝜽𝟏) 

Estimate -0.218 

P-value 0.01 
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Table (1.7): Parameters estimate for ARIMA (1,1,1) 

Parameter AR1(𝝓𝟏) MA1(𝜽𝟏) 

Estimate -0.030 0.195 

P-value 0.940 0.617 

From Table (1.7), the p-value of all parameters are greater than 0.05, so we accept the null hypothesis 

that there are not different from zero and conclude that the coefficients of the ARIMA (1,1,1) model are 

not significant. 

 

3-  ARIMA (2,1,1) model: 

Table (1.8): Parameters estimate for ARIMA (2,1,1) 

Parameter AR1(𝝓𝟏) AR2(𝝓𝟐) MA1(𝜽𝟏) 

Estimate 0.695 0.115 1.0 

P-value 0.00 0.00 0.610 

From Table (1.8), the p-value of 𝜙1 and 𝜙2 are less than 0.05, indicating that these parameters are 

significant. However, the p-value of 𝜃 is greater than 0.05, indicating that this coefficient. Therefore, we 

conclude that the model is not adequate. 

 

4-  ARIMA (1,1,0) model 

From Table (1.9) we can see that the p-value is 0.013, which is less than 0.05, indicating that the 

coefficient is significant. 

Table (1.9): Parameters estimate for ARIMA (1,1,0) 

Parameter AR1(𝝓𝟏) 

Estimate -0.216 

P-value 0.013 

fitted model in this case is (�̂�𝒕) = (𝟏 + 𝟎. 𝟐𝟏𝟔)𝑩 + 𝜺𝒕                                                          

with estimated variance, �̂�𝑡
2= 75.36, and log likelihood = -465.44              

At this point, it can be established that, among all the identified models, the ARIMA (0,1,1), and 

ARIMA (1,1,0) have proven to be the best fitting models.  

 

4.5.4 Model Checking  

In time series modelling, the selection of the best-fitting model is directly related to how well the 

residual analysis is performed. Moreover, we can assess the properties of the residuals using the 

following tests: 

1. We can check the randomness of the residuals by examining the ACF and PACF plots of the 

residuals. 

2. We can assess the normality of the residuals by considering the p-value from the Jarque-Bera test 

and the Q-Q plot of the residuals. 

3. We can check for autocorrelation in the residuals by examining the p-value from the Ljung-Box test. 

First, in Figures 1.3 and 1.4, we show that (a) the residual plots of the ARIMA (0,1,1) and ARIMA 

(1,1,0) models, and (b) the ACF and PACF plots, do not have any significant lags, indicating that these 

models are good fits for representing our data. 
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Figure (1.3): (a) The residual plot of ARIMA (0,1,1). (b) The Autocorrelation Function (ACF) of 

the residuals. (c) The Partial Autocorrelation Function (PACF) of the residuals. 

 

 
Figure (1.4): (a) The residual plot of ARIMA (1,1,0), (b) ACF, and (c) PACF 

  

Second, from Table 1.10, the Jarque-Bera test statistic for the residuals of ARIMA (0,1,1) is 1134.173, 

and for ARIMA (1,1,0), it is 1223.642, both with p-values equal to 0, which are significant. The test 

rejects the null hypothesis at the 5% level, leading us to conclude that these distributions are not normal. 

Furthermore, the kurtosis values for ARIMA (0,1,1) and ARIMA (1,1,0) are 14.1 and 14.96, 

respectively, indicating that the distributions of these models have high peaks.  

 

Table (1.10): Jarque-Bera test and kurtosis for residual ARIMA (0,1,1)  and ARIMA (1,1,0) 

Model JB Kurtosis 

ARIMA (0,1,1) 1134.173 14.1 

ARIMA (1,1,0) 1223.642 14.96 
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Figures 1.5 show the Q-Q normal plots of residuals, which explore the distributional shapes. These 

figures suggest that the distributions exhibit some non-normality in the tails, while the nearly straight 

lines indicate that the residuals follow approximately normal distributions. 

 
Figure (1.5): The Q-Q plot of residuals for the ARIMA (0,1,1) fit. The Q-Q plot of residuals for the 

ARIMA (1,1,0) fit 

 

Finally, for further diagnostic checking, we present the results of the Ljung-Box test in Tables 1.10 and 

1.11. 

Table (1.10): The Ljung-Box test for 

ARIMA (0,1,1) 

Table (1.11): The Ljung-Box test for 

ARIMA (1,1,0) 

Lag p-value Lag p-value 

 10 0.5429 10 0.498 

15 0.8262 15 0.7967 

20 0.9525 20 0.9386 

From Tables 1.11 and 1.12, the output from the R program shows that the p-values of all results are 

greater than 0.05, so we cannot reject the hypothesis that the autocorrelation is different from zero. 

Therefore, the selected model is appropriate for modeling the price of oil for the Brent field. 

 

4.6    ARCH Model 

By looking of the Figures 1.3 and 1.4, we see that ACF and PACF of residuals have no significant lags, 

but the time series plots of residuals show some cluster of volatility at the end of series. In order to 

model volatility, ARCH method comes into play.  For double check, we will plot the squared of residual 

to ensure that there are  indeed clusters of volatility. 
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Figure (1.6): (a) The squared residual plot for the ARIMA (0,1,1) fit, (b) ACF, and (c) PACF. 

 

From the Figure 1.6, we can see the squared residuals. Plot (a) shows cluster of volatility at certain 

points in time. Plot (b) shows the ACF, which seems to be die down gradually, and plot (c) shows the 

PACF, which cuts off after lag 2, even though some remaining lags are significant. However, the ARCH 

model is necessary to properly capture the volatility of the series. As the name suggests, this method 

focuses on modeling the conditional variance of the series. 

 
Figure (1.7): (a) The squared residual plot for the ARIMA (1,1,0) fit, (b) ACF, and (c) PACF 

 Figure 1.7 is similar to Figure 1.6, and the same results and comments apply. 

 

4.7   Testing for ARCH Effects 

The ARCH-LM test statistic at lags 10, 15, and 20 was computed for the ARIMA (0,1,1) and ARIMA 

(1,1,0) models. From Tables 1.12 and 1.13, all the p-values are less than 0.05, which means that the null 

hypothesis is rejected, indicating that there is an ARCH effect in both models.  
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Table (1.12): LM ARCH Test for residuals of 

ARIMA (0,1,1) 

Table (1.13): LM ARCH Test for residuals of 

ARIMA (1,1,0) 

Lag Chi-squared p-value Lag Chi-squared p-value 

10 47.96 6.304e-07 10 41.59 8.85e-08 

15 46.10 5.118e-05 15 46.10 0.00046 

20 44.17 0.001428 20 44.17 0.0082 

 

4.8 Model Selection and Analysis 

The strategy used to select the appropriate model from competing models is based on the minimum 

value of Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). A quick 

comparison of the results obtained from R software was conducted to fit ARCH models, using the 

residuals tests of the ARIMA (0,1,1) and ARIMA (1,1,0) series to determine the best fitting model. 

Table 1.14 presents the suggested models along with their respective fit statistics. The goal is to have a 

parsimonious model that captures as much variation in the data as possible. Typically, the mixed ARCH 

model captures most of the variability in stabilized series. In the table below, a smaller AIC value 

indicates a better fit.  

 

Table (1.14): Comparison of suggested ARIMA-ARCH models 

Model  AIC BIC 

Model (1) =ARIMA (0,1,1)-ARCH (1) 6.15 6.24 

Model (2) =ARIMA (0,1,1)-ARCH (2) 6.15 6.25 

M0del (3) =ARIMA (0,1,1)-ARCH (3) 6.17 6.30 

Model (4) =ARIMA (1,1,0)-ARCH (1) 6.17 6.26 

Model (5) =ARIMA (1,1,0)-ARCH (2) 6.15 6.26 

Model (6) =ARIMA (1,1,0)-ARCH (3) 6.17 6.30 

Table 1.14 shows the competing models along with their AIC and BIC values. Notice that models 1, 2, 

and 5 have the same lowest AIC value (6.15), while model 1 has the smallest BIC value (6.24). 

Therefore, we can conclude that model 1 is the best fit for the data. 

 

4.9   Model fit for model (1) 

Using the method of maximum likelihood, we derived our models and used the 'garchFit' function from 

the R package 'fGarch' to estimate the coefficients of model 1. 

Table (1.15): Parameters estimates for model (1) 

Parameter mu(𝝁) Ma1(𝜽𝟏) Alpha1(𝜶𝟏) 

Estimates 0.86 -0.24 0.76 

p-value 0.004 0.001 0.00017 

From Table 1.15, the coefficients of model 1 are significantly different from zero, and the estimated 

values satisfy the stationarity condition, where 𝛼0 > 0 , 𝛼𝑖 ≥ 0. The full model 1 with the estimated 

coefficients is represented as: 

  𝒂𝒕 = 𝝈𝒕 𝝐𝒕   𝒛𝒕 = −𝟎. 𝟐𝟒𝜺𝒕−𝟏 + 𝜺𝒕 

 𝝈𝒕  
𝟐 = 𝟎. 𝟖𝟔 + 𝟎. 𝟕𝟔𝒂𝒕−𝟏

𝟐                                                        
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 4.10   Diagnostic Checking of Model (1)   

Before we accept a fitted model and interpret its findings, it is essential to verify whether the model is 

correctly specified. In time series modeling, the selection of the best-fitting model is directly related to 

whether residual and squared residual analyses are performed correctly. One of the assumptions of the 

ARCH model is that, for a good model, the residuals must follow a white noise process. Therefore, we 

conducted the same analysis for model 1 that we did for ARIMA(0,1,1) and ARIMA(1,1,0) in Section 

4.5.4. 

For the model (1) fitted to the price for the Brent Oil residual data, we obtained the following results: 

First, the p-value of the Jarque-Bera test is 0.15, so the test accepts the null hypothesis at the 5% 

significance level, indicating that the distribution is normal. 

 
 Figure (1.8): Normal Q-Q plot of  residuals 

Figure (1.8) shows that the Q-Q plot of the residuals is nearly a straight line, suggesting that the 

residuals follow an approximately normal distribution.  

Second, if the model successfully captures the serial correlation structure in the conditional mean and 

conditional variance, then there should be no autocorrelation left in the residuals and squared residuals. 

Figure 1.9 provides the ACF plot of the residuals, which shows that no correlation remains.  

 
Figure (1.9): ACF plot of residuals of model (1). Figure (1.10): ACF plot of squared residuals of 

model (1) 
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Figure 1.10 provides the ACF plot of the squared residuals. The diagnostic checking reveals no new 

patterns, so we can assume that our model is adequate. We generated forecasts for a few periods (one 

year ahead), which are shown in the next section. 

 

Finally, Table 1.16 shows that the p-values of the Box-Ljung Q statistics for the residuals of model 1 are 

greater than the 0.05 significance level. Therefore, we fail to reject the null hypothesis, indicating that 

there is no autocorrelation left in the residuals. 

Table (1.16): Q - Test of residuals using 

model (1) 

Table (1.17): Q - Test of squared residuals using 

model (1) 

Lag p-value Lag p-value 

10 0.64 10 0.33 

15 0.49 15 0.439 

20 0.67 20 0.12 

Table 1.17 shows that the p-values of the Box-Ljung Q statistics for the squared residuals of model 1 are 

greater than the 0.05 significance level. Therefore, we accept the null hypothesis, indicating that there is 

no autocorrelation left in the squared residuals. 

 

ARCH Effect Test: 

Furthermore, we can check if there is an ARCH effect in the residuals using the ARCH test. The p-value 

is 0.31, which is greater than 0.05, so we accept the null hypothesis that there is no ARCH effect left (no 

heteroscedasticity). Based on all the results, we conclude that model 1 is the appropriate model for our 

data, and we proceed to use the model to forecast future values of the oil price series. 

4.11   Forecasting With the Model (1) 

In Figure 1.11, we observe that there are no significant changes in the forecasted values, which means 

that most of them remain the same after the first month. Our explanation for this is that in the IMA (1,1) 

model, the forecast will be flat after the first point. If there is an ARCH component, the forecast will 

technically never be flat, but the oscillations will “die out” and become smaller and smaller, potentially 

appearing flat to the eye, as seen in Figure 1.11. 

 
Figure (1.11): Forecasting model (1) 
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Next, we compare the ARIMA (0,1,1) model with model 1 using three benchmarks: Mean Error (ME), 

Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The results of these tests are 

presented in Table 1.20. 

 

Table (1.20): Results of the benchmark evaluation for the two types of models 

Model forecast MSE RMSE MAE 

ARIMA (0,1,1) 73.96 8.6 4.9 

Model (1) 73.96 8.6 4.7 

The results show that the model (1) has smaller benchmarks values, with an MAE of 2.7, while the MSE 

and RMSE of both models are 73.96 and 8.6, respectively. Hence, we can conclude that the model (1) is 

better than the ARIMA (0,1,1) model. 

5.1   Conclusions 

This study aimed to identify the appropriate model to predict the monthly price of Libyan Brent Oil. The 

data, characterized by heteroscedasticity and variability across different periods, is typical of economic 

and financial time series. The research focused on comparing two different models: the Box-Jenkins 

ARIMA model and the ARCH model. 

The study was conducted in two parts. In the first part, a detailed examination of the ARIMA model was 

performed. Two models, ARIMA (0,1,1) and ARIMA (1,1,0), were selected from eight suggested 

models based on the minimum AIC and RMSE values. The residuals of both models were then 

diagnostically checked using the Jarque-Bera test and Q-Q plot for normality, and ACF and PACF 

diagrams for randomness. The Ljung-Box test was used to check for autocorrelation, and both models 

were found to be suitable. However, the time series plot of residuals revealed clusters of volatility. This 

prompted a re-examination of the squared residuals, where clusters were indeed detected. Consequently, 

the ARCH effect was tested using the ARCH-LM test, which confirmed the presence of the ARCH 

effect, making these models less ideal for this data. 

In the second part of the study, ARCH models were explored. The selected model was the mixed 

ARIMA (0,1,1)-ARCH (1), chosen from six suggested models based on the smallest AIC and BIC 

values. This model underwent a detailed examination similar to the ARIMA models, with the residuals 

and squared residuals analysed. It was concluded that the ARIMA (0,1,1)-ARCH (1) model is the most 

accurate for data classification. A 12-month in-sample prediction and a 12-month out-of-sample forecast 

were conducted, and the results were compared with those from the ARIMA (0,1,1) model using the 

ME, RMSE, and MAE evaluation criteria. The mixed model ARIMA (0,1,1)-ARCH (1) outperformed 

the ARIMA (0,1,1) model. 

This leads to the conclusion that the ARCH model is more suitable than the ARIMA model for this 

specific type of data. 
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